TEM透射电镜中的电子衍射及分析(实例)
- 格式:ppt
- 大小:573.50 KB
- 文档页数:65
TEM分析中电⼦衍射花样的标定来源:科袖⽹。
1.1电⼦衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采⽤不同的衍射⽅式时,可以观察到多种形式的衍射结果。
如单晶电⼦衍射花样,多晶电⼦衍射花样,⾮晶电⼦衍射花样,会聚束电⼦衍射花样,菊池花样等。
⽽且由于晶体本⾝的结构特点也会在电⼦衍射花样中体现出来,如有序相的电⼦衍射花样会具有其本⾝的特点,另外,由于⼆次衍射等会使电⼦衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电⼦衍射花样,图b是⼀种沿[111]p⽅向出现了六倍周期的有序钙钛矿的单晶电⼦衍射花样(有序相的电⼦衍射花样);图c是⾮晶的电⼦衍射结果,图e和g是多晶电⼦的衍射花样;图f是⼆次衍射花样,由于⼆次衍射的存在,使得每个斑点周围都出现了⼤量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电⼦衍射花样。
在弄清楚为什么会出现上⾯那些不同的衍射结果之前,我们应该先搞清楚电⼦衍射的产⽣原理。
电⼦衍射花样产⽣的原理与X射线并没有本质的区别,但由于电⼦的波长⾮常短,使得电⼦衍射有其⾃⾝的特点。
1.2电⼦衍射谱的成像原理在⽤厄⽡尔德球讨论X射线或者电⼦衍射的成像⼏何原理时,我们其实是把样品当成了⼀个⼏何点,但实际的样品总是有⼤⼩的,因此从样品中出来的光线严格地讲不能当成是⼀⽀光线。
之所以我们能够⽤厄⽡尔德来讨论问题,完全是由于反射球⾜够⼤,存在⼀种近似关系。
如果要严格地理解电⼦衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。
所谓Fresnel(菲涅尔)衍射⼜称为近场衍射,⽽Fraunhofer(夫朗和费)衍射⼜称为远场衍射.在透射电⼦显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,⽽Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。
第一节电子衍射的原理1.1 电子衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。
如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。
而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。
在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。
电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。
1.2 电子衍射谱的成像原理在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。
之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。
如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。
所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer (夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。
第一节电子衍射的原理1.1电子衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。
如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。
而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电子衍射花样,图 b是一种沿[111]面向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图 i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。
在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。
电子衍射花样产生的原理与X射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。
1.2电子衍射谱的成像原理在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。
之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。
如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel (菲涅尔)衍射和Fraunhofer (夫朗和费)衍射。
所谓 Fresnel(菲涅尔)衍射又称为近场衍射,而 Fraunhofer (夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer (夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。
透射电子显微镜实验报告宋林 MF1522012 光学工程一、TEM基本成像原理衍射像:在弹性散射情况下,根据德布罗意提出的物质波概念,考虑电子作为一种波,受到晶体的散射。
由于晶体中的晶格具有周期性排列结构,对于电子可以把它看做三维光栅,电子波受到光栅的调制,各个晶格散射的电子波发生干涉现象,使合成电子波的强度角分布受到调制,形成衍射。
从衍射图的强度测量可得出原子相对位置的信息。
如果衍射束的能量远小于入射电子束的能量,即可应用运动学理论活一次散射近似。
这时,衍射波振幅作为空间角分布的函数就是试样内部电场电势函数的傅里叶变换。
在透射电镜中,电子束通过物镜会在其后焦面上形成晶体的衍射花样。
电镜具体成像可以通过改变中间镜以及物镜光阑的大小和位置来调整。
当中间镜的物面与物镜的后焦面重合时,荧光屏上就会得到两次放大了的电子衍射图。
衍衬像:晶体试样在进行电镜观察时,由于各处晶体取向不同或晶体结构不同,满足Bragg条件的程度不同,使得对应试样下表面处有不同的衍射效果,从而在下表面形成一个随位置而异的衍射振幅分布,这样形成的衬度,称为衍射衬度。
这种衬度对晶体结构和取向十分敏感,当试样中某处含有晶体缺陷时,意味着该处相对于周围完整晶体发生了微小的取向变化,导致了缺陷处和周围完整晶体具有不同的衍射条件,将缺陷显示出来。
可见,这种衬度对缺陷也是敏感的。
基于这一点,衍衬技术被广泛应用于研究晶体缺陷。
衍衬成像操作上可以产生明场像和暗场像。
利用物镜光阑挡住衍射束。
只让透射束参与成像所获得的图像称为明场像;利用物镜光阑挡住透射束和其他衍射束,只让其中某一束或多束衍射束参与成像所获得的图像称为暗场像;其中,利用枪倾斜旋钮将某一强衍射束方向的衍射斑点一道荧光屏中心,让物镜光阑挡住透射束和其他衍射束,只让一道荧光屏中心的衍射束通过并参与成像,可以形成中心暗场像。
近似考虑,忽略双光束成像条件下电子在试样中的吸收,明暗场像衬度是互补的。
第一节电子衍射的原理1.1 电子衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。
如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。
而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。
在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。
电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。
1.2 电子衍射谱的成像原理在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。
之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。
如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。
所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer (夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。
TEM分析中电子衍射花样的标定原理第一节 电子衍射的原理1.1 电子衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。
如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。
而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。
在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。
电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。
1.2 电子衍射谱的成像原理在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。
之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。
如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。
所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。
TEM透射电镜中的电子衍射及分析TEM透射电镜(Transmission Electron Microscopy)是一种高分辨率的显微镜,它利用电子束穿透样品,并通过电子衍射和显微成像技术来观察样品的内部结构和晶格信息。
本文将通过一个实例来介绍TEM透射电镜中的电子衍射及分析过程。
实例:研究纳米材料的晶格结构研究目标:使用TEM透射电镜研究一种纳米材料的晶格结构,确定其晶格常数和晶体结构。
实验步骤:1.样品制备:首先,需要制备纳米材料的TEM样品。
常见的制备方法包括溅射,化学气相沉积和溶液法等。
在本实验中,我们将使用溶液法制备纳米颗粒样品,并将其沉积在碳膜上。
2.装载样品:将TEM样品加载到TEM透射电镜的样品台上,并进行适当的调整,以使样品位于电子束的路径中。
3.调整TEM参数:调整透射电镜的参数,如电子束的亮度,聚焦和对比度等。
这些参数的调整对于获得良好的电子衍射图像至关重要。
4. 获得电子衍射图:通过调整TEM中的衍射镜,观察和记录电子衍射图。
可以使用选区衍射(Selected Area Diffraction,SAD)模式,在样品上选择一个小区域进行衍射。
电子束通过纳米颗粒样品时,会与晶体的原子排列相互作用,并在相应的探测器上形成衍射斑图。
5.解析电子衍射图:利用电子衍射图分析软件,对获得的电子衍射图进行解析。
通过测量衍射斑的位置和相对强度,可以推断出样品的晶格常数和晶体结构。
6.确定晶格常数:根据衍射斑的位置,使用布拉格方程计算晶格常数。
布拉格方程为:nλ = 2dsin(θ)其中,n是衍射阶数,λ是电子波长,d是晶体平面的间距,θ是入射角。
通过测量不同衍射斑的位置和计算,可以得到晶格常数及其误差范围。
7.确定晶体结构:根据衍射斑的相对强度以及已知的晶格常数,可以利用衍射斑的几何关系推断样品的晶体结构。
常见的晶体结构包括立方晶系、六方晶系等。
8.结果分析:根据实验获得的数据,进行晶格常数和晶体结构的分析和比较。
实验二透射电镜结构原理及明暗场成像一实验目的1 结合透射电镜实物介绍其基本结构及工作原理,以加深对透射电镜结构的整体印象加深对透射电镜工作原理的了解。
2 选用合适的样品,说道明暗场像操作的实际演示,了解明暗场成像原理。
二实验原理:1 TEM中电子衍射原理电镜中的电子衍射,其衍射几何与X射线完全相同,都遵循布拉格方程所规定的衍射条件和几何关系. 衍射方向可以由厄瓦尔德球(反射球)作图求出.因此,许多问题可用与X射线衍射相类似的方法处理.2 TEM工作原理透射电子显微镜是—种具有高分辨率、高放大倍数的电子光学仪器。
被广泛应用于材料科学等研究领域。
透射电镜以波长极短的电子束作为光源,电子束经出聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成保和放大,然而电子束投射到主镜筒最下方的荧光屏上而形成所观察的图像。
在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。
图2-1 TEM成像原理从左至右依次为高放大率、衍射、低放大率、极低放大率2.1 TEM结构组成图2-2 TEM与光学显微镜结构原理比较TEM由电子光学系统、电源与控制系统及真空系统三部分组成。
电子光学系统通常称镜筒,是透射电子显微镜的核心,它的光路原理与透射光学显微镜十分相似,如图所示。
它分为三部分,即照明系统、成像系统和观察记录系统。
实验所用仪器本实验采用FEI公司生产的Tecnai G2 20透射电子显微镜(见图2-3)仪器介绍:Tecnai G2 20透射电子显微镜是当今很先进的200kV分析电镜,该仪器采用LaB6灯丝,具有很高的亮度。
结构紧凑、完美的电子光学系统,全自动的计算机控制,确保仪器长期的稳定性。
在该设备上还配有EDAX能谱系统,可以进行原位的元素成分分析。
Tecnai G2 20采用特殊设计, 可以快速有效地采集和处理信号, 并将高分辨图像、明场/暗场图像、STEM图像、电子衍射和详细的微观分析有机的结合起来。
透射电镜衍射斑点分析简介透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种通过电子束与样品相互作用,利用透射方式观察样品内部结构的高分辨率显微镜。
TEM的一个重要应用就是利用电子的衍射现象来研究样品的晶体结构。
在TEM中,电子束通过样品时会与样品中的原子相互作用,形成衍射斑点(diffraction spots)。
衍射斑点的分析可以提供许多有关样品结构的信息,包括晶格常数、晶体对称性、晶体缺陷等。
在本文中,我们将介绍透射电子显微镜衍射斑点的分析方法,包括数据采集、图像处理和衍射斑点解析。
数据采集在TEM中进行衍射斑点分析之前,首先需要采集衍射图像。
具体的数据采集方法可以根据样品和仪器的特性进行调整,但通常的步骤如下:1.确保样品准备充分,如将样品制成薄片,使电子束能够透过样品而不发生重叠散射。
2.调整TEM仪器的参数,如对准电子束、选择合适的放大倍数和调整聚焦等。
3.选择合适的衍射模式,如选区电子衍射(Selected Area ElectronDiffraction,SAED)模式或更广的场发射电子衍射(Convergent BeamElectron Diffraction,CBED)模式。
4.通过调整TEM的光学系统,将衍射斑点聚焦到相机上,并进行曝光,采集图像数据。
图像处理获得衍射图像后,接下来需要进行图像处理,以便更好地观察和分析衍射斑点。
图像处理的主要步骤包括:1.图像校正:根据TEM仪器的参数,进行图像校正,消除畸变和噪声。
2.区域选择:根据需要分析的衍射斑点和背景,选择感兴趣的区域,并进行裁剪和缩放。
3.对比度增强:通过调整图像的亮度和对比度,增强衍射斑点的清晰度。
4.噪声去除:使用滤波算法去除图像中的噪声,以便更好地观察衍射斑点。
图像处理的目的是提取出清晰、准确的衍射斑点图像,为后续的分析提供更好的数据基础。
衍射斑点解析通过合适的图像处理,可以得到清晰的衍射斑点图像。
TEM透射电镜中的电子衍射及分析实例TEM(透射电子显微镜)是一种利用电子束来研究物质结构的仪器。
它通过透射电子的衍射来获得高分辨率的图像,可以观察到物质的晶体结构、晶格缺陷、成分分布等信息。
下面将介绍几个常见的TEM电子衍射及分析实例。
1.晶体结构分析:TEM电子衍射可以用于确定物质的晶体结构。
例如,我们可以用TEM观察纳米颗粒的晶体结构,通过衍射斑图的形状和位置可以确定晶体的点群、空间群以及晶胞参数。
这对于研究纳米颗粒的生长机制、性能优化等具有重要意义。
2.晶格缺陷分析:晶格缺陷对材料的性质具有重要影响。
TEM电子衍射可以用于观察晶格缺陷并进行分析。
例如,通过对衍射斑图的解析,可以确定晶格缺陷的类型(例如位错、晶格错配等)、位置以及密度。
这对于研究材料的力学性能、电学性能等具有重要意义。
3.单晶取向分析:TEM电子衍射可以用于确定单晶的晶面取向。
通过选取合适的照射条件(如照射角度、光斑尺寸等),观察到的衍射斑图可以得到晶面的取向信息。
这对于材料的晶面取向控制、物理性质优化等具有重要意义。
4.晶体成分分析:TEM电子衍射可以用于确定材料的成分。
通过观察材料的纹理和衍射斑图的位置等信息,可以获得材料的成分分布。
例如,TEM电子能谱(EDS)结合电子衍射可以同时确定材料的晶体结构和成分,对于研究复杂多相体系具有重要意义。
5.界面结构研究:TEM电子衍射可以用于研究材料的界面结构。
通过选择合适的照射条件,观察到的衍射斑图可以提供界面的结构和晶面取向信息。
这对于研究界面的稳定性、反应动力学等具有重要意义。
总之,TEM电子衍射是一种非常重要的材料分析技术,它可以提供关于晶体结构、晶格缺陷、成分分布、晶面取向和界面结构等信息。
通过对衍射斑图的定性和定量分析,我们可以深入了解材料的性质和行为,为材料设计和性能优化提供指导。
这些实例只是TEM电子衍射应用的一部分,随着技术的发展,相信将会有更多更广泛的应用出现。
TEM电子衍射及分析引言透射电子显微镜(Transmission Electron Microscope,简称TEM)是一种高分辨率的显微镜,利用电子束通过样品并对透射电子进行衍射、成像和分析等操作。
TEM电子衍射是一项重要的研究技术,可以用于研究材料的结晶结构和晶体缺陷等特性。
本文将介绍TEM电子衍射的原理及常用的分析方法。
TEM电子衍射原理TEM电子衍射是指入射电子束通过样品后,由于与样品内部结构的相互作用,电子将发生衍射现象。
衍射过程中,入射电子束的波动性质被样品晶体结构所限制,形成衍射斑图。
通过观察衍射斑图的形态和分布,可以了解样品晶体的结构信息。
TEM电子衍射的原理可以用布拉格方程来描述:nλ =2d*sinθ 其中,n为衍射级数,λ为入射电子的波长,d为晶格的间距,θ为衍射角度。
TEM电子衍射图解析TEM电子衍射图是由衍射斑图组成的,通过对衍射斑图的解析,可以得到样品晶体的一些重要信息。
1.衍射斑的亮度:衍射斑的亮度反映了样品晶体中存在的晶格缺陷、位错等信息。
亮斑表示高度有序的结构,而暗斑则表示晶格缺陷存在。
2.衍射斑的分布:衍射斑的分布可以提供样品晶体的晶面方向信息。
通过观察衍射斑的位置和排列方式,可以确定样品晶体的晶体结构。
3.衍射斑的形状:衍射斑的形状可以指示晶格的对称性。
正交晶系的衍射斑为圆形,其他晶系的衍射斑形状则会有所不同。
TEM电子衍射分析方法除了观察TEM电子衍射图来获得晶体结构信息外,还有一些常用的分析方法。
1.衍射索引:通过观察衍射斑的位置和分布,结合晶体结构学的知识,利用衍射索引方法确定晶格参数、晶胞参数,从而得到样品晶体的晶体结构信息。
2.选区电子衍射:通过在选定的区域内进行电子衍射,可以得到该区域的晶格结构和取向信息。
这种方法可以用来研究样品中不同区域的晶体结构差异。
3.电子衍射支撑:通过在TEM观察区域选择多个点进行电子衍射,得到它们的衍射斑的位置和分布等信息。
第一节电子衍射的原理1.1 电子衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。
如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。
而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。
上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。
在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产生原理。
电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。
1.2 电子衍射谱的成像原理在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。
之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。
如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。
所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。
Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer (夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。