2 ( )( ) (2 3, 1 0, 5 1, 2 1, 0 4) ( 1, 1, 4, 3, 4) ,
1 5 1 , , 3, , 2 , 2 2 2
1 1 3 ( , , 2, , 2). 2 2 2
n维向量的基本运算
定义2 设两个n维向量=(a1 , a2 , , an ),
(b1 , b2 , , bn )
(1)如果它们对应的分量分别相等,即 ai bi , i 1, 2, , n, 则称向量 与 相等,记作 = 。 (2)加法:称向量(a1 b1 , a2 b2 , , an bn )为
16 College of Mathematics Sichuan University
注意:在上面的八条运算规律中只利用了向量 的加法和数乘。但是,利用负向量的概念,依 然可以定义向量的减法运算: - = ( ). 直观地说就是对应的分量相减,
- =(a1 b1 , a2 b2 , , an bn ).
1 2 2 12 3 , 求。
解: (1, 1, 2) 2(1, 2,0) 12(1,0, 3)
(1, 1, 2) (2,4,0) (12,0, 36)
(1 2 12, 1 4 0, 2 0 36) (11, 5, 34).
运动的、变化的、瞬时的、高维的
《线性代数》 线性代数其实就做了一件事情,将中学的线性函数的像空间从一维扩 展到多维,研究“多维实线性空间”到“多维实线性空间”的“线性 [X] 映射”:Y = T ,即 从“n维实线性空间”到“m维实线性空间”的“线性映射”
函数(映射)的三要素:定义域、值域、对应关系 (1)线性映射的定义域、值域:“有穷维的向量空间”(也称有穷 维线性空间)