风机水泵变频调速的节能运行原理
- 格式:doc
- 大小:50.50 KB
- 文档页数:3
风机 / 水泵节能原理一、风机,水泵工作现状分析1、概述风机,水泵是目前工业现场中应用较多的设备,而且电机功率较大。
在我国,电能最大的用户是电机,约占总耗的70%。
其中风机,水泵耗电占全部电能的50%,在通常设计中,用户配用电机的设计容量都要比实际高出很多。
也就是大马拉小车现象,同时原风机、水泵的送风、送水系统控制大多数都是采用控制调节阀门的开度来实现送风、送水量的大小,不管需要的风量、水量是大是小,风机、水泵则都是以设计时的最高转速运行,由于使用阀门调节开度来实现变风量、水量的控制,调节方式不方便,造成维护成本增加,系统不稳定性,管网损耗增加,又浪费大量的电能,即“放风、放水就是放电”白白浪费掉,同时电机在工频状态下频繁开/停比较困难,对电网冲击较大,势必造成开/停机时的电流冲击,传统的调节方式已经不能满足现代企业生产工艺的需求,在风机、水泵、等应用领域,引入节能控制技术,能达到很好的节能效果,同时,也降低了电机启动时对电网的冲击,提高了设备的功率因数,延长了机械系统的使用寿命,消除“水锤效应”对管道的冲击,提升了系统的可靠性,另外,因为节电器强大的保护功能,对设备起到了很好的保护作用,有效降低了设备的维护成本。
近几年,随着现代电力电子技术的不断推广与应用,从实践结果来看,WSD-E90专用节电器得到了良好经济效应与社会效应,并且,也得到用户的广泛认同。
1)电能浪费风机/水泵,挡板、阀门的调节控制风量/水量,风机/水泵的转速恒定,由挡板/阀门来控制风量/水量,造成能量的大小与电机输出功率不成比例,造成大量的能量浪费。
2)对生产工艺中负荷的适应能力差由于生产负荷在变化,而风门/阀门的调节也在不断变化,若风量/水量不稳定,就会造成风压/水压的变化,影响到工作效率和生产质量。
3)电机起动冲击电流大,管道的“水锤效应”电机启动采用降压起动方式。
在启动过程中起动冲击电流是额定电流的3-4倍,对电网电压冲击很大,“水锤效应”对管道的危害,操作复杂设备故障率高,维护费用高,造成停产损失大。
为什么风机水泵类负载使用变频器节能效果好?
根据流体力学的基本定律可知:风机水泵类负载是典型的平方转距负载,其主要特点是:转速n与转矩T以及负载功率P具有如下关系:T∝n2,P∝n3。
即转矩与转速平方成正比,功率与转速立方成正比。
通常风机水泵类负载多是根据满负荷工作需用量来选型,实际应用中大部分时间并非工作于满负荷状态,所以,只要平均转速稍微下降一点,负载功率就下降得很快,从而达到节能效果。
但采用电机直接起动方式时,由于转速无法调节,常用挡风板、阀门来调节风量或流量,这样不仅造成能源的浪费而且由于过大的起动电流造成电网冲击和设备的震动及水锤现象。
采用变频器调速时,可以根据实际工艺需要方便地控制速度。
例如:当电机转速为额定转速的80%时,负载功率为额定功率的(80%)的三次方,即50%左右。
这样可见,转速下降二成,节能达四成多。
同时,可以方便地实现闭环恒压控制,节能效率将进一步提高。
使用变频器避免了起动时对电网的冲击,降低设备故障率,消除震动和水锤现象,延长设备使用寿命,同时也降低了对电网的容量要求和无功损耗。
浅谈风机水泵自控系统变频节能改造【摘要】风机水泵自控系统变频节能改造是针对传统系统的能耗高、效率低等问题进行改进的一种技术方案。
本文首先从背景介绍入手,探讨了传统系统存在的问题。
然后介绍了变频节能技术的原理及其在节能改造中的应用。
接着提出了改造方案,并分析了实施效果和技术难点。
实施效果方面,通过数值数据展示了改造后的节能效果。
技术难点方面,重点探讨了在实施过程中可能遇到的挑战和解决方案。
结论部分总结了本文讨论的主要内容,强调了节能效果显著,推广应用前景广阔。
最后指出了该技术的重要性,并展望了未来的发展方向。
【关键词】风机,水泵,自控系统,变频,节能改造,引言,背景介绍,变频节能技术原理,改造方案,实施效果,技术难点,节能效果显著,推广应用前景,总结1. 引言1.1 引言风机水泵自控系统变频节能改造是当前工业领域中的一项重要技术革新,通过引入变频节能技术,可以有效地提高设备的运行效率,降低能耗,实现节能减排的目的。
随着我国工业化进程的加快,能源消耗量逐渐增大,能源资源的紧缺和环境污染等问题也日益突出,因此加强节能减排工作,实现能源的有效利用已成为当前重要的任务。
风机水泵系统在工业生产中广泛应用,传统风机水泵系统运行时常常以全速运行,无法根据实际需求合理调节运行状态,造成能源的浪费。
而通过引入变频技术,可以根据实际负荷需求来调节设备的运行速度,实现精确控制,达到节能减排的效果。
对风机水泵自控系统进行变频节能改造具有重要的实际意义和推广价值。
本文将从背景介绍、变频节能技术原理、改造方案、实施效果和技术难点等方面进行探讨,以期为风机水泵自控系统的节能改造提供一定的参考和借鉴。
部分结束。
2. 正文2.1 背景介绍风机水泵系统在工业生产中广泛应用,其耗电量通常很大,而且运行效率低下。
为了改善系统的运行效率和降低能耗,风机水泵自控系统变频节能改造逐渐成为一种流行的解决方案。
变频节能技术能够根据实际负荷的需求自动调节电机的转速,从而降低系统运行时的能耗。
节能原理及计算方法一、节能原理风机和水泵,前者工作介质为液体,均属于流体机械设备。
下面以风机为例说明它们的工作特性。
特别是离心式风机及水泵,工作特性基本相同。
以下就以风机为例说明他们的调速工作原理。
风机的工作特性图如下:风机的工作特性图由上图可以看出,风机工作的位置,即风机的风量是由风机特性曲线(风压特性)和管网特性曲线(风阻特性)决定的,无论是改变风机的特性曲线,或者是改变管网特性曲线,都可以达到改变风量的目的。
图中:风机特性曲线 HA =kQ12K——风机特性系数;管网特性曲线 HA =Hc-λQ12λ——管网特性系数。
(一)工频工作方式工频工作方式是指泵的特性曲线保持不变,而改变管网特性曲线。
通常采取的方式是保持风机的特性曲线不变,即不改变风机的转速,而用调节挡板改变出风口的大小,达到改变风量的目的。
如下图所示:工频工作方式时风机的工作特性图从图中可以看出,风机工作在A点时,风量为Q1,风压为H1。
保持风机的转速不变,用挡板将风量调节为Q2时,风压将上升到H2,风机工作点变为B点。
由于挡板的节流作用,风道的阻力曲线变为OB。
风机工作在A点时,其功率为PA =H1×Q1/102;风机工作在B点时,其功率为PB =H2×Q2/102。
虽然Q2<Q1,但H3>H1,所以PA与为PB的值变化不大,说明采用工频工作方式时,改变风机的风量,风机的轴功率减小有限。
(二)变频工作方式变频工作方式是指管网特性曲线保持不变,而改变风机的特性曲线。
通常采取的方式是保持管网特性曲线不变,即不改变风机出口的大小,而改变风机的特性曲线,即改变风机的转速,达到改变风量的目的。
如下图所示:风机工作在A点时,其功率为PA =H1×Q1/102;风机工作在B点时,其功率为PB =H2×Q2/102。
Q 2<Q1,而且 H2>H1,所以PA与为PB的值变化较大,说明采用变工频工作方式时,改变风机的风量,风机的轴功率减小很大,节能效果显著。
风机、水泵变频调速节能分析来源:希望森兰科技股份有限公司发布时间:2005-03-15 点击次数:671 能源是国家重要的物质基础,能源的供需矛盾已成为制约我国社会主义经济建设的主要因素之一。
在能源问题上国务院提出“节约与开发并重”的方针,就是依靠技术进步,把节约能源以解决能源问题作为我国重要的技术经济政策。
据不完全统计,全国风机、水泵、压缩机就有1500万台电动机,用电量占全国总发电量的40~50%,这些电动机大多在低的电能利用率下运行,只要将这些电动机电能利用率提高10~15%,全年可节电300亿kW以上。
根据火电设计规程SDJ-79规定,燃煤锅炉的送、引风机的风量裕度分别为5%和5%~10%,风压裕度分别为10%和10%~15%。
设计过程中很难计算管网的阻力、并考虑到长期运行过程中发生的各种问题,通常总是把系统的最大风量和风压裕度作为选型的依据,但风机的型号和系列是有限的,往往选取不到合适的风机型号时就往上靠,裕度大于20~30%比较常见。
因此这些风机运行时,只有靠调节风门或风道挡板的开度来满足生产工艺对风量的要求。
风机和水泵的机械特性均为平方转矩特性,水泵运行时,靠阀门的开度调节流量来满足供水要求,工况与风机相似,靠调节风门、风道档板或阀门的开度来调节风机风量,水泵流量的方法、称为节流调节,在节流调节过程中,风机或水泵固有特性不变、仅仅靠关小风门、挡板或阀门的开度,人为地增加管路的阻力,由此增大管路系统的损失,不利于风机,水泵的节能运行。
采用调速控制装置,通过改变风机水泵转速,从而改变风机风量,水泵流量以适应生产工艺的需要,这种调节方式称为风机水泵的调速控制。
风机、水泵以调速控制方式运行能耗最省,综合效益最高。
交流电机的调速方式有多种、变频调速是高效的最佳调速方案,它可以实现,风机水泵的无级调速,并可方便地组成闭环控制系统、实现恒压或恒流量控制。
一、风机水泵变频调速的节电原理:如图示为离心风机水泵的风压、(水压)H-风量(流量)Q曲线特性图:n1-代表风机水泵在额定转速运行时的特性;n2-代表风机水泵降速运行在n2转速时的特性;R1-代表风机水泵管路阻力最小时的阻力特性;R2-代表风机水泵管路阻力增大到某一数组时的阻力特性。
举例说明离心式风机与水泵采用变频调速节能的原理在各种工业用风机、水泵中,如锅炉鼓、引风机、深井、离心泵等,大部分是额定功率运行,而它们的能耗都与机组的转速有关。
通常在工业生产、产品加工制造业中风机设备主要用于锅炉燃烧系统、烘干系统、冷却系统、通风系统等场合,根据生产需要对炉膛压力、风速、风量、温度等指标进行控制和调节以适应工艺要求和运行工况。
风机流量的设计均以最大风量需求来设计,其调整方式采用调节风门、挡板开度的大小、回流、启停电机等方式控制,无法形成闭环控制,也很少考虑省电。
这样,不论生产的需求大小,风机都要全速运转,而运行工况的变化则使得能量以风门、挡板的节流损失消耗掉了。
在生产过程中,不仅控制精度受到限制,而且还造成大量的能源浪费和设备损耗。
从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用高居不下。
同样,离心式水泵在我国当前的工业生产和人民日常生活中起到很大的作用,水泵使用三相异步电动机进行拖动,水泵流量的设计同样为最大流量,压力的调控方式只能通过控制阀门的大小、电机的启停等方法。
这种人为增加管阻的调节方式虽然满足了生产生活所需的对流量的控制,但是浪费了大量的电能,不是一种经济的运行方式。
电气控制采用直接或Y-△启动,不能改变风机和水泵的转速,无法具有软启动的功能,机械冲击大,传动系统寿命短,震动及噪声大,功率因数较低等是其主要难点。
为解决这些难题,相关科研技术人员根据生产需要对风机和水泵等装置的转速进行控制和调节以适应工艺要求和运行工况,在满足生产需求的基础上又节约了能源。
所以,变频调速对生产生活具有十分重要的意义,这也就意味着我们有必要了解风机和水泵等装置采用变频调速节能的原理。
为了对变频调速节能原理有更清晰、更深入的理解,我们可以先从变频器的工作原理出发。
变频器电路(见下图)的基本工作原理为:三相交流电源经二极管整流桥输出恒定的直流电压,由六组大功率晶体管组成逆变器,利用其开关功能,由高频脉宽调制(PWM)驱动器按一定规律输出脉冲信号,控制晶体管的基极,使晶体管输出一组等幅而不等宽的矩形脉冲波形,其幅值为逆变器直流侧电压Vd而宽度则按正弦规律变化,这一组脉冲可以用正弦波来等效,此脉冲电压用来驱动电机运转,通过控制PWM驱动器输出波形的幅值和频率,即可改变晶体管输出波形的频率和电压,达到变频调速的目的。
风机变频原理
风机变频技术是指通过改变电源频率来控制风机的转速,从而实现对风机运行状态的精准控制。
在风电场中,风机变频技术被广泛应用,可以有效提高风机的运行效率和稳定性,降低能耗和维护成本,同时也对电网具有一定的支撑作用。
下面我们将详细介绍风机变频原理。
首先,风机变频技术的基本原理是利用变频器对电源频率进行调节,以改变电机的转速。
在传统的风机系统中,电机通常是由恒定频率的交流电源驱动,因此风机的转速也是固定的。
而通过变频器可以改变电源频率,从而改变电机的转速,实现对风机的精准控制。
其次,风机变频技术的关键在于变频器的控制策略。
变频器需要根据风机的运行状态和外部环境条件,调节输出频率和电压,以实现对风机的最佳控制。
在风速较大时,需要提高风机转速以提高发电效率,而在风速较小或风机受到外部干扰时,需要降低风机转速以保护设备和延长使用寿命。
因此,变频器需要具备智能化的控制策略,能够根据实时情况对风机进行动态调节。
此外,风机变频技术还涉及到电机的变频驱动系统。
变频驱动
系统通常由变频器、电机和传感器等组成,其中变频器起到控制电
源频率的作用,电机负责转换电能为机械能,传感器用于采集风机
运行状态和环境参数。
这些组件共同协作,实现了风机变频技术的
应用。
总的来说,风机变频技术通过改变电源频率来控制风机的转速,实现了对风机运行状态的精准控制。
这不仅提高了风机的运行效率
和稳定性,降低了能耗和维护成本,也对电网具有一定的支撑作用。
随着风电行业的发展,风机变频技术将会得到更广泛的应用,为风
电产业的可持续发展做出贡献。
风机水泵变频调速的节能运行原理
风机和水泵是典型的变转矩负载。
变转矩负载的特性是转矩随速度的上升而上升。
风机和水泵的电动机的轴功率P 与其流量(风量)Q ,扬程(压力)H 之间的关系式如下:
P ∝Q×H ④
当流量由Q 1变化到Q 2时,电动机的转速为N 1、N 2,Q 、H 、P 相对于转速的关系如下:
Q 2=Q 1×(N 2/N 1)
H 2=H 1×(N 2/N 1)2 ⑤ P 2=P 1×(N 2/N 1)3
而电动机的轴功率P 和转矩T 的关系为: T ∝P /N 因此:T 2=T 1×(N 2/N 1)2 ⑥
由式⑤和式⑥可以看出,风机和水泵的电动机的轴功率(功率输出)与转速的3次方成正比,而转矩与转速的2次方成正比。
图6(a )显示出了风机和水泵的扬程(压力)与风量(流量)的关系曲线,图6(b )显示出转矩与电机速度的关系曲线:
从图6中可以看出,在低速时,功率会有很大的下降。
由于风机或水泵运行于额定转速以上是恒功率调速,此时风机和水泵效率很低,机械磨损大,容易损坏电机。
从理论上讲,速度降低10%时会带来30%左右的功率下降,由于功率的大幅度降低,可获得显著的节能效果。
风机水泵在改用变频调速前,要根据实际工况首先取得设备运行
的技术参数,进
行改造前的一些必要的技术论证,计算是其中最为重要的一个环节,而节能估算又是论证计算中关系到用户是否体现经济效益的重要环节。
在节能方面的计算是无法非常精确的,这是由于实际工况中有许多无法精确预算的影响因素存在。
因此,只能称其为“节能估算”。
节能是指能量形式相互转换过程。
包括能量转换为功的过程中,
H 2H 1转矩T 功率P 21转速 100%
图6(a)
图6(b)
努力减少多余的能量消耗,即所谓“所费多于所当费,或所得少于所可得”的那部分能耗,而“当费”与“可得”的那部分是不能被节约的。
对于电力产生的消费来说,“可得”是指发电机应得到的发电效果,“当费”是指用电器(包括电动机)做功的耗效果。
这“少得”与“多费”的部分能源,恰是我们有可能节约,并有所作为的。
采用交流电动机变频调速系统替代其恒速运动能够节能,对节能效果的计算取决于:
确定合理的基准线电动机功率;
确定系统发行后不同转速﹑不同工况下电动机的功率; 确定各种工况下每年的工作时间; 本地区动力用电的价格。
节电效果验证
节电效果验证的依据——节电率
采用将电效改造前后的消耗功率或一定时间内的电费进行对比的方法计算出节电率,节电效果的好坏以节电率的高低为衡量依据。
节电率的计算方法为:
变频调节时节电率为:
2P 为变频器调节后的功率,1P 为变频器未调节时的功率。
节电率为:%100112⨯⎪⎪⎭⎫
⎝
⎛-P P =(1-174/340)×100%=48.8%
变频器未调节时的功率
1P =3UICOS ϕ=1.73×6KV ×40A ×0.82=340KW
变频器调节后的功率
P2=340×0.83
, =174.08(kw)(当实际风量为额定风量80%时) 注:1)以上计算是未考虑系统损耗等情况
2)不论用那种方式调节,风机、水泵的效率、电机的功率因素也有一定
的变化,在上述计算中也没考虑。
3)本公司承诺节电率为30%。
根据贵公司所提供的运行数据得出,运行时间为一天24小时。
一天所节约的电量为:48.8%×340KW ×24h=3982KW ·h 一年所节约的电量为:3982KW ·h ×360天=143354KW ·h
按照电费0.5元/kW ·h 计算,则一年节约的电费为:
节电率(%)= 改造前的功率(或电费)—改造后的功率(或电费)
改造前的功率(或电费) ×100%
143354KW·h×0.5元=716774元
投资受益分析
计算方法:
设备一次性买断回收计算:
1.总投入C:
2.每年节约的电费S
3.投资回收时间T
T=C/S
T=1200000元/716774元=1。
68年其他受益:
1、减少设备维修费用更新费;
2、延长设备的使用寿命;
3、减少接触器触点产生氧化性碳膜层而接触不良;
4、降低企业综合运营成本。