肥乡区七年级数学上册5.1认识一元一次方程5.1.2认识一元一次方程教案新版北师大版
- 格式:doc
- 大小:53.00 KB
- 文档页数:4
第五章一元一次方程1.认识一元一次方程(一)一、学生起点剖析学生在小学时期已学过等式、等式的基天性质以及方程、方程的解、解方程等知识,经历了剖析简单数目的关系,并依据数目关系列出方程、求解方程、查验结果的过程。
对方程已有初步认识,但并无学习“一元一次方程”正确的理性的观点。
二、学习任务剖析本节从风趣的“猜年纪”游戏下手,经过对五个熟习的实质问题的剖析,学生联合已有知识,能得出一元一次方程。
在此过程中,学生渐渐领会方程是刻画现实世界、解决实质问题的有效数学模型.本节的要点:学生在实质问题中剖析、找到等量关系 , 正确列出方程,并总结所列方程的共同特色,归纳出一元一次方程的观点。
本节的难点:由特别的几个方程的共同特色归纳一元一次方程的观点。
三、教课目的1、在对实质问题情境的剖析过程中感觉方程模型的意义;2、借助类比、归纳的方式归纳一元一次方程的观点,并在归纳的过程中体验归纳方法;3、使学生在剖析实质问题情境的活动中领会数学与现实的亲密联系。
四、教课过程设计环节一:阅读章前图内容 1:请一位同学阅读章前图中对于“丟番图”的故事。
(大概1分钟)丢番图(Diophantus )是古希腊数学家.人们对他的平生事迹知道得极少,但流传着一篇墓志铭表达了他的平生:坟中埋葬着丢番图,多么令人吃惊,它忠实地记录了其所经历的人生旅途.上帝恩赐他的童年占六分之一,又过十二分之一他两颊长出了胡子,再过七分之一,点燃了新婚的蜡烛.五年以后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉.伤心只实用数学研究去填补,又过四年,他也走完了人生的旅途.——出自《希腊诗文选》(T h e G r e e kAnthology)第126题目的:经过阅读章前图中的故事,激发同学们探究丟番图年纪的兴趣,从而指引学生通过列方程解决问题,感觉利用方程能够解决实质问题,感觉方程是刻画现实世界有效地模型。
成效:学生对丟番图的故事很感兴趣,有的学生提出问题:他的年纪是多少呢?教师借1机也提出问题:用什么方法能够求解丟番图的年纪呢?紧接着表现内容2。
河北肥乡第二中学七年级数学导学案 1主备人:课型:新授课课题:5.1.2认识一元一次方程学习目标:1.体会解决问题的一种重要的思想方法----尝试检验法.2.理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程.学习重点:利用等式的性质解元一次方程学习重点:利用等式的性质解元一次方程学习方法:自主探究,合作交流,分组展示学习过程一、复习引入(自主学习5分钟)1.叫方程.2.叫一元一次方程.3.你能写出一个一元一次方程吗?4.[练一练]请你运用已学的知识,根据下列问题中的条件,分别列出方程:(1)、小明的妈妈今年44岁,是小明年龄的3倍还大2岁,设小明今年x岁,则可列出方程:___________________(2)、x的1.5倍加上14等于20,可列出方程。
二、探索新知(自主探究合作交流10分钟)(一)实验如果天平两边砝码的质量同时扩大相同的倍数或同时缩小为原来的几分之一,那么天平还保持平衡吗?(二)归纳等式的两个性质⒈等式的两边都加上或都减去,所得结果仍是等式。
⒉等式的两边都乘以或都除以同一个的数或式,所得结果仍是等式。
三、解方程(分组展示15分钟)例⒈利用等式的性质解下列方程:⑴ x + 2= 5;⑵ 3=x - 5.解:解:例⒉解下列方程:⑴ - 3x = 15 ;⑵3n-– 2 = 10.解:解:检验方法:把求出的解代入原方程,看看左右两边是否。
四当堂练习:(小试牛刀10分钟)1.解方程(1)x-9=8 (2).5-y=-16解:解:(3).3x+4=-13 (4). 5132=-x解:解:2.小明编了一道数学题:我是4月出生的,我的年龄的2倍加上8,正好是我出生那一月的总天数。
你猜我几岁?请你求出小明的年龄。
五、本节课的学习,你有什么收获和困惑?六、布置作业1.课本P134习题5.2 知识技能1。
北师大版数学七年级上册5.1《认识一元一次方程》教学设计2一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。
本节课的主要任务是让学生了解一元一次方程的概念、性质和解法,培养学生解决实际问题的能力。
教材通过引入生动有趣的问题情境,激发学生的学习兴趣,引导学生逐步认识一元一次方程,并在解决实际问题的过程中体验到方程思想的重要性和应用价值。
二. 学情分析七年级的学生已经掌握了代数的基础知识,具备一定的逻辑思维能力。
但对于一元一次方程这一概念,学生可能较为陌生。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解和掌握一元一次方程的相关知识。
同时,学生对于实际问题的解决方法还不够成熟,需要教师在教学中给予引导和培养。
三. 教学目标1.了解一元一次方程的概念、性质和解法。
2.培养学生解决实际问题的能力。
3.培养学生的合作交流能力和创新思维。
四. 教学重难点1.重难点:一元一次方程的概念、性质和解法。
2.难点:如何将实际问题转化为方程,并运用方程思想解决问题。
五. 教学方法1.情境教学法:通过引入生动有趣的问题情境,激发学生的学习兴趣,引导学生主动参与课堂。
2.启发式教学法:教师引导学生从实际问题中发现规律,培养学生独立思考和解决问题的能力。
3.合作学习法:学生分组讨论,共同解决问题,提高学生的合作交流能力。
4.实践操作法:教师引导学生动手操作,加深对一元一次方程的理解。
六. 教学准备1.教学课件:制作课件,展示一元一次方程的相关知识点。
2.教学素材:准备一些实际问题,作为课堂练习和拓展的内容。
3.的黑板:提前准备好黑板,以便于教师在课堂上进行板书。
七. 教学过程1.导入(5分钟)教师通过一个简单的问题情境,引导学生发现实际问题中存在等量关系,从而引出一元一次方程的概念。
2.呈现(15分钟)教师讲解一元一次方程的定义、性质和解法,让学生初步认识一元一次方程。
3.操练(15分钟)教师给出一些实际问题,让学生尝试用一元一次方程解决。
七年级数学第五章认识一元一次方程教案第一篇:七年级数学第五章认识一元一次方程教案.七年级数学第五章一元一次方程全章教案5.1:《认识一元一次方程》第一课时一:教学目标1、知识与技能:①理解一元一次方程及解的概念,会检验一个数是不是某个方程的解;②会根据数量关系或简单问题情境列一元一次方程。
2、过程与方法:①经历判断一元一次方程的过程,进一步理解一元一次方程的含义。
②经历对实际问题情境的分析过程中感受方程模型的意义,感受数学与生活的联系。
3、情感、态度与价值观:通过已知的方程推导出未知量,形成概念,通过本节的学习,感受数学的实际价值,从中发现事物发展变化的规律,并培养学生的科学态度。
二:教学重点:一元一次方程的概念和解法是学习方程及其应用的重要基础。
三:教学难点:准确把握一元一次方程的概念是本节的难点一;本节内容还提出用尝试、检验的方法解决实际问题,这是难点二。
四:教学方法:1页.本节课宜采用自主探索与互相协作相结合,交流练习互相穿插的活动课形式。
同时,利用发现法和问题讨论等教学方法。
五:教学过程:Ⅰ、创设情境,引出课题创设情境:老师活动:同学们,今天我们要认识数学王国里的几位新朋友。
认识新朋友,可也别忘了我们的老朋友。
看,老朋友来了!(1)1+2=3(2)5=7-2(3)3+b=2b+1(4)4+x=7(5)2x-2=6 同学们,你们还认识它们吗?能叫出他们的名字吗?如果觉得有困难,就小组讨论一下学生活动:讨论说出等式,方程的概念。
老师活动:好,再和老朋友加深一下印象。
判断下列各式是不是方程(1)-2+5=3()(2)3χ-1=7()(3)m=0()(4)χ﹥3()(5)χ+y=8()(6)2χ2-5χ+1=0()(7)2a +b()(8)x=4()学生活动:积极判断老师活动:同学们能不能总结一下“方程”这位老朋友的特征?学生活动:判断方程的两要素:①有未知数②是等式老师活动:看,这边有两位小朋友在玩猜年龄的游戏,瞧瞧去!老师活动:引导学生看投影仪(课本130页),并思考怎样算年龄。
七年级数学上册5.1.1 认识一元一次方程教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学上册 5.1.1认识一元一次方程教案(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学上册5.1.1 认识一元一次方程教案(新版)北师大版的全部内容。
课题:5。
1.1认识一元一次方程教学目标:1.通过对多种实际问题中数量关系的分析,感受方程是刻画现实世界的有效模型.2.通过观察,归纳一元一次方程的概念,理解方程的概念.3.在分析实际问题情境的活动中,体验数学与现实生活的密切联系,认识数学的生活价值,培养学生学习数学的兴趣.教学重点与难点:重点:一元一次方程的概念和解法.难点:准确把握一元一次方程的概念;用尝试、检验的方法解决实际问题。
课前准备:多媒体课件.教学过程:一、情景创设,导入新课活动内容1:请一位同学阅读章前图中关于“丟番图”的故事.(大约1分钟)丢番图(Diophantus)是古希腊数学家.人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图, 多么令人惊讶,它忠实地记录了其所经历的人生旅程.上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛.五年之后喜得贵子, 可怜迟到的宁馨儿,享年仅及其父之半便入黄泉.悲伤只有用数学研究去弥补, 又过四年,他也走完了人生的旅途.—-出自《希腊诗文选》(The Greek Anthology)第126题你能列方程求出丢番图去逝的年龄吗?处理方式:通过阅读章前图中的故事,激发同学们探索丟番图年龄的兴趣,进而引导学生通过列方程解决问题,感受利用方程可以解决实际问题,感受方程是刻画现实世界有效地模型.设计意图:七年级学生年龄较小,对游戏还比较感兴趣,上课的一开始采用这种形式,能吸引他们的注意力,为顺利完成本节课的教学打下了良好的基础.紧接着呈现活动活动内容2.活动内容2:阅读本章学习目标:感受方程是刻画现实生活中等量关系的有效模型.掌握等式的基本性质,能解一元一次方程.能用一元一次方程解决一些简单的实际问题.在探索一元一次方程解法的过程中,感受转化思想.处理方式:学生通过阅读,目标明确了,学习更有针对性.尤其是认识了“转化思想”的重要性.设计意图:通过阅读学习目标,学生了解了本章知识的学习内容共有两部分:解一元一次方程和能用一元一次方程解决一些简单的实际问题.学生对于本章知识的学习和数学思想有一个整体的概念.二、合作交流,探究新知活动内容1:阅读本节课的学习目标:1.进一步认识方程及其解的概念.2.通过观察,归纳一元一次方程的概念.3.会分析实际问题,找准等量关系,列一元一次方程.处理方式:学生通过阅读,目标明确了,学习更有针对性.设计意图:通过阅读学习目标,学生了解了本节知识的学习内容共有三部分:进一步认识方程及其解的概念.通过观察,归纳一元一次方程的概念。
一元一次方程
.
通过思考与解答下列问题梳理本章知识,教师有目的地辅导个别.列方
另一
:要求该用户四月份应交电费多少元,需要知道该用户四月份共用
学生独立完成学案上下面两个题,完成后和同
本文档仅供文库使用。
百度文库是百度发布的供网友在线分享文档的平台。
百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。
网友可以在线阅读和下载这些文档。
百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。
百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。
当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt文件格式。
认识一元一次方程教学目标:1.理解等式的基本性质,并能用它求解简单的一元一次方程.2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力.3.通过探究等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质.教学重点与难点:重点:理解等式的基本性质.难点:应用等式的基本性质求解一元一次方程.课前准备:学生课前认识天平并预习本课;教师精心制作多媒体课件.教学过程:一、创设情境,引入新课活动内容:回答下面问题.问题:你还记得上节课小华和小彬猜年龄的问题吗?你能帮助小彬解开那个年龄之谜吗?你能解方程5 x = 3 x + 4 吗?今天我就告诉大家一个解决这个问题的工具.5 x=3x+4 2 x=4x=2处理方式:利用天平秤物的图示直观地展现5 x = 3 x+4的变形过程.设计意图:本节课延续了上一课的起始情境问题,上一节课主要是建立方程而没有解,学生自然有解的欲望,所以本节课继续承接“猜年龄”游戏问题,引出方程的求解.师:如果每次解方程都用天平,那工作量太大,有没有更简单的方法来解它呢?今天我们就继续来认识一元一次方程.二、师生互动,合作探究活动内容:如果把天平的两边放两个质量相同的a和b.问题1:天平两边同时加上质量相同的砝码c ,你有什么发现?问题2:天平两边同时减去质量相同的砝码c ,你有什么发现?问题3:天平两边的砝码的质量同时扩大为原来的2倍,你有什么发现?问题4:天平两边的砝码的质量同时扩大为原来的3倍呢?问题5:天平两边的砝码的质量同时扩大为原来的c 倍呢?问题6:天平两边的砝码的质量同时变成原来的: 12,13,1c呢? 处理方式:通过天平的图像演示,首先解决两边同时加上或减去一个物体,得出等式的基本性质一,然后把天平两边的物体变成原来的2倍,3倍,c 倍,12,13,1c ,得出等式的基本性质二,从而归纳出了数学表达式:如果a =b ,(a 、b 为代数式),则(1)a ±c =b ±c ;(c 为代数式);(2)ac =bc ;(c 为任意有理数);(3)a b c c=;(c ≠0). 设计意图:培养学生从实际操作中获取信息,并通过亲身感受、实际操作归纳出等式的基本性质.三、学有所用,例题示范活动1:利用等式的基本性质完成下面的题目.1.回答:(1)从x =y 能否得到x +5=y +5?为什么?(2)从x =y 能否得到99y x =?为什么? (3)从a +2=b +2能否得到a =b ?为什么?(4)从-3a =-3b 能否得到a =b ?为什么?2.填空:(1)等式x-2=5的两边都加上2,可得 ;(2)等式4x =2x+1两边都减去2x ,可得__________;(3)方程3 x =2 x -1的两边都__________,得x =-1;(4)-3 x =2的两边都除以-3,得 ;(5)-2x =4两边同时除以___ ___,得到x =-2;处理方式:找同学口答,然后老师纠正.设计意图:进一步巩固等式的基本性质,关注基本性质二中的限定条件.活动2:例1解下列方程:(1)x +2=5; (2)3=x -5.解:(1)方程两边同时减去2,得 x +2-2=5-2.于是 x =3.(2)方程两边同时加上5,得3+5=x -5+5.于是8=x .习惯上, 写成x =8.问题:怎样知道你的结果对不对呢?检验的方法:把求出的解代入原方程,可以检验解方程是否正确.如:把x =3代入方程x +2=5,左边=3+2=5,右边=5,左边=右边,所以x =3是方程x +2=5的解.例2 解下列方程:(1)-3 x = 15; (2)-3n -2 = 10. 解:(1)方程两边同时除以-3,得 -315-3-3x . 化简,得x = -5.(2)方程两边同时加上 2,得 -3n -2 + 2 = 10 + 2. 化简,得-3n = 12. 方程两边同时乘-3,得 n =-36.处理方式:课件展示例题,教师找同学板演,学生自己尝试利用等式的性质进行求解. 学生完成后,教师追问:这次你每一步的依据什么? 纠正学生出现的问题,强调步骤的规范性.让学生体会:经过对原方程的一系列变形(两边同加减、乘除),最终把方程化为最简的形式:x = a (常数),即方程左边只一个未知数项、且未知数项的系数是 1,右边只一个常数项.设计意图:在实际变形的过程中,让学生体会等式基本性质一的真正含义;让学生感受到负数的引进及有理数运算的介入,用等式的基本性质解方程,相比小学的逆运算更具理性思维在经历等式变形的过程中,增强学生数学理性思维问题的意识,规范的数学书写格式.活动3:巩固训练:1.解下列方程:(1)x - 9 = 8;(2)5 - y = - 16;(3)3 x + 4 = - 13;(4)2153x-=.2.小红编了一道题:我是4月出生的,我的年龄的2倍加上8,正好是我出生那一月的总天数,你猜我有几岁?请你求出小红的年龄.处理方式:五名学生板演,其余学生在练习本上完成.完成后,让学生对板演的同学进行评价,教师及时点评表扬.设计意图:在实际变形的过程中,让学生体会等式基本性质一、二的真正含义;培养学生严谨、科学的思维习惯,规范的数学书写格式.四、归纳小结,收获园地师:看着同学们面带笑容,相信你的收获一定不少,这节课你印象最深的是什么问题?请你讲一讲,我们一起分享吧!设计意图:通过对本课所学内容的归纳,一方面清晰地梳理出本课学过的基本知识及数学思想;另一方面,鼓励学生在相互交流中总结学习方法,了解自己的不足,坚实自己的长处,取长补短,共同进步.五、自我检测,反馈矫正2.由x+1=3,得x=4.()3.由=3,得x=1.()4.在等式2x=3中两边都减去2,得x=1.()5.在等式2 x-1=4 的两边同时____ __ 得2x=5.6.在等式--5x=5y 的两边同时_______,得x=-y.7.在等式-x=4的两边同时____ __,得x=______.8.你能解方程 5x=3x+4 吗?处理方式:教师出示检测题,监督学生独立完成,然后反馈矫正学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:通过学生的反馈测试,可全面了解学生对本节课掌握情况,以便能及时地进行查缺补漏.由于学生的学习基础与能力有较大的差异,设置两种题型以便满足不同层次的学生需求,使每个学生都能在原来的基础上获得较大的发展.六、布置作业,延展课堂必做题:课本 134页习题5.2 第1题.选做题:探索等式基本性质1的变化特点,思考:能否理解为左右移项?板书设计:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
课题:5.1.1认识一元一次方程教学目标:1.通过对多种实际问题中数量关系的分析,感受方程是刻画现实世界的有效模型.2.通过观察,归纳一元一次方程的概念,理解方程的概念.3.在分析实际问题情境的活动中,体验数学与现实生活的密切联系,认识数学的生活价值,培养学生学习数学的兴趣.教学重点与难点:重点:一元一次方程的概念和解法.难点:准确把握一元一次方程的概念;用尝试、检验的方法解决实际问题.课前准备:多媒体课件.教学过程:一、情景创设,导入新课活动内容1:请一位同学阅读章前图中关于“丟番图”的故事.(大约1分钟)丢番图(Diophantus)是古希腊数学家.人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅程.上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛.五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉.悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途.——出自《希腊诗文选》(The Greek Anthology)第126题你能列方程求出丢番图去逝的年龄吗?处理方式:通过阅读章前图中的故事,激发同学们探索丟番图年龄的兴趣,进而引导学生通过列方程解决问题,感受利用方程可以解决实际问题,感受方程是刻画现实世界有效地模型.设计意图:七年级学生年龄较小,对游戏还比较感兴趣,上课的一开始采用这种形式,能吸引他们的注意力,为顺利完成本节课的教学打下了良好的基础.紧接着呈现活动活动内容2.活动内容2:阅读本章学习目标:感受方程是刻画现实生活中等量关系的有效模型.掌握等式的基本性质,能解一元一次方程.能用一元一次方程解决一些简单的实际问题.在探索一元一次方程解法的过程中,感受转化思想.处理方式:学生通过阅读,目标明确了,学习更有针对性.尤其是认识了“转化思想”的重要性.设计意图:通过阅读学习目标,学生了解了本章知识的学习内容共有两部分:解一元一次方程和能用一元一次方程解决一些简单的实际问题.学生对于本章知识的学习和数学思想有一个整体的概念.二、合作交流,探究新知活动内容1:阅读本节课的学习目标:1.进一步认识方程及其解的概念.2.通过观察,归纳一元一次方程的概念.3.会分析实际问题,找准等量关系,列一元一次方程.处理方式:学生通过阅读,目标明确了,学习更有针对性.设计意图:通过阅读学习目标,学生了解了本节知识的学习内容共有三部分:进一步认识方程及其解的概念.通过观察,归纳一元一次方程的概念.会分析实际问题,找准等量关系,列一元一次方程.活动内容2:自学指导1.认真自学课本130页—131页“议一议”前面的内容,完成课本填空,时间5分钟.2.认真自学课本131页“议一议”的内容,注意找出下列概念中的关键词,2分钟后检测学习效果.(1)一元一次方程(2)方程的解处理方式:通过读书的过程,首先让学生回忆起小学学过的等式的概念、方程的概念,对课文所设置的较简单又熟悉的实例中的各种量的关系分析清楚,找出等量关系,列出方程,体会不同类型的方程.设计意图:根据这节课的内容我把自学指导设计成了两个,这样就避免了一次呈现太多的内容造成学生对学习内容的倦怠情绪.自学指导1主要是为了让学生能从实际问题中找出等量关系并列出方程,通过练习进而突破本节课的教学难点.自学指导2是为了帮助学生理解并掌握一元一次方程及方程的解的概念,进而帮助学生掌握本节课的重点.活动内容3:与学生共同分析完成课本呈现的五个情境:情景1(1)题目中的等量关系是什么?(2)解:设小彬的年龄为x岁列式得:2x-5=21解得:x=13未知数:用小写字母x,y,z等来表示不知道的数,叫做未知数.方程:含有未知数的等式,叫做方程.方程的解:使方程左右两边的值相等的未知数的值.四人小组做猜年龄的游戏,每个小组会有几个不同的等式.检验一个数是不是方程的解的步骤:1.将数值代入方程左右两边进行计算,2.比较左右两边的值,若左边=右边,则是方程的解,反之,则不是.例检验下列各数是不是方程x-3=2x-8的解.(1) x=5; (2)x =-2.解 (1)把x=5代入方程左右两边,左边=5-3=2,右边=2×5-8=2,左边=右边.所以x=5是方程x-3=2x-8的解.(2)把x=-2代入方程左右两边,左边=-2-3=-5,右边=2×(-2)-8=-12,左边≠右边.所以x=-2不是方程x-3=2x-8的解.1.判断下列各式是不是方程?(1) -2+5=3 ( ) (2) 3 x-1=7 ( )(3) x+y =8 ( ) (4) x> 3 ( ) (5) m=0 ( ) (6) 2 x 2-5 x +1=0 ( )(7) 2a +b ( ) (8) 12x= ( )2.下列方程中,解为x=2的是()A. 3x+(10-x)=20B. –x+3=0C. 2x2+6=7xD. 5x-2=7处理方式:让学生读题、审题,锻炼学生的审题能力;(1)引导学生抓住其中的等量关系“小彬的年龄×2-5=21”.列出方程.通过小彬和小华在进行猜年龄游戏,把现实生活中的问题转化为数学中的方程问题,从而认识一元一次方程的重要作用.了解方程的解的含义;判断是否为方程的解的方法:将解带入原方程,分别计算左边和右边,看是否相等.相等则为原方程的解.情景(2)小颖种了一株树苗,开始时树苗高为 40 cm,栽种后每周树苗长高约 5 cm,大约几周后树苗长高到 1 m?处理方式:引导学生抓住其中的等量关系“最后树高=初始树高+每周生长高度”.注意单位换算:1米=100厘米.如果设 x周后树苗长高到 1 m,那么可以得到方程: 40 + 5 x = 100 情景(3)甲、乙两地相距 22 km,张叔叔从甲地出发到乙地,每时比原计划多行走1 km,因此提前 12 min 到达乙地,张叔叔原计划每时行走多少千米?处理方式:引导学生抓住其中的等量关系“原计划所用时间-现在所用时间=12min”.注意单位换算:12分=16小时.设张叔叔原计划每时行走xkm,可以得到方程:2222116x x-=+情景(4)根据第六次全国人口普查统计数据,截至 2010 年11 月1 日 0 时,全国每 10 万人中具有大学文化程度的人数为8 930 人,与 2000 年第五次全国人口普查相比增长了 147.30%.处理方式:如果设 2000 年第五次全国人口普查时每 10 万人中约有x 人具有大学文化程度,那么可以得到方程: ( 1 +147.30% ) x= 8 930或x+147.30%x =8930.注意列方程时数字在前,字母在后.也有可能学生会得到其他形式的方程,教学中不要强求表达形式一致,只要学生正确列出方程即可.情景(5)某长方形操场的面积是 5 850m2,长和宽之差为 25m,这个操场的长与宽分别是多少米?处理方式:引导学生抓住其中的等量关系“长×宽=5850”如果设这个操场的宽为 x m,那么长为(x + 25)m,可以得到方程x(x+25)=5850.设计意图:让学生读题、审题,锻炼学生的审题能力;通过准确列五个方程,主要是为了让学生能从实际问题中找出等量关系并列出方程,通过练习进而突破本节课的教学难点.感受:1、列方程解应用题的关键是:寻找等量关系;2、五个方程可分为三种类型:一元一次方程,分式方程,一元二次方程.3、了解方程的解的含义;判断是否为方程的解的方法:将解带入原方程,分别计算左边和右边,看是否相等.相等则为原方程的解.活动内容4:归纳概念问题1:由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程?与同伴进行交流.问题2:方程 2 x - 5 = 21,40 + 5 x = 100, ( 1 + 147.30% ) x = 8 930 有什么共同点?处理方式:启发学生观察上面所列方程2x - 5 = 21,40 + 5x = 100,2222116x x-=+,( 1 + 147.30% )x = 8 930,x(x+25)=5850.其中那些是你熟悉的方程?逐步引发学生回忆小学时所学方程的特点,旨在让学生自己归纳出一元一次方程的概念,并用自己的语言进行描述.并判断上述五个方程只有三个一元一次方程.结论的得出源于学生在实际问题中分析,并不断地综合总结,体现了学生思维的主动性.活动内容5:精析概念一元一次方程:在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程.在这个定义中要注意两点:①只含有一个未知数的等式;②并且未知数的指数是1.特别需要注意的地方:1.分母不能够含未知数;2.化简之后再判断.设计意图:由问题1引导学生逐步深入地思考所列的五个方程的特点:未知数的次数、位置不同;由问题2得出一元一次方程的定义:在一个方程中,只含有一个未知数,且未知数的指数都是 1,这样的方程叫做一元一次方程.活动内容6:跟踪练习1、判断下列各式是不是一元一次方程,是的打“√”,不是的打“×”.(1) -2+5=3 ( ) (2) 3 x -1=0 ( )(3) y=3 ( ) (4) x +y=2 ( )(5) 2 x -5 x +1=0 ( ) (6) x y-1=0 ( )(7) 2m -n ( ) (8) S=πr2 ( )处理方式:请能力稍弱的学生解答,(2)、(3)、(5)是一元一次方程.学生易出现以下错误:1、漏掉(3);事实上(3)是最简洁的方程形式;2、错选(6),次数不满足条件.设计意图:进一步强化本节的内容,即一元一次方程的定义.三、知识应用,巩固提高活动内容:根据题意,列出方程:(1) 在一卷公元前 1600 年左右遗留下来的古埃及纸草书中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的17,其和等于 19.”你能求出问题中的“它”吗?解:设“它”为x ,则 1197x x +=(2) 甲、乙两队开展足球对抗赛,规定每队胜一场得 3 分,平一场得 1 分,负一场得 0 分.甲队与乙队一共比赛了 10 场,甲队保持了不败记录,一共得了 22分.甲队胜了多少场?平了多少场?解:设甲队赢了x 场,则乙队赢了(10-x )场.则()31022x x +-=。
word 5.1 认识一元一次方程第1课时 一元一次方程1.通过现实生活中的例子,体会方程的意义,领悟一元一次方程的概念,并会进行简单的辨别.2.初步学会确定实际问题中的等量关系,设出未知数,列出方程.一、情境导入小明家买了一台电视机,如图是一个长方体的电视机包装箱,它的底面宽为1米,长为1.2米,且包装箱的表面积为6.8平方米.同学们,你能帮小明算出这个电视机包装箱的高吗?二、合作探究探究点一:一元一次方程【类型一】 一元一次方程的识别下列方程中,是一元一次方程的是( )x +3y =5 B.x 2-x +2=0x -5=4x +1 D.1x-x =1 解析:紧扣一元一次方程的概念,A 中含有两个未知数;B 中未知数的最高次数是2;D中分母含有未知数.故选C.方法总结:识别一个方程是否为一元一次方程,不能仅以未知数的个数和次数去判断,必须先化简保证未知数的系数不为0.【类型二】利用一元一次方程的概念求字母指数的值方程(m+1)x|m|+1=0是关于x的一元一次方程,则()A.m=±1B.m=1C.m=-1D.m≠-1解析:由一元一次方程的概念,一元一次方程必须满足指数为1,系数不等于0,所以{|m|=1,m+1≠0,解得m=1.故选B.方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可求方程中字母的值.探究点二:检验方程的解检验下列各数是不是方程5x-2=7+2x的解,并写出检验过程.(1)x=2;(2)x=3.解析:将未知数的值代入,看左边是否等于右边,即可判断是不是方程5x-2=7+2x 的解.解:(1)将x=2代入方程,左边=8,右边=11,左边≠右边,故x=2不是方程5x-2=7+2x的解;(2)将x=3代入方程,左边=13,右边=13,左边=右边,故x=3是方程5x-2=7+2x的解.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等.探究点三:由实际问题抽象出一元一次方程某文具店一支铅笔的售价为x支,则依题意可列得的一元一次方程为()x+2×0.9(60+x)=87x+2×0.9(60-x)=87x+1.2×0.8(60+x)=87x+1.2×0.8(60-x)=87解析:设铅笔卖出x支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x支铅笔的售价+(60-xx+2×0.9(60-x)=87.故选B.方法总结:解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,最后列方程.三、板书设计教学过程中,通过对多种实际问题情境的分析,感受方程作为刻画现实世界有效模型的意义,通过观察、归纳一元一次方程的概念,使学生在分析实际问题情境的活动中体会数学与现实的密切联系.。