敬请指导
(2)从1,2,3,4这四个数中任取两个数组 成一个两位数,求这个两位数是偶数的概率。
要求:先独立思考然后组内讨论纠错。
组内纠错
2
(1)
3
(2) 1 2
巩固练习
课堂练习二:(6分钟) 现有一批产品共有5件,其中3件为正品,2件 为次品: (1)如果从中一次取2件,求2件都是正品的
概率; (2)如果从中取出一件,然后放回,再取一
{d,e}共10个,其中2件都是正品的有3个,设事件A为
“从5件产品中一次取2件都是正品”,则P( A) 3 。 (2)从中连续有放回地取2件的所有基本事件有: 10
(a,a),(a,b),(a,c),(a,d),(a,e), (b,a),(b,b),(b,c),(b,d),(b,e), (c,a),(c,b),(c,c),(c,d),(c,e), (d,a),(d,b),(d,c),(d,d),(d,e), (e,a),(e,b),(e,c),(e,d),(e,e)
(1)对于古典概型,任何事件A的概率为:
P(A)=
A
包含的基本事件的个数 基本事件的总数
(2)古典概型的概率求解步骤是:
第一步,列出所有基本事件并数出个数;
第二步,数出事件A所包含的基本事件;
第三步,求概率(比值)。
模型建构
(三)典例探究(7分钟) 例2:同时掷甲乙两个质地均匀的骰子,求 向上的点数之和为5的概率。
• 教师点拨:一次试验产生一个结果,而一次试验 有多种可能结果,每个可能结果不可能同时发生, 这每一个可能结果我们称为基本事件。也就是说, 基本事件就是不能再被分解为两个或两个以上的 事件.
由此,我们可以概括出基本事件的两个特点: