中考数学二模试卷A卷
- 格式:doc
- 大小:770.00 KB
- 文档页数:18
2020年中考数学二模试卷一、选择题1.下列各点中,在反比例函数y=的图象上的是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣3,2)2.下列方程中,有两个不相等的实数根的是()A.x2=0B.x﹣3=0C.x2﹣5=0D.x2+2=03.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是()A.B.C.D.4.将抛物线y=2x2﹣1先向左平移1个单位长度,再向上平移2个单位长度,得到的抛物线的顶点坐标为()A.(0,﹣1)B.(1,1)C.(﹣1,﹣3)D.(﹣1,1)5.如图,OA、OB是⊙O的半径,C是上一点,连接AC、BC.若∠AOB=128°,则∠ACB的大小为()A.126°B.116°C.108°D.106°6.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为am,已知冬至时长春的正午光入射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m二、填空题(每小题3分,共24分)7.计算:6•cos60°﹣(﹣1)0=.8.设m是一元二次方程x2﹣x﹣2019=0的一个根,则m2﹣m+1的值为.9.如图.E是正方形ABCD的边DC上一点.连接AE.将AE绕若点A顺时针旋转90°得到AF.连接EF、BF.若AB=3,DE=1,则EF的长为.10.如图,在平面直角坐标系中,点A(2,4)和点B(n,2)在反比例函数的图象上,过点A作AC⊥x轴于点C,连接AB、BC,则△ABC的面积为.11.如图,AB∥CD∥EF.若AD:AF=3:5,BC=6,则CE的长为.12.如图,一位同学通过调整自己的位置,设法使三角板DEF的斜边DF保持水平,并且边DE与点B在同一直线上,已知两条边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB为m.13.如图,OA、OB是⊙O的半径,连接AB并延长到点C,连接OC,若∠AOC=80°,∠C=40°,⊙O的半径为2,则的长为(结果保留π).14.如图,抛物线y=(x+2)2﹣1与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,作直线AC.动点P是线段AC上一点,过点P作x轴的垂线交该抛物线于点Q,则线段PQ长的最大值为.三、解答题(每小题5分,共20分)15.计算:sin60°+×﹣tan60°.16.2019年11月1日5G商用套餐正式上线,某移动营业厅为了吸引用户,设计了A、B 两个可以自由转动的转盘(如图).A转盘被等分为2个扇,分别为红色和黄色;B转盘被等分为3个扇形,分别为黄色、红色、蓝色.指针固定不动,营业厅规定,每位5G 新用户可分别转动两个转盘各一次,转盘停止后,若指针所指区域颜色相同,则该用户可免费领取100G通用流量(若指针停在分割线上,则重转).小王办理5G业务获得一次转转盘的机会,求他能免费领取100G通用流量的概率.17.小明同学解一元二次方程x2﹣2x﹣2=0的过程如下:解:x2﹣2x=2,第一步;x2﹣2x+1=2,第二步;(x﹣1)2=2,第三步;x﹣1=±,第四步;x1=1+,x2=1﹣,第五步.(1)小明解方程的方法是,他的求解过程从第步开始出现错误;(2)请用小明的方法完成这个方程的正确解题过程.18.某公司去年4月的营业额为2800万元,由于改进销售方式,营业额连月上升,6月营业额达到3388万元,假设该公司5月、6月营业额的月平均增长率相同,求月平均增长率.四、解答题(每小题7分,共28分)19.如图是由边长相等的小正方形组成的网格,点A、B均在格点上.(1)在网格中,用无刻度的直尺画等腰直角三角形ACB.使∠ACB=90;(2)在(1)的条件下,点D在AC上(点D可以不在格点上).在网格中,用无刻度的直尺画出∠CBD,使tan∠CBD=.20.某单位为了创建城市文明单位,准备在单位的墙外开辟一处矩形的地进行绿化,其中边靠墙,且墙长为20m,除墙体外三面要用栅栏围起来,计划用栅栏50m,设AB的长为xm,矩形的面积为ym2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求y的最大值.21.如图,在△ABC中,∠ABC=45°,它的外接圆的圆心O在其内部,连结OC,过点A 作AD∥OC,交BC的延长线于点D.(1)求证:AD是⊙O的切线;(2)若∠BAD=105°,⊙O的半径为2,求劣弧AB的长.22.宋家州主题公园拟修建一座柳宗元塑像,如图所示,柳宗元塑像(塑像中高者)DE在高13.4m的假山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进10m 到达B处,测得塑像顶部D的仰角为60°,求柳宗元塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67,≈1.73)五、解答题(每小题8分,共16分)23.如图,在平面直角坐标系中,矩形ABCD的边AB在x轴正半轴上(点B在点A的右侧),AB=3,AD=8,AD⊥x轴,CD在第一象限,边AD的中点E在函数y=(x >0)的图象上,边BC交该函数图象于点F.连接BE.(1)求BE的长;(2)若CF﹣BE=2,求k的值.24.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,E为边BC的中点,将△DEF绕点E旋转,旋转过程中,边DE与边AB相交于点P,边EF 与边CA延长线相交于点Q.(1)求证:△PBE∽△ECQ.(2)若BP=3,CQ=8,求BC的长.六、解答题(每小题10分,共20分)25.如图,抛物线y=﹣x﹣1与y轴交于点A,点B是抛物线上的一点,过点B 作BC⊥x轴于点C,且点C的坐标为(9,0).(1)求直线AB的表达式;(2)若直线MN∥y轴,分别与抛物线,直线AB,x轴交于点M、N、Q,且点Q位于线段OC之间,求线段MN长度的最大值;(3)在(2)的条件下,当四边形MNCB是平行四边形时,求点Q的坐标.26.如图,在△ABC中,∠C=90°,AB=10,AC=8,D、E分别是AB、BC的中点.连接DE.动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动.同时,动点Q从点C出发,沿折线CE﹣ED向终点D运动,在CE、ED上的速度分别是每秒3个单位长度和4个单位长度,连接PQ,以PQ、PD为边作▱DPQM.设▱DPQM与四边形ACED重叠部分图形的面积是S(平方单位),点P的运动时间为t(s).(1)当点P在AD上运动时,PQ的长为(用含t的代数式表示);(2)当▱DPQM是菱形时,求t的值;(3)当0<t<2时,求S与t之间的函数关系式;(4)当△DPQ与△BDE相似时,直接写出t的值.参考答案一、选择题(每小题2分,共12分)1.下列各点中,在反比例函数y=的图象上的是()A.(2,3)B.(2,﹣3)C.(﹣2,3)D.(﹣3,2)【分析】根据反比例函数解析式可得xy=6,然后对各选项分析判断即可得解.解:∵y=,∴xy=6,A、∵2×3=6,∴点(2,3)在反比例函数y=图象上,故本选项符合题意;B、∵2×(﹣3)=﹣6≠6,∴点(2,﹣3)不在反比例函数y=图象上,故本选项不符合题意;C、∵﹣2×3=﹣6≠6,∴点(﹣2,3)不在反比例函数y=图象上,故本选项不符合题意;D、∵﹣3×2=﹣6≠6,∴点(﹣3,2)不在反比例函数y=图象上,故本选项不符合题意.故选:A.2.下列方程中,有两个不相等的实数根的是()A.x2=0B.x﹣3=0C.x2﹣5=0D.x2+2=0【分析】利用直接开平方法分别求解可得.解:A.由x2=0得x1=x2=0,不符合题意;B.由x﹣3=0得x=3,不符合题意;C.由x2﹣5=0得x1=,x2=﹣,符合题意;D.x2+2=0无实数根,不符合题意;故选:C.3.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是()A.B.C.D.【分析】直接从上往下看,看到平面图形就是俯视图,选择正确选项即可.解:根据题意,从上面看原图形可得到在水平面上有一个由两个小正方形和两个小长方形组成的长方形.故选:B.4.将抛物线y=2x2﹣1先向左平移1个单位长度,再向上平移2个单位长度,得到的抛物线的顶点坐标为()A.(0,﹣1)B.(1,1)C.(﹣1,﹣3)D.(﹣1,1)【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.解:抛物线y=2x2﹣1向左平移1个单位长度,得:y=2(x+1)2﹣1;再向上平移2个单位长度,得:y=2(x+1)2+1.此时抛物线顶点坐标是(﹣1,1).故选:D.5.如图,OA、OB是⊙O的半径,C是上一点,连接AC、BC.若∠AOB=128°,则∠ACB的大小为()A.126°B.116°C.108°D.106°【分析】作所对的圆周角∠APB,如图,利用圆周角定理得到∠APB=∠AOB=64°,然后根据圆内接四边形的性质计算∠ACB的度数.解:作所对的圆周角∠APB,如图,∵∠APB=∠AOB=×128°=64°,而∠APB+∠ACB=180°,∴∠ACB=180°﹣64°=116°.故选:B.6.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表,如图是一个根据长春的地理位置设计的圭表,其中,立柱AC的高为am,已知冬至时长春的正午光入射角∠ABC约为23°,则立柱根部与圭表的冬至线的距离(距BC的长)约为()A.m B.a sin23°m C.m D.a tan23°m【分析】根据题意和图形,可以用含a的式子表示出BC的长,从而可以解答本题.解:由题意可得,立柱根部与圭表的冬至线的距离为:=m,故选:C.二、填空题(每小题3分,共24分)7.计算:6•cos60°﹣(﹣1)0=2.【分析】原式利用特殊角的三角函数值,以及零指数幂法则计算即可求出值.解:原式=6×﹣1=3﹣1=2.故答案为:2.8.设m是一元二次方程x2﹣x﹣2019=0的一个根,则m2﹣m+1的值为2020.【分析】把x=m代入方程计算即可求出所求.解:把x=m代入方程得:m2﹣m﹣2019=0,即m2﹣m=2019,则原式=2019+1=2020,故答案为:20209.如图.E是正方形ABCD的边DC上一点.连接AE.将AE绕若点A顺时针旋转90°得到AF.连接EF、BF.若AB=3,DE=1,则EF的长为2.【分析】根据正方形的性质得到∠DAB=∠D=90°,AB=AD=3,由勾股定理得到AE ==,根据旋转的性质得到AF=AE=,∠FAE=90°,于是得到结论.解:∵四边形ABCD是正方形,∴∠DAB=∠D=90°,AB=AD=3,∵DE=1,∴AE==,∵将AE绕若点A顺时针旋转90°得到AF,∴AF=AE=,∠FAE=90°,∴EF=AE=2,故答案为:2.10.如图,在平面直角坐标系中,点A(2,4)和点B(n,2)在反比例函数的图象上,过点A作AC⊥x轴于点C,连接AB、BC,则△ABC的面积为4.【分析】根据反比例函数系数k的几何意义得出k=2×4=2n,求得n=4,然后根据三角形面积公式即可求得.解:设反比例函数解析式为y=,∵点A(2,4)和点B(n,2)在反比例函数的图象上,∴k=2×4=2n,∴n=4,∴B(4,2),∴△ABC的面积为:=4,故答案为4.11.如图,AB∥CD∥EF.若AD:AF=3:5,BC=6,则CE的长为4.【分析】三条平行线截两条直线,所得的对应线段成比例.解:∵AB∥CD∥EF,∴,∴BE===10,∴CE=BE﹣BC=10﹣6=4,故答案为4.12.如图,一位同学通过调整自己的位置,设法使三角板DEF的斜边DF保持水平,并且边DE与点B在同一直线上,已知两条边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB为 5.5m.【分析】利用Rt△DEF和Rt△BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.解:∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴,∵DE=0.4m,EF=0.2m,CD=8m,∴,∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米).故答案为:5.5.13.如图,OA、OB是⊙O的半径,连接AB并延长到点C,连接OC,若∠AOC=80°,∠C=40°,⊙O的半径为2,则的长为π(结果保留π).【分析】根据三角形内角和定理求出∠A,得到△AOB为等边三角形,根据等边三角形的性质得到∠AOB=60°,根据弧长公式计算即可.解:∵∠AOC=80°,∠C=40°,∴∠A=180°﹣80°﹣40°=60°,∵OA=OB,∠A=60°,∴△AOB为等边三角形,∴∠AOB=60°,∴的长==π,故答案为:π.14.如图,抛物线y=(x+2)2﹣1与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,作直线AC.动点P是线段AC上一点,过点P作x轴的垂线交该抛物线于点Q,则线段PQ长的最大值为.【分析】首先求得直线AC的解析式,然后设出点P的坐标并表示出点Q的坐标,从而表示出线段PQ的二次函数,求得最大值即可.解:令y=(x+2)2﹣1=0,解得:x=﹣3或x=﹣1,∴点A的坐标为(﹣3,0),令x=0,则y=(0+2)2﹣1=3,∴点C的坐标为(0,3),设直线AC的解析式为y=kx+b,则:,解得:k=1,b=3,∴直线AC的解析式为y=x+3,设P点的横坐标为a,则纵坐标为a+3,∵PD⊥x轴,∴Q的坐标为(a,a2+4a+3),∴PQ=a+3﹣(a2+4a+3)=﹣a2﹣3a=﹣(a+)2+,∴PQ的最大值为.三、解答题(每小题5分,共20分)15.计算:sin60°+×﹣tan60°.【分析】根据特殊角的三角函数值和二次根式的乘法法则运算.解:原式=×+﹣×=+6﹣3=.16.2019年11月1日5G商用套餐正式上线,某移动营业厅为了吸引用户,设计了A、B 两个可以自由转动的转盘(如图).A转盘被等分为2个扇,分别为红色和黄色;B转盘被等分为3个扇形,分别为黄色、红色、蓝色.指针固定不动,营业厅规定,每位5G 新用户可分别转动两个转盘各一次,转盘停止后,若指针所指区域颜色相同,则该用户可免费领取100G通用流量(若指针停在分割线上,则重转).小王办理5G业务获得一次转转盘的机会,求他能免费领取100G通用流量的概率.【分析】根据题意画出树状图得出所有等情况数,找出符合条件的情况数,然后有概率公式即可得出答案.解:画树状图如图所示:共有6个等可能的结果,指针所指区域颜色相同的结果有2个,∴小王能免费领取100G通用流量的概率==.17.小明同学解一元二次方程x2﹣2x﹣2=0的过程如下:解:x2﹣2x=2,第一步;x2﹣2x+1=2,第二步;(x﹣1)2=2,第三步;x﹣1=±,第四步;x1=1+,x2=1﹣,第五步.(1)小明解方程的方法是配方法,他的求解过程从第二步开始出现错误;(2)请用小明的方法完成这个方程的正确解题过程.【分析】(1)根据解答过程即可得出答案;(2)利用配方法解方程的步骤依次计算可得.解:(1)小明解方程的方法是配方法,他的求解过程从第二步开始出现错误,故答案为:配方法,二;(2)x2﹣2x=2,第一步;x2﹣2x+1=2+1,第二步;(x﹣1)2=3,第三步;x﹣1=±,第四步;x1=1+,x2=1﹣,第五步18.某公司去年4月的营业额为2800万元,由于改进销售方式,营业额连月上升,6月营业额达到3388万元,假设该公司5月、6月营业额的月平均增长率相同,求月平均增长率.【分析】设月平均增长率为x,根据题意列出方程即可求出答案.解:设月平均增长率为x,由题意可知:2800(1+x)2=3388,解得:x=或x=(舍去),答:月平均增长率为10%.四、解答题(每小题7分,共28分)19.如图是由边长相等的小正方形组成的网格,点A、B均在格点上.(1)在网格中,用无刻度的直尺画等腰直角三角形ACB.使∠ACB=90;(2)在(1)的条件下,点D在AC上(点D可以不在格点上).在网格中,用无刻度的直尺画出∠CBD,使tan∠CBD=.【分析】(1)根据勾股定理取点C,使AC=BC=,根据勾股定理的逆定理可知:△ABC是等腰直角三角形;(2)根据矩形的性质和三角函数的定义作出图形即可.解:(1)如图1所示,△ABC即为所求;(2)如图2,作法:①取两点G,H,并连接GH,根据矩形的对角线互相平分,可知AD=CD,②连接BD,则CD=AC=BC则∠CBD即为所求;20.某单位为了创建城市文明单位,准备在单位的墙外开辟一处矩形的地进行绿化,其中边靠墙,且墙长为20m,除墙体外三面要用栅栏围起来,计划用栅栏50m,设AB的长为xm,矩形的面积为ym2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求y的最大值.【分析】(1)根据长方形的面积等于长乘以宽及墙体长度为20米,即可求出y与x的函数关系式及自变量x的取值范围;(2)将y与x的函数关系式配方,写成顶点式,根据二次函数的性质及自变量的范围即可得解.解:(1)y=x(50﹣2x)=﹣2x2+50x,∵墙长为20m,∴0<50﹣2x≤20,∴15≤x<25,∴y与x的函数关系式为:y=﹣2x2+50x,自变量x的取值范围为15≤x<25;(2)∵y=﹣2x2+50x=﹣2(x﹣12.5)2+312.5,∵二次项系数为﹣2,对称轴为x=12.5,又∵15≤x<25,∴y随x的增大而减小,∴当x=15m,即AB=15m,BC=50﹣15×2=20m时,长方形的面积最大,最大面积为:20×15=300m2.∴y的最大值为300m2.21.如图,在△ABC中,∠ABC=45°,它的外接圆的圆心O在其内部,连结OC,过点A 作AD∥OC,交BC的延长线于点D.(1)求证:AD是⊙O的切线;(2)若∠BAD=105°,⊙O的半径为2,求劣弧AB的长.【分析】(1)连接AO,根据圆周角定理和平行线的性质以及切线的判定定理即可得到结论;(2)连接OB,根据已知条件得到∠OAB=15°,根据三角形的内角和得到∠AOB=150°,根据弧长的计算公式即可得到结论.【解答】(1)证明:连接AO,∵∠ABC=45°,∴∠AOC=2∠B=90°,∵OC∥AD,∴∠OAD=90°,∴AD是⊙O的切线;(2)解:连接OB,∵∠BAD=105°,∠OAD=90°,∴∠OAB=15°,∵OB=OA,∴∠ABO=15°,∴∠AOB=150°,∴劣弧AB的长==π.22.宋家州主题公园拟修建一座柳宗元塑像,如图所示,柳宗元塑像(塑像中高者)DE在高13.4m的假山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进10m 到达B处,测得塑像顶部D的仰角为60°,求柳宗元塑像DE的高度.(精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67,≈1.73)【分析】由三角函数求出AC==20m,得出BC=AC﹣AB=10m,在Rt△BCD 中,由三角函数得出CD=BC=17.3m,即可得出答案.解:∵∠ACE=90°,∠CAE=34°,CE=13.4m,∴,∴,∵AB=10m,∴BC=AC﹣AB=20﹣10=10m,在Rt△BCD中,,∴,∴DE=CD﹣EC=17.3﹣13.4=3.9≈4m.答:柳宗元塑像DE的高度约为4m.五、解答题(每小题8分,共16分)23.如图,在平面直角坐标系中,矩形ABCD的边AB在x轴正半轴上(点B在点A的右侧),AB=3,AD=8,AD⊥x轴,CD在第一象限,边AD的中点E在函数y=(x >0)的图象上,边BC交该函数图象于点F.连接BE.(1)求BE的长;(2)若CF﹣BE=2,求k的值.【分析】(1)由题意可知AE=4,根据勾股定理即可求得BE的长;(2)求得BF=1,设E(m,4),则F(m+3,1),根据反比例函数系数k的几何意义得出k=4m=(m+3)×1,解得即可.解:(1)由题意可知AE=4,∵矩形ABCD的边AB在x轴正半轴上,AD⊥x轴,且AB=3,∴BE===5;(2)∵BE=5,CF﹣BE=2,∴CF=7,∵BC=AD=8,∴BF=8﹣7=1,设E(m,4),则F(m+3,1),∵点E、F在函数y=(x>0)的图象上,∴k=4m=(m+3)×1,24.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,E为边BC的中点,将△DEF绕点E旋转,旋转过程中,边DE与边AB相交于点P,边EF 与边CA延长线相交于点Q.(1)求证:△PBE∽△ECQ.(2)若BP=3,CQ=8,求BC的长.【分析】(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°,AB=AC,又由AP =AQ,E是BC的中点,利用SAS,可证得:△BPE≌△CQE;(2)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;根据相似三角形的对应边成比例,即可求得BE的长,即可得BC的长,【解答】(1)证明:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,(2)解:∵△BPE∽△CEQ,∴=,∵BP=3,CQ=8,BE=CE,∴BE2=24,∴BE=CE=2,六、解答题(每小题10分,共20分)25.如图,抛物线y=﹣x﹣1与y轴交于点A,点B是抛物线上的一点,过点B 作BC⊥x轴于点C,且点C的坐标为(9,0).(1)求直线AB的表达式;(2)若直线MN∥y轴,分别与抛物线,直线AB,x轴交于点M、N、Q,且点Q位于线段OC之间,求线段MN长度的最大值;(3)在(2)的条件下,当四边形MNCB是平行四边形时,求点Q的坐标.【分析】(1)B为抛物线上的一点,BC⊥x轴,C(9,0),B点的横坐标为9,纵坐标为,即B(9,2).即可求解;(2)设线段MN的长为L,由抛物线和直线AB的解析式,得:==.即可求解;(3)若四边形MNCB是平行四边形,则需要MN=BC,由点B、C的坐标可知BC=2,即,即可求解.解:(1)令x=0,则y=﹣1,即A(0,﹣1).∵B为抛物线上的一点,BC⊥x轴,C(9,0),∴B点的横坐标为9,纵坐标为,即B(9,2).设直线AB的函数解析式为y=kx+b,将A(0,﹣1),B(9,2)代入上式并解得:直线AB的函数解析式为;(2)设线段MN的长为L,由抛物线和直线AB的解析式,得:==.故线段MN长度的最大值为;(3)若四边形MNCB是平行四边形,则需要MN=BC,由点B、C的坐标可知BC=2,∴,解得:x=1或x=8.故当点Q的坐标为(1,0)或(8,0)时,四边形MNCB是平行四边形.26.如图,在△ABC中,∠C=90°,AB=10,AC=8,D、E分别是AB、BC的中点.连接DE.动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动.同时,动点Q从点C出发,沿折线CE﹣ED向终点D运动,在CE、ED上的速度分别是每秒3个单位长度和4个单位长度,连接PQ,以PQ、PD为边作▱DPQM.设▱DPQM与四边形ACED重叠部分图形的面积是S(平方单位),点P的运动时间为t(s).(1)当点P在AD上运动时,PQ的长为8﹣4t(用含t的代数式表示);(2)当▱DPQM是菱形时,求t的值;(3)当0<t<2时,求S与t之间的函数关系式;(4)当△DPQ与△BDE相似时,直接写出t的值.【分析】(1)通过证明△BPQ∽△BAC,可得,即可求解;(2)分两种情况讨论,由菱形的性质和相似三角形的性质可求解;(3)分两种情况讨论,由梯形的面积公式和三角形的面积公式可求解;(4)分两种情况讨论,由相似三角形的性质可求解.解:(1)∵∠C=90°,AB=10,AC=8,∴BC===6,∵D、E分别是AB、BC的中点.∴DE∥AC,DE=AC=4,BD=AD=5,BE=CE=3,∵动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动,∴AP=5t,∴BP=10﹣5t,∵DE∥AC,∴△BPQ∽△BAC,∴,∴∴PQ=8﹣4t,故答案为:8﹣4t;(2)当点P在AD上运动时,∵四边形DPQM是菱形,∴PD=PQ,∴5﹣5t=8﹣4t,∴t=﹣3(不合题意舍去),当点P在BD上运动时,过点P作PH⊥DQ于H,∵四边形DPQM是菱形,∴PD=PQ,且PH⊥DQ,∴DH=HQ=DQ=[4﹣4(t﹣1)]=4﹣2t,∵DE∥AC,∴∠DEB=∠ACB=90°=∠PHD,∴PH∥BE,∴△PDH∽△BDE,∴,∴,∴t=,PH=3t﹣3,综上所述:当t=时,▱DPQM是菱形;(3)当0<t<1时,S=×(8﹣4t+4)×(3﹣3t)=6t2﹣24t+18,当t=1时,不能作出▱DPQM,当1<t<2时,S=×(8﹣4t)×(3t﹣3)=﹣6t2+18t﹣12;(4)当点P在AD上时,不存在△DPQ与△BDE相似,当点P在BD上时,则∠PDQ=∠BDE,若∠PQD=∠DEB=90°时,∴△PDQ∽△BDE,∴,∴∴t=,若∠DPQ=∠DEB=90°时,∴△QPD∽△BED,∴,∴∴t=综上所述:当t=或时,△DPQ与△BDE相似.。
2023年山东省烟台市龙口市中考数学二模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,图1可列式计算为(+1)+(―1)=0,由此可推算图2中计算所得的结果为( )A. +1B. +7C. ―1D. ―72. 下列运算正确的是( )A. 2a2⋅a=2a3B. (a+1)2=a2+1C. (a2)÷(2a)=2aD. (2a2)3=6a63. 如图是我国四家新能车企的标志,其中是中心对称图形但不是轴对称图形的是( )A. B.C. D.4. 餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )A. 5×1010千克B. 50×109千克C. 5×109千克D. 0.5×1011千克5.实数a,b,c在数轴上的对应点的位置如图所示,如果a+c=0,那么下列结论正确的是( )A. b<0B. a<―bC. ab>0D. b―c>06. 下表是某校乐团的年龄分布,其中一个数据被遮盖了,下面对于中位数的说法正确的是( )年龄13141516频数5713■A. 中位数是14B. 中位数可能是14.5C. 中位数是15或15.5D. 中位数可能是167. 在数学活动课上,兴趣小组的同学用一根质地均匀的轻质木杆和若干个钩码做实验.如图所示,在轻质木杆O处用一根细线悬挂,左端A处挂一重物,右端B处挂钩码,每个钩码质量是50g.若OA=20cm,OB=40cm,挂3个钩码可使轻质木杆水平位置平衡.设重物的质量为x g,根据题意列方程得( )A. 20x=40×50×3B. 40x=20×50×3C. 3×20x=40×50D. 3×40x=20×508.如图所示,电路图上有A、B、C三个开关和一个小灯泡,闭合开关C或者同时闭合开关A、B,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于( )A. 14B. 13C. 23D. 129. 运用我们课本上采用的计算器进行计算时,下列说法不正确的是( )A. 计算5的按键顺序依次为B. 要打开计算器并启动其统计计算功能应按的键是C. 启动计算器的统计计算功能后,要清除原有统计数据应按键D. 用计算器计算时,依次按如下各键,最后显示结果是0.510. 已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:x⋯―1012⋯y⋯0―1.5―2―1.5⋯根据表格中的信息,得到了如下的结论:①二次函数y=ax2+bx+c可改写为y=a(x―1)2―2的形式;②二次函数y=ax2+bx+c的图象开口向下;③关于x的一元二次方程ax2+bx+c+1.5=0的两个根为0或2;④若y>0,则x>3,其中所有正确的结论为( )A. ①④B. ②③C. ①③D. ②④二、填空题(本大题共6小题,共18.0分)11. 因式分解:4m2n―4n3=______ .12. 已知反比例函数y=m―1的图象的一个分支位于第三象限,则m的取值范围是x______.13. 对于实数a,b定义新运算:a※b=ab2―b,若关于x的方程1※x=k有两个不相等的实数根,则k的取值范围为______ .14. 如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为______ .15.如图,▱ABCD中,AB=4,AD=6,∠A=60°,点E在AB的延长线上,F为DE的中点,连接CF,若BE=10,则CF的长为______ .16. 国际象棋的棋盘上共有64个小方格,假设在棋盘上摆米,第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒,16粒,32粒…一直到64格,故棋盘上可摆的米粒总数S=1+2+4+8+16+32+…+263,则S的个位数字为______ .三、解答题(本大题共8小题,共64.0分。
2024年初中学业水平考试——模拟测评(二)数学注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3.答案全部在答题卡上完成,答在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.的相反数是()A.3B.C.D.2.在中国,鼓是精神的象征,舞是力量的表现,先贤孔子曾说过“鼓之舞之”,可见“鼓舞”一则起之早,如图是集会时击鼓瞬间的情景及鼓的立体图形,该立体图形的左视图是()A.B.C.D.3.下列运算结果正确的是()A.B.C.D.4.山西省2024年政府工作报告中指出,山西省煤炭产量在连续两年每年增产1亿多吨的基础上.再增产万吨,达到亿吨数据“8亿吨”用科学记数法表示为()A.吨B.吨C.吨D.吨5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.小明在探究二次函数的性质时,先用配方法将表达式化为顶点式,得到函数图象的顶点坐标及对称轴,然后在对称轴两侧对称地取值、列表、描点、连线得到函数图象,再借助函数图象研究该函数的增减性、对称性、最值等性质.这种研究方法主要体现的数学思想是()A.数形结合思想B.类比思想C.分类讨论思想D.公理化思想7.如图,、分别表示两块互相平行的平面镜,一束光线照射到平面镜上,反射光线为,光线经平面镜反射后的反射光线为(反射角等于入射角).若,的度数为()A.B.C.D.8.如图,内接于,为的直径,直线与相切于点C,过点O作,交于点E.若,则的度数为()A.B.C.D.9.在物理活动课上,某小组探究电压一定时,电流与电阻之间的函数关系,通过实验得到如下表所示的数据:根据表中数据,下列描述正确的是()A.在一定范围内,随的增大而增大B.与之间的函数关系式为C.当时,D.当时,10.如图,在中,,,,以点C为圆心作半圆,其直径.将沿方向平移5个单位长度,得到,则图中阴影部分的面积为()A.B.C.D.第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分.请将答案直接写在答题卡相应的位置)11.计算:.12.烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等的原料,通常用碳原子的个数命名为甲烷、乙烷、丙烷、…癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……).甲烷的化学式为,乙烷的化学式为,丙烷的化学式为,…,其结构式如图所示,依此规律,十一烷的化学式为.13.李明计划利用周末的时间从“山西博物院”“山西青铜博物馆”“晋商博物院”“山西地质博物馆”四个博物馆中随机地选择两个博物馆参观.他制作了四个博物馆的卡片(除内容外,其余完全相同),将这四张卡片背面朝上,洗匀放好,从中随机抽取一张,不放回.再从中随机抽取一张,则恰好抽到“山西青铜博物馆”和“山西地质博物馆”的概率为.14.如图,在平面直角坐标系中,点在轴正半轴上,点的坐标为.将绕点逆时针旋转.得到(点、的对应点分别为点、),与交于点.当时,,则此时点的坐标为.15.如图,菱形的边长为,对角线、相交于点,为边的中点,连接交于点.若,则的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:;(2)化简:.17.解方程:.18.为推动全民阅读、建设书香社会、增强青少年的爱国情感.某校举办“阅读红色经典,讲好思政故事”主题演讲活动.本次活动共有30名学生进入决赛.七名评委从演讲内容、语言表达、形象风度、综合印象四项对参赛选手评分、去掉一个最高分和一个最低分后取平均分得到每项成绩.再将演讲内容.语言表达、形象风度、综合印象四项成绩按4:3:2:1的比例计算出每人的最终成绩.小蕊,小迪的四项成绩和最终成绩如下表,30名学生最终成绩绘制成的频数直方图(每组包含最小值,不包含最大值)如下图.小蕊、小迪的四项成绩和最终成绩统计表四项成绩/分选手最终成绩/分演讲内容语言表达形象风度综合印象小蕊9796909495小迪888385请根据上述信息,解答下列问题:(1)七名评委给小迪的演讲内容打分分别为87、85、91、94、91、88、93.去掉一个最高分和一个最低分,剩余数据的中位数是________分,众数是________分,平均数是________分.(2)请你计算小迪的最终成绩.(3)学校决定根据最终成绩从高到低设立一等奖、二等奖、三等奖、优秀奖,占比分别为,2、、4.请你判断小蕊和小迪分别获几等奖,并说明理由.19.沁州黄小米是山西省沁县特产,原名糙谷,清朝康熙帝御赐“沁州黄”,以皇家贡米而久负盛名,享有“天下米王”和“国米”的尊号.某商场购进,两种包装的沁州黄小米作为活动奖品发放给顾客.活动开始前、该商场购进种沁州黄小米袋和种沁州黄小米袋,共花费元;活动中因奖品不够.该商场又购进种沁州黄小米袋和种沁州黄小米袋.共花费元.(1)求、两种沁州黄小米的单价.(2)为筹备下次活动,该商场计划再次购进、两种沁州黄小米共袋,若预算不超过元.则该商场最多能购进种沁州黄小米多少袋?20.应县木塔位于山西省朔州市应县佛宫寺院内,建于公元年,是世界上现存最高大、最古老的纯木结构楼阁式建筑.与比萨斜塔、埃菲尔铁塔并称“世界三大奇塔”.某校综合与实践小组的同学借助无人机测量应县木塔的高度.如图、先将无人机垂直上升至距地面的点C处.测得木塔顶端点的俯角为,再将无人机沿水平向木塔方向飞行到达点处,测得木塔底端点的俯角为.已知知点、、、在同一竖直平面内,求应县木塔的高度.(结果精确到;参考数据:,,,)21.阅读下列材料并完成相应的任务.三角形的旁心三角形一个内角的平分域和其他两个内角的外角平分线的交点,称为该三角形的旁心,每个三角形有三个旁心.已知:如图1,在中,的外角与的平分线,相交于点I.作射线.求证:平分.证明:如图2,过点I分别作于点D,于点E,于点F.平分,,.,用理可得.……任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分.(2)图1中各角之间存在特殊的数量关系:①;②;③.请你选择一个结论进行证明.(3)如图3,在中,,点D是的一个旁心,过点D作,交的延长线于点E,且,则的长为________.22.综合与实践问题情境:如图1,在中,,,,、分别为,边的中点,连接.然后将绕点顺时针旋转,旋转角为,连接、,所在的直线与所在的直线交于点.观察发现:(1)在图1中,________.数学思考:(2)如图2,在旋转的过程中.①的值是否会发生变化?请说明理由.②当时,试判断四边形的形状,并说明理由.深入探究:(3)在旋转的过程中,当、、三点共线时,请你直接写出的长.23.综合与探究如图,抛物线与轴交于,,与轴交于点.作直线,是抛物线上的一个动点.(1)求抛物线的函数表达式并直接写出直线的函数表达式.(2)当点P在直线下方时,连接,,.当时,求点P的坐标.(3)在抛物线的对称轴上是否存在点,使以,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.参考答案与解析1.A2.D3.B4.C5.C6.A7.C8.B9.B10.A11.12.13.14.15.##16.(1);(2)解:(1)原式(2)原式17.或解:,配方,得,即,,即或,解得或.18.(1)91,91,90(2)(3)小蕊获一等奖,小迪获三等奖(1)解:从小到大排列为:85、87、、91、91、93、94,去掉一个最高分和一个最低分,剩余数据为87、、91、91、93中位数为,众数是分,平均数是(分)故答案为:91,91,90.(2)(3)小蕊获一等奖,小迪获三等奖.理由:获一等奖的学生有(名),由频数直方图可知,最终成绩不低于95 分且小于100分的学生有2名,小蕊最终成绩95分在这一组,因此小蕊获一等奖;获一、二等奖的学生共有(名),获三等奖的学生有(名),由频数直方图可知,最终成绩不低于90分的学生获一等奖或二等奖,最终成绩不低于85分且小于90分的学生有9名,均获三等奖.又因为小迪最终成绩为分,所以小迪获三等奖.19.(1)种沁州黄小米的单价为元,种沁州黄小米的单价为元(2)该商场最多能购进B种沁州黄小米5袋(1)解:设种沁州黄小米的单价为元,种沁州黄小米的单价为元.根据题意,得解得答:种沁州黄小米的单价为元,种沁州黄小米的单价为元.(2)解:设该商场购进种沁州黄小米袋,则购进种沁州黄小米袋.根据题意,得.解得.为正整数,的最大值为答:该商场最多能购进B种沁州黄小米5袋.20.应县木塔的高度为解:如图,延长交直线于,则根据题意,得:在中,,.在中,.().答:应县木塔的高度为.21.(1)见解析(2)见解析(3)(1)证明:如图2,过点I分别作于点D,于点E,于点F.平分,,.,用理可得.;在内部,平分(2)解:选择结论①、证明如下:平分、平分,,选择结论②、证明如下:平分,平分选择结论③、证明如下:平分、平分、(3)如图所示,连接,过点作,垂足分别为,∴,又,则∵∴四边形是矩形,∵在中,,点D是的一个旁心,∴是的角平分线,,,∵,∴是等腰直角三角形,∴,∴矩形是正方形,∴,在中,∴,∴,同理可得,则,设,,∴,在中,,∴,解得:,∴,在中,.22.(1);(2)(2)①的值不会变化,理由见解析;②四边形是矩形,证明见解析(3)AE 的长为或解:(1)∵在中,,,,、分别为,边的中点,∴,∴;故答案为:.(2)①的值不会变化,理由如解图1,设与交于点,图1中,分别为,的中点,由旋转的性质知,的值不会发生变化,②四边形是矩形,理由:由旋转的性质,知,,.由①,得.又、,,四边形是矩形,(3)的长为或分以下两种情况讨论:当在的右侧时,如解图:由①得,设,则图中,,分别为,边的中点,,.,..由②,得在中,,解得:或舍弃解得:当在边的左侧时,如解图,同理综上所述,的长为或23.(1);直线的函数表达式为,(2)(3)存在,点的坐标为(),(),(1)解:把,分别代入得解得抛物线的函数表达式为当时,,则设直线的解析式为,将点代入,得,解得:,直线的函数表达式为,(2)如图过点作轴于点,交于,过点作于点,则四边形为矩形设则,解得(舍弃),(3)存在,点的坐标为()或()或()由题知,抛物线抛物线的对称轴,把代入,的)设)分以下三种情况讨论:当为对角线时,, ,解得)当为对角线时,,,解得)当为对角线时,,,解得综上所述,点的坐标为(),(),.。
和田地区2020版中考数学二模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017七上·宁波期中) 下列各对数是互为相反数的是()A . 与B . 与C . 与D . 与2. (2分)下列运算正确的是()A . a3﹣a2=aB . a2•a3=a6C . a•a2=a3D . (3a)3=9a33. (2分)下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()A . 1个B . 2个C . 3个D . 4个4. (2分)若不等式组有解,则a的取值范围是()A . a≤3B . a<3C . a<2D . a≤25. (2分) (2016九上·灵石期中) 在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A . 12B . 15C . 18D . 216. (2分)由若干个相同的小正方体,摆成几何体的主视图和左视图均为,则最少使用小正方体的个数为()A . 9B . 7C . 5D . 37. (2分)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A . 8B . 10C . 12D . 148. (2分)如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设=k,下列结论:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)当k=1时,△ABE∽△ADF,其中结论正确的是()A . (1)(2)(3)B . (1)(3)C . (1)(2)D . (2)(3)二、二.填空题 (共8题;共8分)9. (1分)(2017·江都模拟) 据统计,参加今年扬州市初中毕业、升学统一考试的学生约34900人,这个数据用科学记数法表示为________.10. (1分)(2019·泉州模拟) 若一组数据1,3,x,5,8的众数为8,则这组数据的中位数为________ .11. (1分)若函数有意义,则自变量x的取值范围是________。
2023—2024学年度九年级学业水平评估数学试卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位置上.3.答选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;答非选择题时,考生务必将答案写在答题卡上.写在本试卷上无效.一、选择题(本大题共16个小题:1~6小题,每题3分;7~16小题,每题2分,共38分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算:( )A. B. C. D. 【答案】A【解析】【分析】本题考查了有理数的减法,根据有理数的减法进行计算即可求解.【详解】解:故选:A .2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是( )A.B. C. D.【答案】C【解析】【分析】根据主视图是从前向后观察到的图形,进行判断即可.【详解】解:由题意,得:“卯”的主视图为:故选C .【点睛】本题考查三视图,熟练掌握三视图的画法,是解题的关键.35-=2-28-8352-=-3. 下列运算正确的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了同底数幂的乘除法,积的乘方,完全平方公式;根据以上运算法则进行计算即可求解.【详解】解:A. ,故该选项不正确,不符合题意;B. ,故该选项正确,符合题意;C. ,故该选项不正确,不符合题意;D. ,故该选项不正确,不符合题意;故选:B .4. 下列函数中,函数值y 随x 的增大而减小的是( )A. B. C. D. 【答案】B【解析】【分析】根据一次函数和反比例函数的性质,逐项分析即可得到答案.【详解】解:A 、 ,,y 随x 的增大而增大,不符合题意;B 、 ,,y 随x 的增大而减小,符合题意;C 、 ,,在每个象限内,y 随x 的增大而减小,不符合题意;D 、,,在每个象限内,y 随x 的增大而增大,不符合题意;故选:B .【点睛】本题主要考查了一次函数、反比例函数的性质,熟练掌握函数的性质,是解题的关键.5. 一把直尺和一个含角的直角三角板按如图方式放置,若,则( )A. B. C. D. 632a a a ÷=235a a a ⋅=()23622a a =()222a b a b +=+633a a a ÷=235a a a ⋅=()26324a a =()2222a b a ab b +=++6y x=6y x =-6y x =6y x=-6y x =60k =>6y x =-60k =-<6y x=60k =>6y x =-60k =-<30︒120∠=︒2∠=30︒40︒50︒60︒【答案】B【解析】【分析】根据平行线的性质,得出,进而.【详解】由图知,∴故选:B【点睛】本题考查平行线的性质,特殊角直角三角形,由图形的位置关系推出角之间的数量关系是解题的关键.6. 一次函数y=6x+1的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【详解】试题分析:先判断出一次函数y=6x+1中k 的符号,再根据一次函数的性质进行解答即可.解:∵一次函数y=6x+1中k=6>0,b=1>0,∴此函数经过一、二、三象限,故选D .7. 下列有关分式的运算,结果正确的是( )A. B. C. D. 【答案】C【解析】【分析】此题考查了分式的运算,根据分式的运算法则进行计算即可得到答案.【详解】解:A.,故选项错误,不符合题意;B .,故选项错误,不符合题意;C .,故选项正确,符合题意;3120∠=∠=︒260340Ð=°-Ð=°3120∠=∠=︒2603602040Ð=°-Ð=°-°=°212a a=112a b a b +=+24334a a a a a a -+⋅=+-22111a a a a a+++÷=222a a a =11ab a b ab++=()244333434a a a a a a a a a a a --++⋅=⋅=+-+-D .,故选项错误,不符合题意.故选:C .8. 掷一枚质地均匀的硬币10次,下列说法正确的是( )A. 每2次必有1次正面向上B. 不可能有10次正面向上C. 必有5次正面向上D. 可能有5次正面向上【答案】D【解析】【分析】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【详解】解:A、掷一枚质地均匀的硬币10次,每2次不一定有1次正面向上,原说法错误,不符合题意;B 、掷一枚质地均匀的硬币10次,有可能有10次正面向上,原说法错误,不符合题意;C 、掷一枚质地均匀的硬币10次,不一定有5次正面向上,原说法错误,不符合题意;D 、掷一枚质地均匀的硬币10次,可能有5次正面向上,原说法正确,符合题意;故选:D .9. 估计:的值应在( )A. 2和3之间 B. 4和5之间 C. 5和6之间 D. 6和7之间【答案】D【解析】【分析】本题考查了二次根式的性质,无理数的估算,先将3放入根号内,估算,即可求解.【详解】解:∵,∴,故选:D .10. 如图,在中,,,D ,E 分别在,上,将沿折叠,使点A 落在点处,若为的中点,则折痕的长为( )()22121111a a a a a a a a a a ++++÷=⋅=++67<<=364549<<67<<ABC 90C ∠=︒6BC =AB AC ABC DE A 'A 'CE DEA. B. 1 C. 2 D. 3【答案】C【解析】【分析】本题考查折叠的性质,相似三角形的判定和性质,掌握“A ”字形三角形相似的判定和性质为解题关键.由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.【详解】解:沿折叠,使点A 落在点处,,,又∵,∴,∴,,又为的中点,,∴,,即,.故选:C .11. 如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是( )12AE AE '=90DEA DEA ∠'=∠=︒90C ∠=︒DE BC ∥ACB AED ∽△△A 'CE 13AE A E A C AC ''===13DE BC =ABC DE A '90DEA DEA '∴∠=∠=︒AE A E '=90C ∠=︒DE BC ∥,ADE B AED C ∠=∠∠=∠ACB AED ∴ ∽A 'CE AE AE '=13AE A E A C AC ''===∴13ED AE BC AC ==163ED =2ED ∴=A. B. 1 C. D. 2【答案】B【解析】【分析】先作点M 关于AC 的对称点M ′,连接M ′N 交AC 于P ,此时MP +NP 有最小值.然后证明四边形ABNM ′为平行四边形,即可求出MP +NP =M ′N =AB =1.【详解】解:如图作点M 关于AC 的对称点M ′,连接M ′N 交AC 于P ,此时MP +NP 有最小值,最小值为M ′N 的长.∵菱形ABCD 关于AC 对称,M 是AB 边上的中点,∴M ′是AD 的中点,又∵N 是BC 边上的中点,∴AM ′∥BN ,AM ′=BN ,∴四边形ABNM ′是平行四边形,∴M ′N =AB =1,∴MP +NP =M ′N =1,即MP +NP 的最小值为1,故选B .12. 圆锥的底面半径是5cm ,侧面展开图的圆心角是180°,圆锥的高是( )cm B. 10cm C. 6cm D. 5cm 【答案】A【解析】【分析】设圆锥的母线长为R ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2π•5=,然后解方程即可母线长,然后利用勾股定理求得圆锥的高即可.【详解】设圆锥的母线长为R ,根据题意得2π•5,解得R =10.12180180R π180180R π=即圆锥的母线长为10cm ,.故选A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.13. 如图,点A 的坐标是(-2,0),点B 的坐标是(0,6),C 为OB 的中点,将△ABC 绕点B 逆时针旋转90°后得到.若反比例函数的图象恰好经过的中点D ,则k 的值是( )A. 9B. 12C. 15D. 18【答案】C【解析】【分析】作轴于证明≌,推出,,求出点坐标,再利用中点坐标公式求出点D 坐标即可解决问题.【详解】解:作轴于.∵,∴,,∴,∵,∴,=A B C '''∆k y x=A B ''A H y ⊥.H AOB ()'BHA AAS OA BH ='OB A H ='A A H y '⊥H 90AOB A HB ABA ∠=∠'=∠'=︒90ABO A BH ∠+∠'=︒90ABO BAO ∠+∠=︒BAO A BH ∠=∠'BA BA ='()AOB BHA AAS ' ≌∴,,∵点的坐标是,点的坐标是,∴,,∴,,∴,∴,∵,∴,∵反比例函数的图象经过点,∴.故选C .【点睛】本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.14. 如图,矩形中,,以点B 为圆心,适当长为半径画弧,分别交,于点E ,F ,再分别以点E ,F为圆心,大于长为半径画弧交于点P ,作射线,过点C 作的垂线分别交于点M ,N ,则的长为( )A.B. C. D. 4【答案】A【解析】【分析】由作图可知平分,设与交于点O ,与交于点R ,作于点Q ,根据角平分线性质可知,进而证明,推出,设,则,解求出.利用三角形面积法求出的OA BH =OB A H ='A ()2,0-B ()0,62OA =6OB =2BH OA ==6A H OB '==4OH =()6,4A 'BD A D ='()3,5D k y x =D 15k =-ABCD 34AB BC ==,BC BD 12EF BP BP ,BD AD CN BP CBD ∠BP CN CD RQ BD ⊥RQ RC =Rt BCR Rt BQR ≌4BC BQ ==RQ RC x ==3DR CD CR x =-=-Rt DQR 43QR CR ==,再证,根据相似三角形对应边成比例即可求出.【详解】解:如图,设与交于点O ,与交于点R ,作于点Q ,矩形中,,,.由作图过程可知,平分,四边形是矩形,,又,,在和中,,,,,设,则,在中,由勾股定理得,即,解得,.OC OCR DCN ∽CN BP CN CD RQ BD ⊥ ABCD 34AB BC ==,∴3CD AB ==∴5BD ==BP CBD ∠ ABCD ∴CD BC ⊥ RQ BD ⊥∴RQ RC =Rt BCR Rt BQR RQ RC BR BR =⎧⎨=⎩∴Rt BCR Rt BQR ≌()HL ∴4BC BQ ==∴541QD BD BQ =-=-=RQ RC x ==3DR CD CR x =-=-Rt DQR 222DR DQ RQ =+()22231-=+x x 43x =∴43CR =,,,,,解得.故选A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出平分,通过勾股定理解直角三角形求出.15. 如图,点I 为△ABC 的内心,AB=4,AC=3,BC=2,将∠ACB 平移使其顶点与I 重合,则图中阴影部分的周长为( )A. 4.5B. 4C. 3D. 2【答案】B【解析】【详解】【分析】连接AI 、BI ,因为三角形的内心是角平分线的交点,所以AI 是∠CAB 的平分线,由平行的性质和等角对等边可得:AD=DI ,同理BE=EI ,所以图中阴影部分的周长就是边AB 的长.详解】连接AI 、BI ,∵点I 为△ABC 的内心,∴AI 平分∠CAB ,∴∠CAI=∠BAI ,由平移得:AC ∥DI ,【∴BR ==1122BCR S CR BC BR OC =⋅=⋅ ∴CR BC OC BR ⋅=== 90COR CDN ∠=∠=︒OCR DCN ∠=∠∴OCR DCN ∽∴OC CR DC CN =43CN=CN =BP CBD ∠CR∴∠CAI=∠AID ,∴∠BAI=∠AID ,∴AD=DI ,同理可得:BE=EI ,∴△DIE 的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B .【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.16. 小刚在解关于的方程时,只抄对了,,解出其中一个根是,他核对时发现所抄的比原方程的的值小,则原方程的根的情况( )A. 不存在实数根B. 有两个不相等的实数根C. 有一个根是D. 有两个相等的实数根【答案】A【解析】【分析】直接把已知数据代入进而得出 的值,再解方程求出答案.【详解】解:∵小刚在解关于的方程时,只抄对了,解出其中一个根是,∴,解得:,故原方程中,∴原方程为,则,则原方程的根的情况是不存在实数根,故选:A.x ()200ax bx c a ++=≠1a =4b ==1x -c c 2=1x -c x ()200ax bx c a ++≠=1a =4b ==1x -()()21410c -+⨯-+=3c =5c =2450x x ++=241641540b ac --⨯⨯=-<=【点睛】此题考查了根的判别式和一元二次方程的解,正确得出的值是解题关键.二、填空题(本大题有3个小题,每空2分,共10分)17. 在平面直角坐标系中有五个点,分别是,,,,,从中任选一个点恰好在第一象限的概率是______.【答案】【解析】【分析】根据第一象限的点的特征,可得共有2个点在第一象限,进而根据概率公式即可求解.【详解】解:在平面直角坐标系中有五个点,分别是,,,,,其中,,在第一象限,共2个点,∴从中任选一个点恰好在第一象限的概率是,故答案为:.【点睛】本题考查了概率公式求概率,第一象限点的坐标特征,熟练掌握以上知识是解题的关键.18. 四边形具有不稳定性,如图,将面积为5的矩形“推”成面积为4的平行四边形,则_______;若,则平行四边形的面积为_______.【答案】①. ②. 【解析】【分析】本题考查解直角三角形,矩形,平行四边形,关键是由矩形、平行四边形的面积推出.由矩形、平行四边形的面积得到,即可求出的值,由得到,即可求出平行四边形的面积.【详解】解:如图,作于,c ()1,2A ()3,4B -()2,3C --()4,3D ()2,3E -25()1,2A ()3,4B -()2,3C --()4,3D ()2,3E -()1,2A ()4,3D 2525sin α=30α=︒455245AH AB =45AH AB =sin α30α=︒12AH AB =AH BC ⊥H∵,,∴,∴,∴,当时,,平行四边形的面积.故答案为:,.19. 如图,在边长为3的正方形的外侧,作等腰三角形,.(1)的面积为________;(2)若F 为的中点,连接并延长,与相交于点G ,则的长为________.【答案】①. 3 ②. 【解析】【分析】(1)过点E 作,根据正方形和等腰三角形的性质,得到的长,再利用勾股定理,求出的长,即可得到的面积;(2)延长交于点K ,利用正方形和平行线的性质,证明,得到的长,进而得到的长,再证明,得到,进而求出的长,最后利用勾股定理,即可求出的长.【详解】解:(1)过点E 作,5BC AB ⋅=4BC AH ⋅=45BC AH BC AB ⋅=⋅45AH AB =sin 54AH AB α=== 30α=︒12AH AB =∴1522BC AH BC AB =⋅=⋅=4552ABCD ADE 52EA ED ==ADE V BE AF CD AG EH AD ⊥AH EH ADE V EH AG ()ASA ABF KEF ≌EK KH AHK ADG △∽△KH AH GD AD =GD AG EH AD ⊥正方形的边长为3,,是等腰三角形,,,,在中,,,故答案为:3;(2)延长交于点K ,正方形的边长为3,,,,,,,,F 为的中点,,在和中,,,,由(1)可知,,,,ABCD 3AD ∴=ADE 52EA ED ==EH AD ⊥1322AH DH AD ∴===Rt AHE 2EH ===1132322ADE S AD EH ∴=⋅=⨯⨯= EH AG ABCD 90BAD ADC ∴∠=∠=︒3AB =AB AD ∴⊥CD AD ⊥EK AD ⊥ AB EK CD ∴∥∥ABF KEF ∴∠=∠ BE BF EF ∴=ABF △ KEF ABF KEF BF EFAFB KFE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ABF KEF ∴ ≌3EK AB ∴==12AH AD =2EH =1KH ∴=,,,,在中,,【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.三、解答题(本大题共7个小题;共72分.解答应写出文字说明、证明过程或演算步骤)20. 有个填写数字的游戏:在“”中的每个内,填入数字(可重复使用),然后计算结果.(1)计算:;(2,请推算□内的数字;(3)若三个内从左往右依次填入入三个数,请你直接写出计算结果(计算结果要求用科学记数法表示).【答案】(1);(2);(3).【解析】【分析】本题考查了有理数的混合运算,二次根式的混合运算,幂的运算;(1)根据有理数的混合运算进行计算即可求解.(2)根据题意可得□内的数字为,进而根据二次根式的乘法进行计算即可求解;(3)根据题意列出算式,进而根据幂的运算进行计算,最后表示成科学记数法的形式,即可求解.【小问1详解】KH CD ∥ AHK ADG ∴△∽△KH AH GD AD∴=2GD \=Rt ADG V AG ===⨯- W 1462⨯-8-= W 326410,510,1.410⨯⨯⨯4-15610⨯8-解:原式【小问2详解】□内的数字为∴□内的数字为1;【小问3详解】解:21.如果一个四位自然数的各数位上的数字互不相等且均不为0,满足,那么称这个四位数为“递减数”.例如:四位数4129,∵,∴4129是“递减数”.(1)判断四位数5324是不是“递减数”;(2)若一个“递减数”为,求这个“递减数”;(3)若一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,直接写出满足条件的递减数的最大值.【答案】(1)不是“递减数”;(2)4312;(3)8165.【解析】【分析】本题主要考查了新定义:(1)根据“递减数”的定义求解即可;(2)根据“递减数”的定义可得,解方程即可得到答案;(3)先由“递减数”的定义得到,再求出,进而推出能被9整除,据此求出能满足能被9整除的正整数a 、b 即可得到答案.26=-4=-88=98=-1=326410510 1.410⨯⨯⨯-⨯66210 1.410=⨯-⨯5610=⨯abcd ab bc cd -=411229-=312a abc bcd 1033112a +-=101010a b b c c d +--=+110010110100110001abc bcd a b c b b a b a b c +=++++++--=112a b +112a b +【小问1详解】解:∵,∴5324不是“递减数”;【小问2详解】解:∵一个“递减数”为,∴,∴,∴这个“递减数”为4312;【小问3详解】解:∵一个“递减数”的前三个数字组成的三位数与后三个数字组成的三位数的和能被9整除,∴,∵,∴,∵能被整除,∴能被9整除,∵各数位上数字互不相等且均不为0,∴或或或或或或或,∴当时,有最大的“递减数”,∴,即:,∴最大取,此时,∴这个最大的“递减数”为8165.故答案为:8165.22. 某校为了初步了解学生的劳动教育情况,对九年级学生“参加家务劳动的时间”进行了抽样调查,并将劳动时间x 分为如下四组(:分钟)进行统计,绘制了如下不完整的统计图.的53322124-=≠312a 1033112a +-=4a =abc bcd 101010a b b c c d +--=+1001010010abc bcd a b c b c d +=+++++110010110100110001abc bcd a b c b b a b a b c +=++++++--=()11010199112a b a b a b +=+++9112a b +18a b =⎧⎨=⎩27a b =⎧⎨=⎩36a b =⎧⎨=⎩45a b =⎧⎨=⎩54a b =⎧⎨=⎩63a b =⎧⎨=⎩72a b =⎧⎨=⎩81a b =⎧⎨=⎩8,1a b ==1089110c c d ⨯-⨯-=+1171c d +=c 65d =707080809090A x B x C x Dx <≤<≤<≥.,.,.,,单位根据以上信息,解答下列问题:(1)本次抽取的学生人数为______人,扇形统计图中m 的值为______,请你补全条形统计图;(2)已知该校九年级有600名学生,请估计该校九年级学生中参加家务劳动的时间在 80分钟(含80分钟)以上的学生有______人;(3)若D 组中有3名女生,其余均是男生,从中随机抽取两名同学交流劳动感受,请用列表法或树状图法,求抽取的两名同学中恰好是一名女生和一名男生的概率.【答案】(1)50;30;统计图见解析(2)300人 (3)【解析】【分析】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,树状图法或列表法求解概率:(1)用D 组的人数除以其人数占比即可求出参与调查的人数,进而求出m 的值和C 组的人数,最后补全统计图即可;(2)用600乘以样本中C 、D 两组的人数占比之和即可得到答案;(3)先列表得到所有等可能性的结果数,再找到抽取的两名同学中恰好是一名女生和一名男生的结果数,最后依据概率计算公式求解即可.【小问1详解】解:人,∴本次抽取的学生人数为50人,∴,∴,C 组人数为人,补全统计图如下:的35510%50÷=15%100%30%50m =⨯=30m =501015520---=【小问2详解】解:人,∴估计该校九年级学生中参加家务劳动的时间在 80分钟(含80分钟)以上的学生有300人;【小问3详解】解:设用A 、B 、C 表示3名女生,用D 、E 表示2名男生,列表如下:由表格可知,一共有20种等可能性的结果数,其中抽取的两名同学中恰好是一名女生和一名男生的结果数有12种,∴抽取的两名同学中恰好是一名女生和一名男生的概率为.23. 甲、乙两个工程组同时挖掘沈白高铁某段隧道,两组每天挖掘长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组挖掘的长度之和与甲组挖掘时间x (天)之间的关系如图所示.20560030050+⨯=A B C D E A (),B A (),C A (),D A (),E A B (),A B (),C B (),D B (),E B C (),A C (),B C (),D C (),E C D (),A D (),B D (),C D (),E D E (),A E (),B E (),C E (),D E 123205=()m y(1)甲组比乙组多挖掘了__________天.(2)求乙组停工后y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当甲组挖掘的总长度与乙组挖掘的总长度相等时,直接写出乙组已停工的天数.【答案】(1)30(2)(3)10天【解析】【分析】(1)由图可知,前30天甲乙两组合作,30天以后甲组单独做,据此计算即可;(2)设乙组停工后y 关于x 的函数解析式为,用待定系数法求解,再结合图象即可得到自变量x 的取值范围;(3)先计算甲乙两组每天各挖掘多少千米,再计算乙组挖掘的总长度,设乙组已停工的天数为a ,根据甲组挖掘的总长度与乙组挖掘的总长度相等列方程计算即可.【小问1详解】解:由图可知,前30天甲乙两组合作,30天以后甲组单独做,∴甲组挖掘了60天,乙组挖掘了30天,(天)∴甲组比乙组多挖掘了30天,故答案为:30;【小问2详解】解:设乙组停工后y 关于x 的函数解析式为,将和两个点代入,可得,解得,()312060y x x =+30<≤y kx b =+603030-=y kx b =+()30,210()60,3002103030060k b k b =+⎧⎨=+⎩3120k b =⎧⎨=⎩∴【小问3详解】解:甲组每天挖(米)甲乙合作每天挖(米)∴乙组每天挖(米),乙组挖掘的总长度为(米)设乙组己停工的天数为a ,则,解得,答:乙组已停工的天数为10天.【点睛】本题考查了一次函数的应用,待定系数法求函数的解析式,理解题意观察图象得到有用信息是解题的关键.24. 如图,AB 是⊙O 的直径,AC 与⊙O 交于点F ,弦AD 平分,,垂足为E (1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O 的半径为2,,求线段EF 的长.【答案】(1)直线DE 与⊙O 相切;(2).【解析】【分析】(1)欲证明DE 是⊙O 的切线,只要证明即可;(2)过O 作于G ,得到,根据直角三角形的性质得到,得到,推出四边形AODF 是菱形,得到,,于是得到结论.【详解】(1)直线DE 与⊙O 相切,连结OD .∵AD 平分,()312060y x x =+30<≤30021036030-=-210730=734-=304120⨯=()330120a +=10a =BAC ∠DE AC ⊥60BAC ︒∠=1EF =90ODE ︒∠=OG AF ⊥2AF AG =112AG OA ==2AF =DF OA ∥2DF OA ==BAC ∠∴,∵,∴,∴,∴,∵,即,∴,即,∴DE 是⊙O 的切线;(2)过O 作于G ,∵,∴,,∴,∴,∴,∴四边形AODF 是菱形,∵,,∴,∴.【点睛】本题考查切线的判定和性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.25. 如图1,抛物线与x 轴交于点,,与y 轴交于点C ,顶点为D,直OAD CAD ∠=∠OA OD =OAD ODA ∠=∠ODA CAD ∠=∠OD AC DE AC ⊥90AED ︒=∠90ODE ︒∠=DE OD ^OG AF ⊥2AF AG =60BAC ︒∠=2OA =112AG OA ==2AF =AF OD =DF OA ∥2DF OA ==60EFD BAC ︒∠=∠=112EF DF ==26y ax bx =++()2,0A -()6,0B线AD 交y 轴于点E .(1)求抛物线的解析式.(2)如图2,将沿直线AD 平移得到.①当点M 落在抛物线上时,求点M 的坐标.②在移动过程中,存在点M 使为直角三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1);(2)①或;②或或或【解析】【分析】(1)抛物线的表达式为:,即:,即可求解;(2)①将点M 的坐标代入抛物线表达式,即可求解);②分为直角、为直角、为直角三种情况,分别求解即可.【详解】解:(1)抛物线的表达式为:,即:,解得:,故抛物线的表达式为:,令,解得:或,故点,函数的对称轴为:,故点;(2)将点A 、D 的坐标代入一次函数表达式:得:,解得:,故直线AD 的表达式为:,设点,AOE △NMP NMP MBD 21262y x x =-++((--()2,4--1428,33⎛⎫ ⎪⎝⎭()()222641()2412y a x x a x x ax ax a =+-=--=--126a -=BMD ∠MBD ∠MDB ∠()()222641()2412y a x x a x x ax ax a =+-=--=--126a -=12a =-21262y x x =-++0y =4x =2-()2,0A -2x =()2,8D y mx n =+8202m n m n =+⎧⎨=-+⎩24m n =⎧⎨=⎩24y x =+(),24N n n +,则点,①将点M 的坐标代入抛物线表达式得:,解得:,故点M 的坐标为或;②点,点B 、D 的坐标分别为、,则,,,当为直角时,由勾股定理得:,解得:,当为直角时,同理可得:,当为直角时,同理可得:,故点M 的坐标为:或或或.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、勾股定理的运用等,其中(2)②,要注意分类求解,避免遗漏.26. 综合与实践问题提出:某兴趣小组开展综合实践活动:在中,,D 为上一点,,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形设点P 的运动时间为,正方形的而积为S ,探究S 与t 的关系2MN OA == ()2,24M n n ++()()212422162n n n +=-++++2n =-±((--()2,24M n n ++()6,0()2,8()222628BD =-+()()222424MB n n =-++()22224MD n n =+-BMD ∠()()()()22222262842424n n n n -+=-++++-n =MBD ∠n =-4MDB ∠83n =()2,4--1428,33⎛⎫ ⎪⎝⎭Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF s t DPEF(1)初步感知:如图1,当点P 由点C 运动到点B 时,①当时,_______.②S 关于t 的函数解析式为_______.(2)当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象请根据图象信息,求S 关于t 的函数解析式及线段的长.(3)延伸探究:若存在3个时刻()对应的正方形的面积均相等.①_______;②当时,求正方形面积.【答案】(1)①3;②(2),(3)①4;②【解析】【分析】(1)①先求出,再利用勾股定理求出,最后根据正方形面积公式求解即可;②仿照(1)①先求出,进而求出,则;(2)先由函数图象可得当点P 运动到B 点时,,由此求出当时,,可设S 关于t 的函数解析式为,利用待定系数法求出,进而求出当时,求得t 的值即可得答案;(3)①根据题意可得可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数的1t =S =AB 123,,t t t 123t t t <<DPEF 12t t +=314t t =DPEF 22S t =+()281828S t t t =-+≤≤6AB =3491CP =DP =CP t =222DP t =+222S DP t ==+26S DP ==2t =6S =()242S a t =-+2818S t t =-+281818S t t =-+=()242S t =-+22S t =+()()()1221P m n Q m n m m >,,,22S t =+()14m n +,()24m n +,上的两点,由此可得,则,根据题意可以看作,则;②由(3)①可得,再由,得到,继而得答案.【小问1详解】解:∵动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿匀速运动,∴当时,点P 在上,且,∵,,∴∴,故答案为:3;②∵动点P 以每秒1个单位的速度从C 点出发,在匀速运动,∴,∵,,∴,∴;【小问2详解】解:由图2可知当点P 运动到B 点时,,∴,解得,∴当时,,由图2可知,对应的二次函数的顶点坐标为,∴可设S 关于t 的函数解析式为,把代入中得:,解得,∴S 关于t 的函数解析式为,()242S t =-+121212044m m m m m m +=<<+<+,2144m m ++=21321244m m t t m t ==+=+,,124t t +=134t t =+314t t =143t =C B A →→1t =BC 1CP =90C ∠=︒CD =DP ==23S DP ==BC CP t =90C ∠=︒CD =22222DP CP CD t =+=+222S DP t ==+26S DP ==226t +=2t =2t =6S =()42,()242S a t =-+()26,()242S a t =-+()26242a =-+1a =()()224281828S t t t t =-+=-+≤≤在中,当时,解得或,∴;【小问3详解】解:①∵点P 在上运动时, ,点P 在上运动时,∴可知函数可以看作是由函数向右平移四个单位得到的,设是函数上的两点,则,是函数上的两点,∴,∴,∵存在3个时刻()对应的正方形的面积均相等.∴可以看作,∴,故答案为:4;②由(3)①可得,∵,∴,∴,∴.2818S t t =-+281818S t t =-+=8t =0=t 826AB =-=BC 22S t =+AB ()242S t =-+()242S t =-+22S t =+()()()1221P m n Q m n m m >,,,22S t =+()14m n +,()24m n +,()242S t =-+121212044m m m m m m +=<<+<+,2144m m ++=123,,t t t 123t t t <<DPEF 21321244m m t t m t ==+=+,,124t t +=134t t =+314t t =1144t t =+143t =224342239S t ⎛⎫=+=+= ⎪⎝⎭【点睛】本题主要考查了二次函数与图形运动问题,待定系数法求函数解析式,勾股定理等等,正确理解题意利用数形结合的思想求解是解题的关键.。
重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框黑。
1.8的相反数是()A.-8B.8C.18D.-182.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B. C.D.3.反比例函数y =-4x的图象一定经过的点是()A.1,4B.-1,-4C.-2,2D.2,24.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.如图,AB ∥CD ,AD ⊥AC ,若∠1=55°,则∠2的度数为()A.35°B.45°C.50°D.55°6.估计28+10 的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,⋯⋯,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.如图,AC是⊙O的切线,B为切点,连接OA,OC。
若∠A=30°,AB=23,BC=3,则OC的长度是()A.3B.23C.13D.69.如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°。
若∠BAE=α,则∠FEC一定等于()A.2αB.90°-2αC.45°-αD.90°-α10.在多项式x-y-z-m-n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”。
2024年上海市长宁区中考数学二模试卷一、选择题(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.(4分)下列是最简二次根式的是()A.B.C.D..2.(4分)关于一元二次方程x2+x﹣3=0根的情况,正确的是()A.有两个相等的实数根B.有两个不相等的实数根C.有且只有一个实数根D.没有实数根3.(4分)下列函数中,函数值y随自变量x的值增大而增大的是()A.y=2x2B.C.y=﹣2x D.y=2x+14.(4分)为了解某公司的收入水平,随机挑选五人的月工资进行抽样调查,月工资(单位:元)分别是3000,4000,5000,6000,50000,那么能够较好的反映他们收入平均水平的是()A.中位数B.标准差C.平均数D.众数.5.(4分)如图,已知点A、B、C、D都在⊙O上,OB⊥AC,BC=CD,下列说法错误的是()A.B.∠AOD=3∠BOC C.AC=2CD D.OC⊥BD6.(4分)下列命题是假命题的是()A.对边之和相等的平行四边形是菱形B.一组邻边上的高相等的平行四边形是菱形C.一条对角线平分一组对角,另一条对角线平分一个内角的四边形是菱形D.被一条对角线分割成两个等腰三角形的平行四边形是菱形二、填空题(本大题共12题,每题4分,满分48分)7.(4分)计算:2﹣2=.8.(4分)截至2023年底,全国高铁营业里程约为45000公里,这个数45000用科学记数法表示为.9.(4分)函数的定义域为.10.(4分)方程的解是.11.(4分)已知方程,如果设,那么原方程转化为关于y的整式方程为.12.(4分)如果二次函数y=x2+m的图象向右平移3个单位后经过原点,那么m的值为.13.(4分)在1,2,3中任取两个不重复的数字组成一个两位数,那么这个两位数是素数的概率是.14.(4分)为了解某校六年级300名学生来校的方式,随机调查了该校六年级50名学生同一天来校的方式,并绘制了如图所示的饼状图,那么估计该校六年级300名学生中这一天步行来学校的共有_____名.15.(4分)如图,在△ABC中,点D在边AB上,且BD=2AD,点E是AC的中点,联结DE,设向量,,如果用、表示,那么=.16.(4分)如图,正方形ABCD中,点E在对角线BD上,点F在边CD上(点F不与点C重合),且∠EAF=45°,那么的值为.17.(4分)在Rt△ABC中,∠ACB=90°,AC>BC,将△ABC绕着点C旋转,点A、点B的对应点分别是点D、点E,如果点A在DE的延长线上,且CE∥AB,那么∠CAE的余弦值为.18.(4分)我们把以三角形的重心为圆心的圆叫做该三角形的重心圆.如图,在△ABC中,AB=AC=10,BC=16,如果△ABC的重心圆与该三角形各边的公共点一共有4个,那么它的半径r的取值范围是.三、解答题(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.(10分)计算:.20.(10分)解方程组:.21.(10分)如图,⊙O经过平行四边形ABCD的顶点B,C,D,点O在边AD上,AO=3,OD=5.(1)求平行四边形ABCD的面积;(2)求∠D的正弦值.22.(10分)春节期间甲乙两家商店各自推出优惠活动商店优惠方式甲所购商品按原价打八折乙所购商品按原价每满300元减80元设顾客在甲乙两家商店购买商品的原价都为x元,请根据条件回答下列问题:(1)如果顾客在甲商店购买商品选择优惠活动后实际付款y元,求y关于x的函数解析式(不必写出函数定义域);(2)购买原价在500元以下的商品时,如果分别选择甲商店的优惠活动和乙商店的优惠活动后,实际付款金额相等,求x的值;(3)顾客购买原价在900元以下的商品时,如果选择乙商店的优惠活动比选择甲商店的优惠活动更合算,求x的取值范围.23.(12分)已知:在梯形ABCD中,AD∥BC,BD⊥AD,点E在边AD上(点E不与点A、D重合),点F在边CD上,且∠ABD=∠EBF=∠C.(1)求证:;(2)联结EF,与BD交于点G,如果BG=EG,求证:四边形BEDF为等腰梯形.24.(12分)在平面直角坐标系xOy中,已知抛物线y=ax2+2x+c与x轴分别交于点A、B(点A在点B左侧),与y轴交于点C(0,6),其对称轴为直线x=2.(1)求该抛物线的表达式;(2)点F是上述抛物线上位于第一象限的一个动点,直线AF分别与y轴、线段BC交于点D、E.①当CF=DF时,求CD的长;②联结AC,如果△ACF的面积是△CDE面积的3倍,求点F的坐标.25.(14分)已知在△ABC中,CA=CB,AB=6,cos∠CAB=,点O为边AB上一点,以点O为圆心,OA为半径作⊙O,交边AC于点D(点D不与点A、C重合).(1)当AD=4时,判断点B与⊙O的位置关系,并说明理由;(2)过点C作CE⊥OD,交OD延长线于点E.以点E为圆心,EC为半径作⊙E,延长CE,交⊙E 于点C′.①如图1,如果⊙O与⊙E的公共弦恰好经过线段EO的中点,求CD的长;②联结AC′、OC,如果AC′与△BOC的一条边平行,求⊙E的半径长.2024年上海市长宁区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.【分析】根据最简二次根式的定义进行解题即可.【解答】解:A、=,故不符合题意;B、==,故不符合题意;C、是最简二次根式,符合题意;D、==5,故不符合题意;故选:C.【点评】本题考查最简二次根式,熟练掌握相关的知识点是解题的关键.2.【分析】先计算出根的判别式的值,然后根据根的判别式的意义对各选项进行判断.【解答】解:∵Δ=12﹣4×(﹣3)=13>0,∴方程有两个不相等的实数根.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.3.【分析】根据反比例函数的性质、一次函数的性质及正比例函数的性质、二次函数的性质对各选项进行逐一分析即可.【解答】解:A、函数y=2x2中,当x<0时y随x的增大而减小,不符合题意;B、函数y=﹣中,在每一象限内y随x的增大而增大,不符合题意;C、函数y=﹣2x中,y随x的增大而减小,不符合题意;D、函数y=2x+1中,y随x的增大而增大,符合题意.故选:D.【点评】本题考查的是反比例函数的性质、一次函数的性质及正比例函数的性质、二次函数的性质,熟知以上知识是解题的关键.4.【分析】利用平均数,中位数、众数和给出的数据分别进行分析,即可得出答案.【解答】解:根据给出的数据可得,中位数根据能够较好的反映他们收入平均水平.故选:A.【点评】此题考查了平均数、众数、中位数和标准差,众数是指一组数据中出现次数最多的数据;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.5.【分析】分别根据垂径定理,圆心角、弧、弦的关系,三角形三边的关系和线段的垂直平分线的判定判断即可.【解答】解:A、∵OB⊥AC,∴=,故不符合题意;B、∵=,∴∠AOB=∠COB,∵BC=CD,∴∠BOC=∠DOC,∴∠AOD=3∠BOC,故不符合题意;C、∵∠AOB=∠BOC=∠DOC,∴∠AOC=∠BOD,∴AC=BD,∵BD<BC+CD=2CD,∴AC<2CD,故符合题意;D、∵OB=OC,BC=DC,∴OC⊥BD,故不符合题意;故选:C.【点评】本题考查圆周角定理、垂径定理、圆心角、弧、弦的关系、三角形三边的关系和线段的垂直平分线的判定,解答本题的关键是明确题意,利用数形结合的思想解答.6.【分析】根据菱形的判定定理判断即可.【解答】解:A、∵平行四边形的对边相等,∴对边之和相等舒,邻边线段,∴平行四边形是菱形,故本选项命题是真命题;B、根据菱形的面积公式可知:一组邻边上的高相等的平行四边形是菱形,故本选项命题是真命题;C、一条对角线平分一组对角,另一条对角线平分一个内角的四边形是菱形,是真命题,不符合题意;D、有一条对角线与一组邻边构成等腰三角形的平行四边形不一定是菱形,故被一条对角线分割成两个等腰三角形的平行四边形是菱形是假命题,符合题意;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题(本大题共12题,每题4分,满分48分)7.【分析】根据负整数指数幂法则进行解题即可.【解答】解:2﹣2=.故答案为:.【点评】本题考查负整数指数幂,掌握运算法则是解题的关键.8.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:45000=4.5×104.故答案为:4.5×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【分析】根据分式的分母不为零列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣2≠0,解得:x≠2,故答案为:x≠2.【点评】本题考查的是函数自变量的取值范围的确定,熟记分式的分母不为零是解题的关键.10.【分析】方程两边平方得出x﹣1=9,求出方程的解,再进行检验即可.【解答】解:,方程两边平方,得x﹣1=9,解得:x=10,经检验:x=10是原方程的解.故答案为:x=10.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.11.【分析】设,则原方程转化为y﹣=2,再方程两边都乘3y即可.【解答】解:,设,则原方程转化为:y﹣=2,方程两边都乘3y,得3y2﹣1=6y,即3y2﹣6y﹣1=0.故答案为:3y2﹣6y﹣1=0.【点评】本题考查了用换元法解分式方程,能正确换元是解此题的关键.12.【分析】求出函数图象向右平移3个单位后的函数解析式,再由函数图象过原点即可得出m的值.【解答】解:二次函数y=x2+m的图象向右平移3个单位后的解析式为y=(x﹣3)2+m,∵二次函数y=x2+m的图象向右平移3个单位后经过原点,∴(0﹣3)2+m=0,解得m=﹣9.故答案为:﹣9.【点评】本题考查的是二次函数的图象与几何变换,熟知“左加右减”的法则是解题的关键.13.【分析】列表可得出所有等可能的结果数以及这个两位数是素数的结果数,再利用概率公式可得出答案.【解答】解:列表如下:123112132212333132共有6种等可能的结果,其中这个两位数是素数的结果有:13,23,31,共3种,∴这个两位数是素数的概率为=.故答案为:.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.14.【分析】总人数乘以样本中步行人数所占比例即可.【解答】解:估计该校六年级300名学生中这一天步行来学校的共有300×(1﹣12%﹣32%﹣26%)=90(名),故答案为:90.【点评】本题主要考查用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.15.【分析】首先由向量的知识,得到与的值,即可得到的值.【解答】解:在△ABC中,,,则=﹣=﹣.∵BD=2AD,点E是AC的中点,∴==,==﹣,∴=+=+﹣=﹣.故答案为:﹣.【点评】此题考查向量的知识.解题的关键是注意数形结合思想的应用.16.【分析】通过证明△BAE∽△CAF,可得.【解答】解:∵四边形ABCD是正方形,∴AC=AB,∠ABD=∠ACD=45°,∠BAC=∠EAF=45°,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴,故答案为:.【点评】本题考查了正方形的性质,相似三角形的判定和性质,证明三角形相似是解题的关键.17.【分析】由△ABC绕着点C旋转,点A、点B的对应点分别是点D、点E,点A在DE的延长线上,且CE∥AB,得∠ACE=∠BAC=D=x°,得3x+90=180,得∠CAE=x=30°,得∠CAE的余弦值为.【解答】解:由△ABC绕着点C旋转,点A、点B的对应点分别是点D、点E,点A在DE的延长线上,且CE∥AB,得∠ACE=∠BAC=∠D=x°,由△ADC中,∠ACB=90°,得3x+90=180,得∠CAE=x=30°,得∠CAE的余弦值为.故答案为:.【点评】本题主要考查了旋转的性质,解题关键是正确应用旋转的性质.18.【分析】当⊙O与AB、AC相切时(切点是M、N),⊙O与△ABC的三边有4个公共点,连接OM,由△AOM∽△ABH,得到OM:BH=AO:AB,即可求出OM=3.2,当⊙O′与AB、AC分别有一个公共点,与BC有两个公共点时(⊙O′不过B、C两点),△ABC的重心圆与该三角形各边的公共点一共有4个,于是得到当4<r<2时,△ABC的重心圆与该三角形各边的公共点一共有4个,即可得到答案.【解答】解:如图,过A作AH⊥BC于H,∵AB=AC=10,∴HB=HC=BC=×16=8,∴AH==6,设O是△ABC的重心,∴AO=AH=4,当⊙O与AB、AC相切时(切点是M、N),⊙O与△ABC的三边有4个公共点,连接OM,∴OM⊥AB,∴∠AMO=∠AHB=90°,∵∠OAM=∠BAH,∴△AOM∽△ABH,∴OM:BH=AO:AB,∴OM=8=4:10,∴OM=3.2,∴重心圆的半径r=3.2时,△ABC的重心圆与该三角形各边的公共点一共有4个,如图,过作AK⊥BC于K,∵∵AB=AC=10,∴KB=KC=BC=×16=8,∴AK==6,设O′是△ABC的重心,∴AO′=AH=4,∴KO′=6﹣4=2,∴BO′==2,当⊙O′与AB、AC有一个公共点,与BC有两个公共点时(⊙O′不过B、C两点),△ABC的重心圆与该三角形各边的公共点一共有4个,∴当4<r<2时,△ABC的重心圆与该三角形各边的公共点一共有4个,∴重心圆的半径r=3.2或4<r<2时,△ABC的重心圆与该三角形各边的公共点一共有4个,故答案为:r=3.2或4<r<2.【点评】本题考查直线与圆的位置关系,三角形的重心,等腰三角形的性质,相似三角形的判定和性质,关键是要分两种情况讨论.三、解答题(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上] 19.【分析】先化简各式,然后再进行计算即可解答.【解答】解:原式=2+(﹣+3)﹣2+=2﹣=4.【点评】本题考查了实数的运算,零指数幂,准确熟练地化简各式是解题的关键.20.【分析】把②变形为(x﹣2y)(x﹣3y)=0,可得x﹣2y=0或x﹣3y=0,故原方程组相当于和,分别解两个二元一次方程组可得原方程组的解.【解答】解:由②得:(x﹣2y)(x﹣3y)=0,∴x﹣2y=0或x﹣3y=0,∴原方程组相当于和,分别解两个二元一次方程组可得原方程组的解为和.【点评】本题考查解二元二次方程组,解题的关键是用因式分解法“降次“,把二元二次方程组变形为两个二元一次方程组.21.【分析】(1)过O点作OE⊥BC,如图,先根据平行四边形的性质得到BC=AD=8,AD∥BC,再利用垂径定理得到BE=CE=4,接着利用勾股定理计算出OE=3,然后利用平行四边形的面积公式求解;(2)先证明四边形OECF为矩形得到CF=OE=3,OF=CE=4,所以DF=1,再利用勾股定理计算出CD,然后根据正弦的定义求解.【解答】解:(1)过O点作OE⊥BC,如图,∵四边形ABCD为平行四边形,∴BC=AD=3+5=8,AD∥BC,∵OE⊥BC,∴BE=CE=4,在Rt△OEC中,OE===3,∴平行四边形ABCD的面积=8×3=24;(2)∵OF∥CE,OE⊥CE,CF⊥OF,∴四边形OECF为矩形,∴CF=OE=3,OF=CE=4,∴DF=OD﹣OF=5﹣4=1,在Rt△CDF中,CD===,∴sin D===.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了平行四边形的性质、圆周角定理和解直角三角形.22.【分析】(1)根据甲商店实际付款是原价的0.8倍列出函数解析式;(2)根据题意可知300≤x<500,然后按活动价列出等式,解方程即可;(3)分当300≤x<600和600≤x<900两种情况列出不等式,解不等式即可.【解答】解:(1)根据题意得:y=0.8x,∴y关于x的函数解析式为y=0.8x;(2)若x<300,则甲商店按原价打八折,乙商店按原价,此时实际付款金额不可能相等,∴300≤x<500,∴0.8x=x﹣80,解得x=400;(3)当300≤x<600时,x﹣80<0.8x,解得x<400,∴300≤x<400;当600≤x<900时,x﹣160<0.8x,解得x<800,∴600≤x<800,综上所述,x的取值范围为300≤x<400或600≤x<800.【点评】本题考查一次函数和一元一次不等式的应用,关键是列出函数解析式和不等式.23.【分析】(1)由AD∥BC,BD⊥AD,得∠ADB=∠DBC=90°,而∠ABD=∠EBF=∠C,可推导出∠ABE=∠DBF,∠A=∠BDF,进而证明△ABE∽△DBF,则=;(2)将=,变形为=,因为∠ABD=∠EBF,所以△ABD∽△EBF,得∠ADB=∠EFB,再证明△BGF∽△EGD,得===1,则BF=ED,FG=DG,所以∠GDF=∠GFD,由∠BGE =2∠GEB=2∠GFD,证明∠GEB=∠GFD,则BE∥DF,所以四边形BEDF为等腰梯形.【解答】(1)证明:∵AD∥BC,BD⊥AD,∴∠ADB=∠DBC=90°,∵∠ABD=∠EBF=∠C,∴∠ABD﹣∠DBE=∠EBF﹣∠DBE,∴∠ABE=∠DBF,∵∠A+∠ABD=90°,∠BDF+∠C=90°,∴∠A=∠BDF,∴△ABE∽△DBF,∴=.(2)证明:联结EF,与BD交于点G,∵=,∴=,∵∠ABD=∠EBF,∴△ABD∽△EBF,∴∠ADB=∠EFB,∵∠BGF=∠EGD,∠GFB=∠GDE,BG=EG,∴△BGF∽△EGD,∠GBE=∠GEB,∴===1,∴BF=ED,FG=DG,∴∠GDF=∠GFD,∵∠BGE=∠GBE+∠GEB=2∠GEB,∠BGE=∠GDF+∠GFD=2∠GFD,∴2∠GEB=2∠GFD,∴∠GEB=∠GFD,∴BE∥DF,∴四边形BEDF为等腰梯形.【点评】此题重点考查平行线的判定与性质、相似三角形的判定与性质、三角形的一个外角等于与它不相邻的两个内角的和等知识,证明△ABE∽△DBF及△ABD∽△EBF是解题的关键.24.【分析】(1)由待定系数法即可求解;(2)①当CF=DF时,则点F在CD的中垂线上,则(6﹣m+6)=﹣m2+2m+6,即可求解;②证明△EMD∽△FNA,得到DE:AF=DM:AN=1:3,则=(m+2),即可求解.【解答】解:(1)由题意得:,解得:,则抛物线的表达式为:y=﹣x2+2x+6;(2)由抛物线的表达式得,点A(﹣2,0)、C(0,6),设点F(m,﹣m2+2m+6),由点A(﹣2,0)、F的坐标得,直线AF的表达式为:y=﹣(m﹣6)(x+2),则点D(0,6﹣m),①当CF=DF时,则点F在CD的中垂线上,则(6﹣m+6)=﹣m2+2m+6,解得:m=0(舍去)或5,则CD=6﹣(6﹣m)=m=5;②由点B、C的坐标得,直线BC的表达式为:y=﹣x+6,联立上式和AF的表达式得:﹣x+6=﹣(m﹣6)(x+2),解得:x==DM,由点F的坐标得,AN=m+2,∵△ACF的面积是△CDE面积的3倍,则DE:AF=1:3过点D作DM∥x轴,作EM⊥DM,过点F作FN⊥x轴,则△EMD∽△FNA,则DE:AF=DM:AN=1:3,则=(m+2),解得:m=﹣4(舍去)或4,即点F(4,6).【点评】本题考查的是二次函数综合运用,涉及到一次函数的基本性质、待定系数法求函数表达式、三角形相似、中垂线的性质等,有一定的综合性,难度适中.25.【分析】(1)借助垂径定理,利用cos A表示出AO和BO,通过比较AO和BO的大小确定点与圆的位置关系;(2)①需要紧扣∠CDE=∠A,结合连心线和公共弦的性质可以发现圆E和圆O是等圆,借助相似三角形的性质或锐角三角函数,用含k的代数式表示出CD、AD,从而求解;②当AC′∥CB时,过点C′作C′N⊥AD,证明出∠C′AD=∠C′DA,在Rt△C′NC中,cos∠C'CN==,得到,解得,则;当AC′∥OC,延长OE交AC′延长线于点F,由AC′∥OC,得到,解得或5(舍去),则CE=4k=.【解答】解:(1)点B在⊙O内;理由如下:过点O作OH⊥AC,垂足为点H,∵OH过圆心,OH⊥AD,∴,∵OH⊥AC,∴∠AHO=90°,在Rt△AOH中,,∴,∵AB=6,∴,∵OB<AO,∴点B在⊙O内;(2)过点C作CM⊥AB,垂足为M,如图2,∵AC=BC,CM⊥AB,∴,在Rt△ACM中,,∴AC=5,∵OA=OD,∴∠CAB=∠ODA,又∵∠ODA=∠CDE,∴∠CAB=∠CDE,∵,在Rt△CDE中,∠CED=90°,,设DE=3k,CD=5k,则,∴AD=5﹣k,①两圆的交点记为P、Q,连接PE,PO,如图3,⊙O与⊙E相交,PQ是公共弦,∴OE垂直平分PQ,即OE⊥PQ,∵PQ经过OE的中点,∴PQ垂直平分OE,∴PE=PO,即CE=AO,,在Rt△AHO中,∠AHO=90°,∴,∵,∴,解得,∴;②由于点A在直线AB上,∴AC′不可能与OB平行,则当AC′∥CB时,过点C′作C′N⊥AD,如图4,∵AC=CB,∴∠CAB+∠B+∠ACB=180°,∴∠ACB=180°﹣2∠CAB,∵AC′∥CB,∴∠C′AD=∠ACB=180°﹣2∠CAB,∵DE⊥CC′,CE=C′E,∴DC′=DC,∴∠CDE=∠C′DE,∵∠C′DA+∠C′DE+∠CDE=180°,∴∠C′DA=180°﹣2∠CDE,∵∠CAB=∠CDE,∴∠CAD=∠CDA,∵C′N⊥AD,∴,∴,在Rt△C′NC中,,∴,∴,∴;当AC∥OC,延长OE交AC延长线于点F,如图5,∵AC′∥OC,∴,∴OE=EF,∴,DE=3k,∴,∴,∴,∵AC′∥OC,∴,∴,解得或5(舍去),∴,综上:或.【点评】本题考查了圆和三角形相结合的问题,锐角三角函数,点与圆的位置关系,相交两圆的性质,相似三角形的判定与性质,添加适当的辅助线,构造直角三角形,并灵活运用勾股定理是解答本题的关键。
2022年陕西省西安市中考数学二模试卷一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. −22的倒数是( )A. 22B. −22C. 122D. −1222. 如图,是放置在北京冬奥会场馆内水平地面上的领奖台,其几何体左视图是( )A. B.C. D.3. 下列运算正确的是( )A. √3+√2=√5B. √(−2)2=±2C. a2⋅a3=a5D. (−3a2b2)2=6a4b44. 如图,AD是△ABC的中线,若AB=AC=5,BC=6,则AD的值是( )A. 4B. 3C. 2D. 2√25. 一把直尺与一块直角三角板按如图方式摆放,若∠1=43°,则∠2=( )A. 40°B. 43°C. 45°D. 47°6. 一次函数y=kx+b(k<0)的图象过点(−1,0),则不等式kx+b>0的解集是( )A. x<−2B. x<−1C. x>−2D. x<17. 如图,在菱形ABCD中,∠A=60°,点E,F分别在边AB,BC上,∠EDF=60°,BF=√6,BE=1,则AD的长为( )A. √6B. √6+1C. 2√3D. 2√3−18. 已知函数y=ax2−(a+1)x+1,则下列说法正确的个数是( )①若该函数图象与x轴只有一个交点,则a=0②方程ax2−(a+1)x+1=0有一个整数根是1③存在实数a,使得ax2−(a+1)x+1≥0对任意实数x都成立A. 0B. 1C. 2D. 3二、填空题(本大题共5小题,共15.0分)9. 比较大小:2√3______√13.(填“>”、“=”、“<”).10. 一个正多边形的一个外角等于45°,则这个正多边形的边数是______.11. 如表在我国宋朝数学家杨辉1261年的著作《详细九章算法》中提到过,因而人们把这个表叫做杨辉三角.请你根据杨辉三角的规律补全表中第五行空缺的数字是______.12. 如图,在平面直角坐标系中,Rt△OBC的顶点B在x轴的正(x>0)的图象与边OC交于点E,已知E半轴上,反比例函数y=2x为边OC的中点,则△OBC的面积为______.13. 在△ABC中,∠ABC=90°,AB=2√3,BC=3,D为平面上的一个动点,∠ADB=60°,则线段CD长度的最大值为.三、解答题(本大题共13小题,共81.0分。
2024年广东省深圳市盐田区中考数学二模试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一1.(3分)代数式﹣3x的意义可以是()A.﹣3与x的和B.﹣3与x的差C.﹣3与x的积D.﹣3与x的商2.(3分)《国语》有云:“夫美也者,上下、内外、小大、远近皆无害焉,故曰美.”这是古人对于对称美的一种定义,这种审美法则在生活中体现得淋漓尽致.下列地铁图标中,是中心对称图形的是()A.武汉地铁B.重庆地铁C.成都地铁D.深圳地铁3.(3分)小梅沙海滨公园预计将于今年五一期间开放.园区占地面积约20.53万平方米,用水面积约100万平方米,开放后将成为滨海休息、沙滩活动及婚庆产业、活动赛事的重要承载空间.20.53万用科学记数法表示为()A.2.053×103B.2.053×104C.2.053×105D.2.053×1064.(3分)计算(3a2)3的结果是()A.6a5B.9a6C.27a5D.27a65.(3分)已知不等式组的解集是﹣1<x<0,则(a+b)2024的值为()A.﹣1B.1C.0D.20246.(3分)“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某班为了解同学们某季度学习“青年大学习”的情况,从中随机抽取6位同学,经统计他们的学习时间(单位:分钟)分别为:78,85,80,90,80,82.则这组数据的众数和中位数分别为()A.80和81B.81和80C.80和85D.85和807.(3分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在E处.若∠1=56°,∠2=42°,则∠A的度数为()A.108°B.109°C.110°D.111°8.(3分)《孙子算经》是中国古代重要的数学著作,是《算经十书》之一,书中记载了这样一个题目:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x 尺,则可列方程为()A.(x+4.5)=x﹣1B.(x+4.5)=x+1C.(x+1)=x﹣4.5D.(x﹣1)=x+4.59.(3分)一次函数y=kx+b的图象与与反比例函数的图象交于A(a,2),B(2,﹣1),则不等式的解集是()A.﹣1<x<0或x>2B.x<﹣1或x>1C.x<﹣2或0<x<2D.x<﹣1或0<x<210.(3分)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,12),其对称轴在y轴右侧,则该二次函数有()A.最大值B.最小值C.最大值8D.最小值8二、填空题:本大题共5小题,每小题3分,共15分。
2024年重庆市中考真题(A卷)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个数中,最小的数是()A.2-B.0C.3D.1 2 -2.下列四种化学仪器的示意图中,是轴对称图形的是()A.B.C.D.【答案】C【分析】此题考查了轴对称图形的概念,根据概念逐一判断即可,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,熟练掌握知识点是解题的关键.【详解】A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意;故选:C.3.已知点()3,2-在反比例函数()0ky k x=≠的图象上,则k 的值为( )A .3-B .3C . 6-D .64.如图,AB CD ∥,165∠=︒,则2∠的度数是( )A .105︒B .115︒C .125︒D .135︒【答案】B【分析】本题主要考查了平行线的性质,根据平行线的性质得3165∠=∠=︒,由邻补角性质得23180∠+∠=︒,然后求解即可,熟练掌握两直线平行,同位角相等是解题的关键.【详解】解:如图,∵AB CD ∥,∴3165∠=∠=︒,∵23180∠+∠=︒,∴2115∠=︒,故选:B .5.若两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是( )A .1:3B .1:4C .1:6D .1:9【答案】D【分析】此题考查了相似三角形的性质,根据“相似三角形的面积比等于相似比的平方”解答即可.【详解】解:两个相似三角形的相似比是1:3,则这两个相似三角形的面积比是1:9,故选:D .6.烷烃是一类由碳、氢元素组成的有机化合物质,下图是这类物质前四种化合物的分子结构模型图,其中灰球代表碳原子,白球代表氢原子.第1种如图①有4个氢原子,第2种如图②有6个氢原子,第3种如图③有8个氢原子,……按照这一规律,第10种化合物的分子结构模型中氢原子的个数是( )A .20B .22C .24D .26【答案】B【分析】本题考查数字的变化类,根据图形,可归纳出规律表达式的特点,再解答即可.【详解】解:由图可得,第1种如图①有4个氢原子,即2214+⨯=第2种如图②有6个氢原子,即2226+⨯=第3种如图③有8个氢原子,即2238+⨯=⋯,∴第10种化合物的分子结构模型中氢原子的个数是:221022+⨯=;故选:B .7.已知m =m 的范围是( )A .23m <<B .34m <<C .45m <<D .56m <<8.如图,在矩形ABCD 中,分别以点A 和C 为圆心,AD 长为半径画弧,两弧有且仅有一个公共点.若4=AD ,则图中阴影部分的面积为( )A .328π-B .4π-C .324π-D .8π-根据题意可得2AC AD =∵矩形ABCD ,∴AD BC =在Rt ABC △中,AB =9.如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGC E的值为( )AB C D 由旋转得,90EA EF AEF =∠=︒,∵四边形ABCD 是正方形,∴90D Ð=°,DC AB ∥,DA =∴D H ∠=∠,10.已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A .0B .1C .2D .3【答案】D【分析】本题考查的是整式的规律探究,分类讨论思想的应用,由条件可得04n ≤≤,再分类讨论得到答案即可.【详解】解:∵10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= ,∴04n ≤≤,当4n =时,则2104345a a a a a +++++=,∴41a =,23100a a a a ====,满足条件的整式有4x ,当3n =时,则210335a a a a ++++=,∴()()3210,,,2,0,0,0a a a a =,()1,1,0,0,()1,0,1,0,()1,0,0,1,满足条件的整式有:32x ,32x x +,3x x +,31x +,当2n =时,则21025a a a +++=,∴()()210,,3,0,0a a a =,()2,1,0,()2,0,1,()1,2,0,()1,0,2,()1,1,1,满足条件的整式有:23x ,22x x +,221x +,22x x +,22x +,21x x ++;当1n =时,则1015a a ++=,∴()()10,4,0a a =,()3,1,()1,3,()2,2,满足条件的整式有:4x ,31x +,3x +,22x +;当0n =时,005a +=,满足条件的整式有:5;∴满足条件的单项式有:4x ,32x ,23x ,4x ,5,故①符合题意;不存在任何一个n ,使得满足条件的整式M 有且只有3个;故②符合题意;满足条件的整式M 共有1464116++++=个.故③符合题意;故选D二、填空题11.计算:011(3)(2π--+= .12.若一个多边形的每一个外角都等于40°,则这个多边形的边数是 .【答案】9【详解】解:360÷40=9,即这个多边形的边数是9.故答案为:9.13.重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A 、B 、C 三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B 的概率为 .由图可知,共有9种等可能的情况,其中甲、乙两人同时选择景点∴甲、乙两人同时选择景点B 的的概率为19,故答案为:19.14.随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是 .【答案】10%【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解.【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =-(不符合题意,舍去);故答案为:10%.15.如图,在ABC 中,延长AC 至点D ,使CD CA =,过点D 作DE CB ∥,且DE DC =,连接AE 交BC 于点F .若CAB CFA ∠=∠,1CF =,则BF = .【答案】3【分析】先根据平行线分线段成比例证AF EF =,进而得22DE CD AC CF ====,4AD =,再证明CAB DEA ≌,得4BC AD ==,从而即可得解.16.若关于x 的不等式组()411321x x x x a -⎧<+⎪⎨⎪+≥-+⎩至少有2个整数解,且关于y 的分式方程13211a y y-=---的解为非负整数,则所有满足条件的整数a 的值之和为 .17.如图,以AB 为直径的O 与AC 相切于点A ,以AC 为边作平行四边形ACDE ,点D 、E 均在O 上,DE 与AB 交于点F ,连接CE ,与O 交于点G ,连接DG .若10,8AB DE ==,则AF = .DG = .∵以AB 为直径的O 与AC ∴AB AC ⊥,∴90CAB ∠=︒,∵四边形ACDE 为平行四边形,∴∥D E A C ,8AC DE ==,18.我们规定:若一个正整数A 能写成2m n -,其中m 与n 都是两位数,且m 与n 的十位数字相同,个位数字之和为8,则称A 为“方减数”,并把A 分解成2m n -的过程,称为“方减分解”.例如:因为26022523=-,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成26022523=-的过程就是“方减分解”.按照这个规定,最小的“方减数”是 .把一个“方减数”A 进行“方减分解”,即2A m n =-,将m 放在n 的左边组成一个新的四位数B ,若B 除以19余数为1,且22m n k +=(k 为整数),则满足条件的正整数A 为 .三、解答题19.计算:(1)()()22x x y x y -++;(2)22111a a a a -⎛⎫+÷ ⎪+.20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表年级七年级八年级平均数8585中位数86b 众数a 79根据以上信息,解答下列问题:(1)上述图表中=a ______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?【答案】(1)86,87.5,40;(2)八年级学生竞赛成绩较好,理由见解析;(3)该校七、八年级参加此次安全知识竞赛成绩优秀的学生人数是320人.【分析】(1)根据表格及题意可直接进行求解;(2)根据平均分、中位数及众数分析即可得出结果;(3)由题意可得出参加此次竞赛活动成绩优秀的百分比,然后可进行求解;本题主要考查扇形统计图及中位数、众数、平均数,熟练掌握扇形统计图及中位数、众数、平均数是解题的关键.【详解】(1)根据七年级学生竞赛成绩可知:86出现次数最多,则众数为86,八年级竞赛成绩中A 组:2010%2⨯=(人),B 组:2020%4⨯=(人),21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD中,点O是对角线AC的中点.用尺规过点O作AC的垂线,分别交AB,CD于点E,F,连接AF,CE.(不写作法,保留作图痕迹)(2)已知:矩形ABCD,点E,F分别在AB,CD上,EF经过对角线AC的中点O,且⊥.求证:四边形AECF是菱形.EF AC证明:∵四边形ABCD是矩形,.∴AB CD∠=∠.∴①,OCF OAE∵点O是AC的中点,∴②.∴CFO AEO≅△△(AAS).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.【答案】(1)见解析(2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【分析】本题主要考查了矩形的性质,平行四边形的性质与判定,菱形的判定,垂线的尺规作图:(1)根据垂线的尺规作图方法作图即可;(2)根据矩形或平行四边形的对边平行得到OFC OEA ∠=∠,OCF OAE ∠=∠,进而证明()AAS CFO AEO ≌,得到OF OE =,即可证明四边形AECF 是平行四边形.再由EF AC ⊥,即可证明四边形AECF 是菱形.【详解】(1)解:如图所示,即为所求;(2)证明:∵四边形ABCD 是矩形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.猜想:过平行四边形的一条对角线的中点作这条对角线的垂线,与平行四边形两边相交的两点和这条对角线的两个端点构成的四边形是菱形;证明:∵四边形ABCD 是平行四边形,∴AB CD .∴OFC OEA ∠=∠,OCF OAE ∠=∠.∵点O 是AC 的中点,∴OA OC =.∴()AAS CFO AEO ≌.∴OF OE =.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.故答案为:①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形.22.为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?【答案】(1)该企业甲类生产线有10条,则乙类生产线各有20条;(2)需要更新设备费用为1330万元23.如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)(3)解:由函数图象可知,当12y y >时x 的取值范围2.26x <≤.24.如图,甲、乙两艘货轮同时从A 港出发,分别向B ,D 两港运送物资,最后到达A 港正东方向的C 港装运新的物资.甲货轮沿A 港的东南方向航行40海里后到达B 港,再沿北偏东60︒方向航行一定距离到达C 港.乙货轮沿A 港的北偏东60︒方向航行一定距离到达D 港,再沿南偏东30︒方向航行一定距离到达C 港. 1.41≈ 1.73≈,2.45≈)(1)求A ,C 两港之间的距离(结果保留小数点后一位);(2)若甲、乙两艘货轮的速度相同(停靠B 、D 两港的时间相同),哪艘货轮先到达C 港?请通过计算说明.∴90AEB CEB ∠=∠=︒,由题意可知:45GAB ∠=︒,∴45BAE ∠=︒,∴cos 40cos AE AB BAE =∠=⨯∴tan 202tan CE BE EBC =∠=25.如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y 轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.∴()4,0A -,设直线AC 的解析式为y =代入()4,0A -,得04m =-解得1m =,∴直线AC 的解析式为y =()当0y =时,046x =--,解得32x =-,∴3,02G ⎛⎫- ⎪⎝⎭∵()4,0A -,()0,4C ,∴OA OC =,∴45OAC OCA ∠=∠=︒,∵DR x ∥轴,26.在ABC 中,AB AC =,点D 是BC 边上一点(点D 不与端点重合).点D 关于直线AB 的对称点为点E ,连接,AD DE .在直线AD 上取一点F ,使EFD BAC ∠∠=,直线EF 与直线AC 交于点G .(1)如图1,若60,,BAC BD CD BAD α∠=︒<∠=,求AGE ∠的度数(用含α的代数式表示);(2)如图1,若60,BAC BD CD ∠=︒<,用等式表示线段CG 与DE 之间的数量关系,并证明;(3)如图2,若90BAC ∠=︒,点D 从点B 移动到点C 的过程中,连接AE ,当AEG △为等腰三角形时,请直接写出此时CG AG 的值.∵EFD BAC ∠∠=,BAC ∠∴60EFD ∠=︒∵1EFD BAD ∠=∠+∠=∠∴160α∠=︒-,∵,AB AC EFD BAC =∠=∠∴=45ABC ∠︒,由轴对称知EAB ∠=∠试题31设BAD BAE β∠=∠=,∴90DAC GAF ∠=∠=︒∴GAE EAF GAF ∠=∠-∠∵GE GA =,。
2024年四川省成都市中考二模模拟试卷(四)数学(考试时间:120分钟试卷满分:150分)A 卷(共100分)第Ⅰ卷(选择题,共32分)一、单项选择题:本题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.-3.5的倒数的相反数是()A .13.5B .27C .—13.5D .722.5G 被认为是物联网、自动驾驶汽车、智慧城市的“结缔组织”,是工业互联网的中坚力量.近年来,我国5G 发展取得明显成就,根据中国工信部的数据,截至2020年10月底,全国累计建设开通5G 基站达69.5万个,将数据69.5万用科学记数法表示为()A .695×103B .69.5×104C .6.95×105D .0.695×1063.马虎同学在下面的计算中只做对了一道题,他做对的题目是()A .336a a a +=B .()33612a a a ⋅=C .63222a a a ÷=D .358236a a a ⋅=4.下列命题中,错误的是()A .两组对边分别平行的四边形是平行四边形B .两条对角线互相垂直的四边形是平行四边形C .三个角是直角的四边形是矩形D .四边相等的四边形是菱形5.为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A .7h ;7hB .8h ;7.5hC .7h ;7.5hD .8h ;8h6.如图,太阳光线与地面成60°的角,照射在地面上的一个皮球上,皮球在地面上的投影长是球的直径是()A .15B .83C .103D .307.成渝路内江至成都段全长170km ,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过76h 相遇,相遇时,小汽车比客车多行驶20km .设小汽车和客车的平均速度分别为x km /h 和y km /h ,则下列方程组正确的是()A .20{7717066x y x y +=+=B .20{7717066x y x y -=+=C .20{7717066x y x y +=-=D .7717066{772066x y x y +=-=8.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴是x =1,现给出下列4个结论:①abc >0,②2a ﹣b =0,③4a +2b +c >0,④b 2﹣4ac >0,其中错误的结论有()A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.分解因式:324x x x -+=.10.在平面直角坐标系xOy 中,若正比例函数1()y n x =-的图象经过第一、三象限,则n 的取值范围是.11.在平面直角坐标系中,已知点()3,6A -、()9,3B --,以原点O 为位似中心,相似比为13,把ABO 缩小,则点B 对应点B '的坐标是.12.设x 是最小的正整数,y 是最大的负整数,z 是绝对值最小的数,则x y z -+=.13.如图,在AOC 中,以O 为圆心,OA 为半径画弧,分别交AC ,OC 于点D ,B .若CD OA =,72O ∠=︒,则OAC ∠︒.三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(1)计算:)1019tan 3027322-⎛⎫︒+⎪ ⎭⎝.(2)解不等式:1132x x +-≥.15.甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如图所示的尚不完整的统计图表.甲校成绩统计表分数7分8分9分10分人数1108(1)在图①中,“7分”所在扇形的圆心角等于______︒;(2)请你将②的统计图补充完整;(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好;(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?16.如图,MN 是一条东西方向的海岸线,在海岸线上的A 处测得一海岛在南偏西32°的方向上,向东走过780米后到达B 处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.600.)17.如图,AB 是O 的直径,弦CD AB ⊥,P 为 AC 上一点,PC PD 、分别与直线AB 交于M 、N ,延长DC 至点E ,使得CPE PDC ∠=∠.(1)求证:PE 是O 的切线;(2)若6OM ON ⋅=,求AB 的长.18.定义:平面直角坐标系xOy 中,若点M 绕点N 顺时针旋转90︒,恰好落在函数图象W 上,则称点M 是点N 关于函数图象W 的“直旋点”.例如,点()11-,是原点O 关于函数y x =图象的一个“直旋点”.(1)在①()12-,,②()13,,③()32-,三点中,是原点O 关于一次函数21y x =-图象的“直旋点”的有____(填序号);(2)点()24M -,是点()10N ,关于反比例函数k y x=图象的“直旋点”,求k 的值;(3)如图1,点()13A ,在反比例函数k y x =图象上,点B 是在反比例函数k y x =图象上点A 右侧的一点,若点B 是点A 关于函数k y x=的“直旋点”,求点B 的坐标.B 卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)19.当1x =时,代数式35ax bx ++的值是6,那么当=1x -时,代数式35ax bx ++的值是.20.将四个图1中的直角三角形,分别拼成如图2,图3所示的正方形,则图2中阴影部分的面积为.21.如图,在平面直角坐标系xOy 中,()1,0P ,以P 为圆心作圆P ,交x 轴于点()1,0A -、B ,交y 轴于点C 、D ,点M 为 CBD 上任一点(不与C 、D 重合),则tan CMD ∠=.22.计算机可以帮助我们又快又准地画出函数的图像.用“几何画板”软件画出的函数2(3)y x x =-和3y x =-的图像如图所示.若m ,n 分别满足方程2(3)1x x -=和31x -=根据图像可知m ,n 的大小关系是.23.如图,在ABC 中,90,5,4A BC AC ∠=︒==,点D 为AC 上任一点,连接BD ,过点B ,C 分别作,,BE CD EC BD BE 与CE 交于点E ,则线段DE 的最小值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度为10m )围成中间隔有一道篱笆的长方形养鸡场,设养鸡场的宽AB 为x m ,面积为y m 2.(1)求y 与x 的函数关系,并写出x 的取值范围;(2)当长方形的长、宽各为多少时,养鸡场的面积最大,最大面积是多少?25.在平面直角坐标系xOy 中,直线l :()0y kx m k =+≠与抛物线212y x =相交于A ,B 两点.(点A 在点B 的左侧)(1)如图1,若A 、B 两点的横坐标分别是1-,2,求直线l 的关系式;(2)如图2,若直线l 与y 轴的交点()0,2C -,且点B 是线段AC 中点,求k 的值;(3)如图3,若直线l 运动过程中,始终有OA OB ⊥,试探究直线l 是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.26.已知,点E 是矩形ABCD 边BC 上一点,连接AE ,52AB BE =.(1)若AB EC =;①如图1,点F 在边CD 上,且CF BE =,连接EF ,求证:EF AE ⊥;②如图2,点F 在边AB 上,且AF BE =,连接CF 交AE 于点G ,过点C 作CH AE ⊥交AE 的延长线于点H ,求GE EH的值;(2)如图3,2CE BE =,F 在边AB 上,连CF 交AE 于G .若45CGE ∠=︒,则tan BFC ∠=.。
上海市中考数学二模试卷一、选择题(共6小题,每小题4分,满分24分)1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.2.下列属于最简二次根式的是()A.B.C.D.3.下列方程中,有实数根的是()A.=﹣2 B.x2+1=0 C.=1 D.x2+x+1=04.在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E.如果DE过重心G点,且DE=4,那么BC的长是()A.5 B.6 C.7 D.85.饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是()A.15元和18元B.15元和15元C.18元和15元D.18元和18元6.如图,某水渠的横断面是等腰梯形,已知其斜坡AD和BC的坡度为1:0.6,现测得放水前的水面宽EF为1.2米,当水闸放水后,水渠内水面宽GH为2.1米.求放水后水面上升的高度是()A.0.55 B.0.8 C.0.6 D.0.75二、填空题(共12小题,每小题4分,满分48分)7.计算:2﹣2= .8.用科学记数法表示:3402000= .9.化简分式:= .10.不等式组的解集是.11.方程x+=0的解是.12.已知反比例函数y=(k≠0)图象过点(﹣1,﹣3),在每个象限内,自变量x的值逐渐增大时,y的值随着逐渐.(填“减小”或“增大”)13.文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为.14.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价万元.15.如图,在正方形ABCD中,如果AC=3,=,=,那么|﹣|= .16.某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm,请判断哪种颜色的郁金香样本长得整齐?.(填“红”或“黄”)17.已知⊙O的直径是10,△ABC是⊙O的内接等腰三角形,且底边BC=6,求△ABC的面积是.18.如图,在Rt△ABC中,∠ACB=90°,将△ABC沿BD折叠,点C恰巧落在边AB上的C′处,折痕为BD,再将其沿DE折叠,使点A落在DC′的延长线上的A′处.若△BED与△ABC相似,则相似比= .三、解答题(共7小题,满分78分)19.计算:﹣|cos45°﹣1|+(﹣2015)0+3.20.解方程组:.21.已知:如图,点E是矩形ABCD的边AD上一点,BE=AD,AE=8,现有甲乙两人同时从E点出发,分别沿EC,ED方向前进,甲的速度是乙的倍,甲到达目的地C点的同时乙恰好到达终点D处.(1)求tan∠ECD的值;(2)求线段AB及BC的长度.22.某公司的物流业务原来由A运输队承接,已知其收费标准y(元)与运输所跑路程x(公里)之间是某种函数关系.其中部分数据如表所示:x(公里)80 120 180 200 …y(元)200 300 450 500 …(1)写出y(元)关于x(公里)的函数解析式;(不需写出定义域)(2)由于行业竞争激烈,现B运输队表示:若公司每次支付200元的汽车租赁费,则可按每公里0.9元收费.请写出B运输队每次收费y(元)关于所跑路程x(公里)的函数解析式;(不需写出定义域)(3)如果该公司有一笔路程500公里的运输业务,请通过计算说明应该选择哪家运输队?23.已知:如图(1),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.(1)求证:四边形ABCD是菱形;(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;(3)在第(2)小题的条件下,连接BD,交AG于点H,若HE=4,EG=12,求AH的长.24.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.25.已知:如图1,在△ABC中,已知AB=AC=6,BC=4,以点B为圆心所作的⊙B与线段AB、BC 都有交点,设⊙B的半径为x.(1)若⊙B与AB的交点为D,直线CD与⊙B相切,求x的值;(2)如图2,以AC为直径作⊙P,那么⊙B与⊙P存在哪些位置关系?并求出相应x的取值范围;(3)若以AC为直径的⊙P与⊙B的交点E在线段BC上(点E不与C点重合),求两圆公共弦EF的长.上海市中考数学二模试卷参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.【考点】立方根.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故选B【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.2.下列属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、,无法化简,故是最简二次根式,故本选项正确;B、,被开方数中含有分母;故本选项错误;C、,被开方数中含有分母,故本选项错误;D、所以本二次根式的被开方数中含有没开的尽方的数;故本选项错误;故选:A.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.3.下列方程中,有实数根的是()A.=﹣2 B.x2+1=0 C.=1 D.x2+x+1=0【考点】根的判别式;无理方程;分式方程的解.【专题】计算题.【分析】根据二次很式的性质可对A进行判断;根据判别式的意义对B、D进行判断;通过解分式方程对C进行判断.【解答】解:A、方程=﹣2没有实数解,所以A选项错误;B、△=0﹣4<0,方程没有实数解,所以B选项错误;C、去分母得1=x+1,解得x=0,经检验x=0是原方程的解,所以C选项正确;D、△=14<0,方程没有实数解,所以D选项错误.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了分式方程和无理方程.4.在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E.如果DE过重心G点,且DE=4,那么BC的长是()A.5 B.6 C.7 D.8【考点】三角形的重心.【专题】计算题.【分析】如图,连结AG并延长交BC于F,根据三角形重心性质得=2,再证明△ADE∽△ABC,根据相似三角形的性质得=,然后利用比例的性质计算BC的长.【解答】解:如图,连结AG并延长交BC于F,如图,∵点G为△ABC的重心,∴=2,∵DE∥BC,∴△ADE∽△ABC,∴=,即=,∴BC=6.故选B.【点评】本题考查了三角形的重心:三角形的重心是三角形三边中线的交点;重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了相似三角形的判定与性质.5.饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是()A.15元和18元B.15元和15元C.18元和15元D.18元和18元【考点】众数;中位数.【分析】根据题意先计算出本周销售套餐12元和18元的份数,再根据中位数和众数的定义即可得出答案.【解答】解:12元的份数有500×20%=100(份),18元的份数有500﹣100﹣180=220(份),∵本周销售套餐共计500份,∴所购买的盒饭费用的中位数是第250和251个数的平均数,∴中位数是15元;18元出现的次数最多,则众数是18元;故选A.【点评】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.如图,某水渠的横断面是等腰梯形,已知其斜坡AD和BC的坡度为1:0.6,现测得放水前的水面宽EF为1.2米,当水闸放水后,水渠内水面宽GH为2.1米.求放水后水面上升的高度是()A.0.55 B.0.8 C.0.6 D.0.75【考点】解直角三角形的应用-坡度坡角问题.【分析】先过点E作EM⊥GH于点M,根据水渠的横断面是等腰梯形,求出GM,再根据斜坡AD 的坡度为1:0.6,得出EM:GM=1:0.6,最后代入计算即可.【解答】解:如图;过点E作EM⊥GH于点M,∵水渠的横断面是等腰梯形,∴GM=×(GH﹣EF)=×(2.1﹣1.2)=0.45,∵斜坡AD的坡度为1:0.6,∴EM:GM=1:0.6,∴EM:0.45=1:0.6,∴EM=0.75,故选:D.【点评】此题考查了解直角三角形的应用,用到的知识点是坡度、等腰三角形的性质,关键是根据题意画出图形,作出辅助线,构造直角三角形.二、填空题(共12小题,每小题4分,满分48分)7.计算:2﹣2= .【考点】负整数指数幂.【专题】计算题.【分析】根据负整数指数幂的定义求解:a﹣p=(a≠0,p为正整数)【解答】解:2﹣2==,故答案为.【点评】本题考查了负整数指数幂的定义,解题时牢记定义是关键,此题比较简单,易于掌握.8.用科学记数法表示:3402000= 3.402×106.【考点】科学记数法—表示较大的数.【分析】确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于3402000有7位,所以可以确定n=7﹣1=6.【解答】解:3402000=3.402×106.故答案为:3.402×106.【点评】此题考查科学记数法,用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).9.化简分式:= .【考点】约分.【专题】计算题.【分析】先把分母因式分解,然后进行约分即可.【解答】解:原式==.故答案为.【点评】本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.10.不等式组的解集是x≥3 .【考点】解一元一次不等式组.【分析】根据不等式的性质求出不等式①和②的解集,根据找不等式组的解集的规律找出不等式组的解集即可.【解答】解:由①得:x>﹣2,由②得:x≥3,∴不等式组的解集是x≥3.故答案为x≥3.【点评】本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.方程x+=0的解是0 .【考点】无理方程.【分析】本题含根号,计算比较不便,因此可先对方程两边平方,得到x=x2,再对方程进行因式分解即可解出本题.【解答】解:原方程变形为:x=x2即x2﹣x=0∴(x﹣1)x=0∴x=0或x=1∵x=1时不满足题意.∴x=0.故答案为:0.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.12.已知反比例函数y=(k≠0)图象过点(﹣1,﹣3),在每个象限内,自变量x的值逐渐增大时,y的值随着逐渐减小.(填“减小”或“增大”)【考点】反比例函数的性质.【分析】首先利用待定系数法确定反比例函数的比例系数,然后根据其符号确定其增减性即可.【解答】解:设反比例函数的解析式为y=(k≠0),∵反比例函数图象过点(﹣1,﹣3),∴把(﹣1,﹣3)代入得3=k>0,根据反比例函数图象的性质可知它在每个象限内y随x的增大而减小,故答案为:减小;【点评】考查了反比例函数的性质,解答此题的关键是要熟知反比例函数图象的性质及用待定系数法求反比例函数的解析式.反比例函数图象的性质:(1)当k>0时,反比例函数的图象位于一、三象限;(2)当k<0时,反比例函数的图象位于二、四象限.13.文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为.【考点】概率公式.【分析】由文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,直接利用概率公式求解即可求得答案.【解答】解:∵文件夹里放了大小相同的试卷共12张,其中语文4张、数学2张、英语6张,∴随机从中抽出1张,抽出的试卷恰好是数学试卷的概率为:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.某品牌汽车经过两次连续的调价,先降价10%,后又提价10%,原价10万元的汽车,现售价9.9 万元.【考点】有理数的混合运算.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:10×(1﹣10%)×(1+10%)=9.9(万元),则现售价为9.9万元.故答案为:9.9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.如图,在正方形ABCD中,如果AC=3,=,=,那么|﹣|= 3 .【考点】*平面向量.【分析】首先由在正方形ABCD中,如果AC=3,可求得BC的长,又由=,=,可得|﹣|=||=BC.【解答】解:∵在正方形ABCD中,AC=3,∴AB=BC=3,∵=,=,∴﹣=﹣=,∴|﹣|=||=BC=3.故答案为:3.【点评】此题考查了平面向量的知识.注意掌握三角形法则的应用.16.某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm,请判断哪种颜色的郁金香样本长得整齐?黄.(填“红”或“黄”)【考点】方差.【分析】先根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]分别求出红颜色和黄颜色的方差,然后进行比较,即可得出答案.【解答】解:红颜色的郁金香的方差是:[(54﹣40)2+(44﹣40)2+(37﹣40)2+(36﹣40)2+(35﹣40)2+(34﹣40)2]≈49.67,黄颜色的郁金香的方差是:[(48﹣40)2+(35﹣40)2+(38﹣40)2+(36﹣40)2+(43﹣40)2+(40﹣40)2]≈29.67,>S2黄,∵S2红∴黄颜色的郁金香样本长得整齐;故答案为:黄.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.已知⊙O的直径是10,△ABC是⊙O的内接等腰三角形,且底边BC=6,求△ABC的面积是3或27 .【考点】垂径定理;等腰三角形的性质;勾股定理.【分析】从圆心在三角形内部和外部两种情况讨论,根据垂径定理和三角形的性质求出答案.【解答】解:当圆心在三角形内部时,0B=5,BD=3,根据勾股定理,OD=4,则AD=9,S△=×6×9=27,ABC当圆心在三角形外部时,0B=5,BD=3,根据勾股定理,OD=4,则AD=1,=×6×1=3,S△ABC故答案为:3或27.【点评】本题考查的是垂径定理、等腰三角形的性质和勾股定理,正确运用定理和性质是解题的关键,注意分情况讨论思想的运用.18.如图,在Rt△ABC中,∠ACB=90°,将△ABC沿BD折叠,点C恰巧落在边AB上的C′处,折痕为BD,再将其沿DE折叠,使点A落在DC′的延长线上的A′处.若△BED与△ABC相似,则相似比= .【考点】相似三角形的性质;翻折变换(折叠问题).【分析】根据△BED与△ABC相似和△ABC沿BD折叠,点C恰巧落在边AB上的C′处,求出∠A=∠DBA=∠DBC=30°,利用三角函数求出BD、AC的长,得到答案.【解答】解:△BED与△ABC相似,∴∠DBA=∠A,又∠DBA=∠DBC,∴∠A=∠DBA=∠DBC=30°,设BC为x,则AC=x,BD=x,=.故答案为:.【点评】本题考查的是相似三角形的性质和翻折变换的知识,掌握相似三角形的对应角相等和锐角三角函数的应用是解题的关键.三、解答题(共7小题,满分78分)19.计算:﹣|cos45°﹣1|+(﹣2015)0+3.【考点】二次根式的混合运算;分数指数幂;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、分数指数幂和特殊角的三角函数值得到原式=﹣|﹣1|+1+,然后分母有理化和去绝对值后合并即可.【解答】解:原式=﹣|﹣1|+1+=2﹣+﹣1+1+=2+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和分数指数幂.20.解方程组:.【考点】高次方程.【分析】把①化为x=±2y,把②化为x+y=±2,重新组成方程组,解二元一次方程组即可.【解答】解:,由①得,x=±2y,由②得,x+y=±2,则,,,解得,,,,.【点评】本题考查的是二元二次方程组的解法,把二元二次方程根据平方差公式和完全平方公式进行变形化为两个二元一次方程是解题的关键.21.已知:如图,点E是矩形ABCD的边AD上一点,BE=AD,AE=8,现有甲乙两人同时从E点出发,分别沿EC,ED方向前进,甲的速度是乙的倍,甲到达目的地C点的同时乙恰好到达终点D处.(1)求tan∠ECD的值;(2)求线段AB及BC的长度.【考点】勾股定理.【分析】(1)设ED=a,则EC=a,在Rt△EDC中根据勾股定理用a表示出DC的长,在Rt△ABE 中,根据BE2=AB2+AE2求出a的值,故可得出ED及CD的长,由锐角三角函数的定义即可得出结论;(2)由(1)中,DE=a,CD=3a,a=2可得出DE=2,CD=6,再根据四边形ABCD是矩形,BE=AD 即可得出结论.【解答】解:(1)设ED=a,则EC=a,在Rt△EDC中,∵DC===3a,∴BE=AE+ED=8+a.在Rt△ABE中,∵BE2=AB2+AE2,即(8+a)2=(3a)2+82,解得a=2,∴ED=2,CD=6,∴tan∠ECD===.(2)∵由(1)知,DE=a,CD=3a,a=2,∴DE=2,CD=6.∵四边形ABCD是矩形,BE=AD,AE=8,∴AB=CD=6,BC=AD=AE+DE=8+2=10.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22.某公司的物流业务原来由A运输队承接,已知其收费标准y(元)与运输所跑路程x(公里)之间是某种函数关系.其中部分数据如表所示:x(公里)80 120 180 200 …y(元)200 300 450 500 …(1)写出y(元)关于x(公里)的函数解析式y A=2.5x ;(不需写出定义域)(2)由于行业竞争激烈,现B运输队表示:若公司每次支付200元的汽车租赁费,则可按每公里0.9元收费.请写出B运输队每次收费y(元)关于所跑路程x(公里)的函数解析式y B=200+0.9x ;(不需写出定义域)(3)如果该公司有一笔路程500公里的运输业务,请通过计算说明应该选择哪家运输队?【考点】一次函数的应用.【分析】(1)根据表可知:当运输路程跑80公里时,收费200元,所以每公里收费为2.5元,所以y A=2.5x.(2)根据题意得:y B=200+0.9x.(3)当x=500时,y A=2.5×500=1250,y B=2000+0.9×500=2450,因为y A>y B,所以选择B运输队.【解答】解:(1)根据表可知:当运输路程跑80公里时,收费200元,∴每公里收费为2.5元,=2.5x.∴yA故答案为:y A=2.5x.(2)根据题意得:y B=200+0.9x.故答案为:y B=200+0.9x.(3)当x=500时,y A=2.5×500=1250,y B=200+0.9×500=650,>y B,∴yA∴选择B运输队.【点评】本题考查了一次函数的应用,解决本题的关键是读懂题意,列出函数解析式.23.已知:如图(1),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.(1)求证:四边形ABCD是菱形;(2)如图(2),若AD=AF,延长AE、DC交于点G,求证:AF2=AG•DF;(3)在第(2)小题的条件下,连接BD,交AG于点H,若HE=4,EG=12,求AH的长.【考点】相似形综合题.【分析】(1)通过AAS证得△AEB≌△AFD,则其对应边相等:AB=AD,所以“邻边相等的平行四边形是菱形”;(2)欲证明AF2=AG•DF,需要通过相似三角形△GAD∽△AFD的对应边成比例得到AD=AF,则AF2=AG•DF;(3)根据菱形的性质和平行线分线段成比例得到:AH:HG=BH:HD,BH:HD=EH:AH,故AH:HG=EH:AH.把相关线段的长度代入来求AH的长度即可.【解答】(1)证明:如图1,∵四边形ABCD是平行四边形,∴∠B=∠D.∵∠AEC=∠AFC,∠AEC+∠AEB=∠AFC+∠AFD=180°,∴∠AEB=∠AFD.在△AEB和△AFD中,,∴△AEB≌△AFD(AAS)∴AB=AD,∴平行四边形ABCD是菱形;(2)由(1)知,△AEB≌△AFD,则∠BAE=∠DAF.如图2,∵四边形ABCD是平行四边形,∴AB∥DG,∴∠BAE=∠G,∴∠G=∠DAF.又∵∠ADF=∠GDA,∴△GAD∽△AFD,∴DA:DF=DG:DA,∴DA2=DG•DF.∵DG:DA=AG:FA,且AD=AF,∴DG=AG.又∵AD=AF,∴AF2=AG•DF;(3)如图2,在菱形ABCD中,∵AB∥DC,AD∥BC,∴AH:HG=BH:HD,BH:HD=EH:AH,∴AH:HG=EH:AH.∵HE=4,EG=12,∴AH:16=4:AH,∴AH=8.【点评】本题考查了相似综合题.此题综合性比较强,其中涉及到了菱形的性质,平行线分线段成比例,相似三角形的判定与性质,解题时,需要弄清楚相似三角形的对应边与对应角,以防弄错.24.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题;二次函数图象及其性质;二次函数的应用.【分析】(1)由二次函数对称轴为直线x=2,根据A坐标确定出二次函数与x轴的另一个交点坐标,设出二次函数解析式为y=a(x+6)(x﹣2),把C坐标代入求出a的值,确定出二次函数解析式,进而确定出C与D坐标即可;(2)连接AB、BC、CD、DA,点E在线段AB上,连接DE,如图1所示,利用勾股定理求出AB,BC,CD与BD的长,根据直线CD与直线AB斜率相等,得到DC与AB平行,继而得到四边形ABCD 为直角梯形,若DE平分四边形ABCD的面积,可得直角梯形面积等于三角形ADE面积的2倍,求出AE的长即可;(3)在二次函数的图象上存在点P,能够使∠PCA=∠BAC,如图2所示,直线CP与AB交于点G,可得GA=GC,根据直线AB解析式设出G坐标(x,x+6),利用两点间的距离公式求出x的值,确定出G坐标,利用待定系数法求出直线CG解析式,与二次函数解析式联立求出P坐标;由(2)得到四边形ABCD为直角梯形,即DC与AB平行,利用两直线平行内错角相等,得到P 与D重合时,满足题意,确定出此时P的坐标即可.【解答】解:(1)∵二次函数经过A(﹣6,0),B(0,6),对称轴为直线x=2,∴二次函数图象经过(2,0),设二次函数解析式为y=a(x+6)(x﹣2),把B(0,6)代入得:6=﹣12a,即a=﹣,∴二次函数解析式为y=﹣(x+6)(x﹣2)=﹣x2﹣2x+6=﹣(x+2)2+8,则C(﹣2,8),D(﹣4,6);(2)如图1所示,由题意得:AB=6,BC=CD=2,BD=4,∵BD2=CD2+BC2,∴∠DCB=90°,∵直线AB的解析式为y=x+6,直线DC解析式为y=x+10,∴DC∥AB,∴四边形ABCD为直角梯形,,即×2×(2+6)=2××2×AE,若S梯形ABCD=2S△ADE解得:AE=4;(3)如图2,在二次函数的图象上存在点P,使∠PCA=∠BAC,直线CP与AB交于点G,可得GA=GC,∵A(﹣6,0),C(﹣2,8),直线AB解析式为y=x+6,设G(x,x+6),∴=,解得:x=﹣,经检验是原方程的根且符合题意,∴G(﹣,),设直线CG解析式为y=kx+b,把C与G坐标代入得:,解得:,∴直线CG解析式为y=7x+22,联立得:,解得:或(经检验不合题意,舍去),∴P坐标为(﹣16,﹣90);由(2)得到四边形ABCD为直角梯形,AB∥CD,∴∠DCA=∠BAC,此时P与D重合,即P(﹣4,6),综上,满足题意P的坐标为(﹣16,﹣90)或(﹣4,6).【点评】此题属于二次函数综合题,涉及的知识有:待定系数法确定二次函数解析式,待定系数法确定一次函数解析式,直角梯形的判定,直线与二次函数的交点,坐标与图形性质,熟练掌握待定系数法是解本题的关键.25.已知:如图1,在△ABC中,已知AB=AC=6,BC=4,以点B为圆心所作的⊙B与线段AB、BC 都有交点,设⊙B的半径为x.(1)若⊙B与AB的交点为D,直线CD与⊙B相切,求x的值;(2)如图2,以AC为直径作⊙P,那么⊙B与⊙P存在哪些位置关系?并求出相应x的取值范围;(3)若以AC为直径的⊙P与⊙B的交点E在线段BC上(点E不与C点重合),求两圆公共弦EF的长.【考点】圆的综合题.【分析】(1)作AH⊥BC于点H,根据直线CD与⊙B相切,得到CD⊥AB,从而得到cos∠DBC=cos∠ACH,利用余弦的定义得到BD:BC=CH:CA,从而得到BD:4=2:6,求得BD 的长即可求得圆的半径;(2)作PK⊥BC于点K,求得两圆的圆心距,然后根据两圆的半径和圆心距的大小关系得到位置关系即可;(3)设EF与PB交于点G,BG=m,在△PBE中,PE2﹣PG2=BE2﹣BG2求得m的值,然后根据EG2﹣BG2=BE2求得EG的长即可求得EF的长.【解答】解:(1)如图1,作AH⊥BC于点H,∵AB=AC=6,BC=4,∴BH=2.∵直线CD与⊙B相切,∴CD⊥AB,∵∠DBC=∠ACH,∴cos∠DBC=cos∠ACH,∴BD:BC=CH:CA,∴BD:4=2:6,∴BD=.(2)如图1,作PK⊥BC于点K,∴PK∥AH.∵AH⊥BC,AB=AC=6,BC=4,∴BH=2,∴AH=4.∵以AC为直径作⊙P,∴AP=PC,∴PK=2,CK=BC=1,∴BK=3,∴在Rt△PBK中,PB===,∴当0<x<﹣3时,⊙B与⊙P外离,当x=﹣3时,⊙B与⊙P外切,当﹣3<x≤4时,⊙B与⊙P相交;(3)如图2,点E即为BC边的中点H,∴PE=3.设EF与PB交于点G,BG=m,∴在△PBE中,PE2﹣PG2=BE2﹣BG2,∴32﹣(﹣m)2=22﹣m2,∴m=.∵EG2﹣BG2=BE2,∴EG2﹣()2=22,∴EG=,∴EF=.【点评】本题考查了圆的综合知识,题目中还涉及到了勾股定理、两圆的位置关系等知识,知识点较多,难度较大,特别是最后一题中两次运用勾股定理求得EG的长更是解决本题的关键.。
虹口区2023学年度初三年级第二次学生学习能力诊断练习数学 练习卷(满分150分,考试时间100分钟)注意:1.本练习卷含三个大题,共25题.答题时,请务必按答题要求在答题纸规定的位置上作答,在草稿纸、本练习卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1. 下列各数中,无理数是( )A. B. 3.14159 C. D. 【答案】C【解析】【分析】本题主要考查的是对无理数定义的应用,熟练掌握理解无理数的定义是解此题的关键.根据无理数的定义(无理数是指无限不循环小数)判断即可.【详解】解:A、是分数,不是无理数,故本选项错误;B 、3.14159是小数,不是无理数,故本选项错误;C 是无理数,故本选项正确;D 、是循环小数,不是无理数,故本选项错误;故选C .2. 关于一元二次方程无实数根,则实数的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】根据一元二次方程判别式与根情况的关系,列代数式求解即可.【详解】解:一元二次方程无实数根,的211 1.22111.2x 220x x m -+=m 1m <1m £m 1≥1m >220x x m -+=则判别式解得,故选:D .【点睛】此题考查了一元二次方程判别式与根情况的关系,解题的关键是掌握相关基础知识,一元二次方程的判别式,当时有两个不相等的实数根,当时,有两个相等的实数根,当时,无实数根.3. 已知二次函数,如果函数值随自变量的增大而减小,那么的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】本题考查二次函数的性质,熟练掌握二次函数的增减性是解题关键.根据二次函数,可得函数图象开口向下,对称轴为,函数值随自变量的增大而减小,则,得以解答.【详解】解:二次函数,,函数图象开口向下,对称轴为,时,函数值随自变量的增大而减小,故选:A .4. 下列事件中,必然事件是( )A. 随机购买一张电影票,座位号恰好是偶数B. 抛掷一枚质地均匀的硬币,落地后反面朝上C. 在只装有2个黄球和3个白球的盒子中,摸出一个球是红球D. 在平面内画一个三角形,该三角形的内角和等于【答案】D【解析】【分析】本题考查是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.根据事件发生的可能性大小判断.的()224240b ac m ∆=-=--<1m >()200ax bx c a ++=≠24b ac ∆=-0∆>Δ0=Δ0<()24y x =--y x x 4x ≥4x ≤4x ≥-4x ≤-()24y x =--()24y x =--4x =y x 4x ≥()24y x =--10-< ∴()24y x =--4x =∴4x ≥y x 180︒【详解】解:A 、随机购买一张电影票,座位号是偶数,是随机事件;B 、抛掷一枚质地均匀的硬币,反面朝下,是随机事件;C 、在只装有2个黄球和3个白球的盒子中,摸出一个球是红球,是不可能事件;D 、在平面内画一个三角形,该三角形的内角和等于,是必然事件;故选D .5. 如图,在正方形中,点、分别在边和上,,,如果,那么的面积为( )A. 6B. 8C. 10D. 12【答案】B【解析】【分析】本题主要考查了正方形的性质,平行四边形的性质与判定,先根据正方形的性质得到,进而证明四边形是平行四边形,得到,则,最后根据三角形面积计算公式求解即可.【详解】解:∵四边形是正方形,∴,∵,∴四边形是平行四边形,∴,∴,∴,故选:B .6. 在中,,.如果以顶点为圆心,为半径作,那么与边所在直线的公共点的个数是( )A. 3个B. 2个C. 1个D. 0个.180︒ABCD E F BC AD 2BE =6AF =AE CF ABE 90AD BC AB CD ABE =∠=︒∥,,AECF 6AF CE ==8AB BC BE CE ==+=ABCD 90AD BC AB CD ABE =∠=︒∥,,AE CF AECF 6AF CE ==8AB BC BE CE ==+=1128822ABE S AB BE =⋅=⨯⨯=△ABCD Y 5BC =20ABCD S = C BC C C AD【答案】B【解析】【分析】本题考查了平行四边形的面积,直线与圆的位置关系d 、r 法则,熟练掌握法则是解题的关键.根据面积公式计算点C 到的距离d ,比较d 与半径的大小判断即可.【详解】解:如图,∵在平行四边形中,,,设点C 到的距离为d ,∴点C 到的距离,∴直线与圆C 相交,即有2个交点,故选:B .二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.=___.【答案】﹣2【解析】【分析】根据立方根的定义,求数a 的立方根,也就是求一个数x ,使得x 3=a ,则x 就是a 的立方根.【详解】∵(-2)3=-8,,故答案为:-28. 分解因式:_______.【答案】【解析】【分析】根据平方差公式因式分解即可求解.【详解】解:AD BC ABCD 5BC =20ABCD S = AD AD 2054d =÷= 45BC<=AD 2-229a b -=()()33a b a b +-229a b -=()()33a b a b +-故答案为:.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题的关键.9. 解不等式:,的解集为________.【答案】【解析】【分析】本题主要考查的是解一元一次不等式;按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式即可求解.【详解】解:去括号,移项,合并同类项,化系数为1,故答案为:.10. 函数的定义域是 【答案】>【解析】【分析】定义域是指该函数的自变量的取值范围,根据二次根号下被开方数≥0;分式中分母不为0;即可解答.【详解】定义域是指该函数的自变量的取值范围,二次根号下被开方数≥0;分式中分母不为0;∴∴故答案为11. 将抛物线先向右平移3个单位,再向下平移4个单位后,所得到的新抛物线的表达式为________.【答案】【解析】【分析】本题主要考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并()()33a b a b +-()5232x x +≤+2x ≤()5232x x +≤+5263+≤+x x5362x x -≤-24x ≤2x ≤2x≤y =10x +>1x >-1x >-()221y x =-+()253y x =--用规律求函数解析式.根据平移规律“左加右减,上加下减”写出新抛物线解析式.【详解】解:抛物线先向右平移3个单位,再向下平移4个单位后,所得到的新抛物线的表达式为,即.故答案为:.12. 在一个不透明袋子中,装有2个红球和一些白球,这些球除颜色外其他都一样,如果从袋中随机摸出一个球是红球的概率为,那么白球的个数是________.【答案】6【解析】【分析】本题考查了概率的定义.解题的关键与难点在于理解概率的定义,求出球的总数.随机摸出一个球是红球的概率是,可以得到球的总个数,进而得出白球的个数.【详解】解:设红、白球总共n 个,记摸出一个球是红球为事件A ,,白球有个故答案为:.13. 某校为了解该校1200名学生参加家务劳动的情况,随机抽取40名学生,调查了他们的周家务劳动时间并制作成频数分布直方图,那么估计该校周家务劳动时间不少于2小时的学生大约有________名.【答案】780【解析】【分析】本题主要考查了用样本估计总体,根据条形统计图获取信息是解题的关键.根据条形统计图直接得出家务劳动时间不少于2小时的学生有26名,进而估计该校1200名学生参加家务劳动时间不少于2小时的学生人数即可求解.()221y x =-+()22314y x =--+-()253y x =--()253y x =--0.2520.25n=()20.25P A n==8n ∴=∴826-=6【详解】解:由题意得:被调查的40人中,家务劳动时间不少于2小时的学生有26名,该校周家务劳动时间不少于2小时的学生大约有(名),故答案为:780.14. 一根蜡烛长30厘米,点燃后匀速燃烧,经过50分钟其长度恰为原长的一半.在燃烧的过程中,如果设蜡烛的长为(厘米),燃烧的时间为(分钟),那么关于的函数解析式为________(不写定义域).【答案】【解析】【分析】本题主要考查由实际问题列一次函数的解析式,解题的关键是理解题意.根据题意先求出蜡烛燃烧的速度为(厘米/分),即可直接进行求解.【详解】解:由题意可得:蜡烛长30厘米,经过50分钟其长度恰为原长的一半,经过50分钟蜡烛燃烧的长度为15厘米,蜡烛燃烧的速度为(厘米/分),蜡烛的长为蜡烛燃烧前长度减去燃烧的长度,,故答案为:.15. 如图,正六边形螺帽的边长是,那么这个扳手的开口的值是______.【答案】【解析】【分析】本题考查解直角三角形,等腰三角形的性质,含角的直角三角形的性质.由螺帽是正六边形,可得是含角的直角三角形,再根据即可求出和.【详解】解:如图,连接,则,过点作于∴26120078040⨯=y t y t 300.3y t=-15500.3÷=∴∴15500.3÷=300.3y t \=-300.3y t =-4cm a 30︒ACD 30︒4AC =AD AB AB a AB =C CD AB ⊥D螺帽是正六边形,,.故答案为:16. 如图,在梯形中,,,点、分别是边、的中点,连接,设,,那么用向量、表示向量________.【答案】【解析】【分析】本题考查了平面向量的问题,熟练掌握三角形法则是解题的关键,根据梯形的中位线定理及向量的三角形法则解答即可.【详解】解:,,,,, 120ACB ∴∠=︒CD AB ⊥AC BC=1120602ACD ∴∠=⨯︒=︒AD BD =4AC = 4AD AC ∴===22a AB AD ∴===⨯=ABCD AD BC ∥2BC AD =E F AB CD AC AB a =AC b = a b EF = 3344a b -+ AB a = AC b =BC BA AC a b \=+=-+ ,2AD BC BC AD = ∥111222AD BC a b \==-+,点、分别是边、的中点,,,,故答案为:.17. 如图,在中,,,.点在边上,,以点为圆心,为半径作.点在边上,以点为圆心,为半径作.如果和外切,那么的长为________.【答案】##【解析】【分析】本题考查的是圆和圆的位置关系、解直角三角形的知识,作于点H ,连接,先求出,设,在中,根据勾股定理列方程即可解决.【详解】解:作于点H ,连接,,,,在中,,11112222DC DA AC AD AC a b b a b \=+=-+=-+=+ E F AB CD 111222EA BA AB a \==-=- 111244DF DC a b \==+ 11111332224444EF EA AD DF a a b a b a b æöæöç÷ç÷\=++=-+-+++=-+ç÷ç÷èøèø3344a b -+ ABCD Y 7AB =8BC =4sin 5B =P AB 2AP =P AP P Q BC Q CQ Q P Q CQ 37149214PH BC ⊥PQ 43PH BH ==,CQ a =Rt QPH △PH BC ⊥PQ 7AB = 2AP =725BP \=-=Rt BPH 4sin 5B =,,设,和外切,半径为2,,在中,,,解得:,故答案为:.18. 如图,在扇形中,,,点在半径上,将沿着翻折,点的对称点恰好落在弧上,再将弧沿着翻折至弧(点是点A 的对称点),那么的长为________.【答案】##【解析】【分析】本题考查翻折性质,圆的基本性质,等边三角形判定与性质、勾股定理的应用,连接,由翻折得,证出是等边三角形,设,在中,根据勾股定理列方程并解出进而求出结论.【详解】解:连接,455PH \=43PH BH \==,CQ a =P Qe Q P 2PQ a \=+Rt QPH △4,835PH HQ a a ==--=-()()222452a a ∴+-=+3714a =3714AOB 105AOB ∠=︒8OA =C OA BOC BC O D AB AD CD 1A D 1A 1OA 8-8-+OD 1105OB BD AC A C BOC BDC ==∠=∠=︒,,OBD AC a =Rt COD AC OD由翻折得:,,,是等边三角形,,,设,则,在中,,,解得:(舍去),,故答案为:.三、解答题:(本大题共7题,满分78分)19.先化简,再求值:,其中.【答案】【解析】【分析】本题主要考查分式的化简求值,分母有理化,掌握分式的基本性质与运算法则是解题的关键,注意化简过程中能因式分解要先因式分解.先算括号内的减法,把除法变成乘法,算乘法,最后代入求值即可.【详解】解:1105OB BD AC A C BOC BDC ==∠=∠=︒,,OC CD =OB OD = OBD ∴△60OBD ∴∠=︒3601051056090OCD \Ð=°-°-°-°=°AC a =1882OC a CD A O a =-==-,Rt COD 8OC CD a ==-()()222888a a ∴-+-=12888a a =-=+>(128288OA OA AC ∴=-=--=8-22214133m m m m m -+⎛⎫÷- ⎪++⎝⎭m 1m m -22214133m m m m m -+⎛⎫÷- ⎪++⎝⎭()()2134333m m m m m m -+⎛⎫=÷- ⎪+++⎝⎭;当.20. 解方程组:【答案】【解析】【分析】将第二个方程进行因式分解得到,然后令因式和因式分别为0即可求解.【详解】解:由题意可知: 对方程②进行因式分解得:即或∴原方程组化为 或 解得或故原方程组的解为:或.【点睛】本题考查了因式分解的方法及二元方程组,熟练掌握常见的二元一次方程组的解法是解决此类题的关键.21. 如图,一次函数图像在反比例函数图像相交于点和点,与轴交于点.点在反比例函数图像上,过点作轴的垂线交一次函数图像于点.()()21133m m m m m --=÷++()()21331m m m m m -+=⨯+-1m m-=m =1m m -222-620x y x xy y =⎧⎨--=⎩121242,22x x y y ==⎧⎧⎨⎨==-⎩⎩()(2)0+-=x y x y 2x y -x y +222-620x y x xy y =⎧⎨--=⎩①②()(2)0+-=x y x y 20x y -=0x y +=2620x y x y -=⎧⎨-=⎩260x y x y -=⎧⎨+=⎩1142x y =⎧⎨=⎩2222x y =⎧⎨=-⎩1142x y =⎧⎨=⎩2222x y =⎧⎨=-⎩(),2A m ()2,4B -y C ()1,D n -D x E(1)求反比例函数和一次函数的解析式;(2)求面积.【答案】(1)反比例函数为,一次函数解析式 (2)【解析】【分析】此题考查了反比例函数综合题,涉及的知识有:待定系数法确定反比例函数和一次函数解析式,三角形面积.()利用待定系数法求解即可;()先分别求出、、的坐标,进而利用三角形面积公式解答即可.【小问1详解】解:设反比例函数为,把点代入得,,∴反比例函数为,把点,点代入,得,,∴,,∴点,点,设一次函数解析式,的CDE 8y x=-2y x =--9212C D E k y x=()2,4B -k y x=428k =-⨯=-8y x=-(),2A m ()1,D n -8y x =-82m =-881n =-=-4m =-8n =()4,2A -()1,8D -y cx d =+把点,点代入得,解得,∴一次函数解析式;【小问2详解】∵一次函数解析式,∴把点代入,得,∴,∴点,∵轴,∴点横坐标为,把代入得,∴∴,∴22. 根据以下素材,完成探索任务.探究斜坡上两车之间距离素材1图①是某高架入口的横断面示意图.高架路面用表示,地面用表示,斜坡用表示.已知,高架路面离地面的距离为25米,斜坡长为65米.素如图②,矩形为一辆大巴车的侧面示意图,长为10米,长为的()4,2A -()2,4B -4224c d c d-=+⎧⎨=-+⎩12c d =-⎧⎨=-⎩2y x =--2y x =--()0,2C -,()1,D n -8y x =-881n =-=-8n =()1,8D -DE x ⊥E 1-1x =-2y x =--121y =-=-()1,1E --,189DE =+=119191222CDE S DE =⋅=⨯⨯= .BM AN AB BM AN ∥BM BH AB ECKG CK EC 3.5材2米.如图③,该大巴车遇堵车后停在素材1中的斜坡上,矩形的顶点与点重合,点与指示路牌底端点之间的距离为米,且.小张驾驶一辆小轿车跟随大巴车行驶,小张的眼睛到斜坡的距离为1米.任务一如图①,求斜坡的坡比.问题解决任务二如图③,当小张正好可以看到整个指示路牌(即、、在同一条直线上)时,试求小张距大巴车尾的距离.【答案】任务一:斜坡的坡比;任务二:米【解析】【分析】本题考查的是解直角三角形坡度坡角问题及相似三角形判定与性质,矩形判定与性质,任务一:根据勾股定理求出第三边进而求出坡度;任务二:作交延长线于点O ,作于点Q ,交于点R ,通过解直角三角形结合矩形判定与性质求出相关线段长度,再证明,根据性质求出结论即可.【详解】解:任务一:如图①,由题意得:在中,25米,斜坡长为65米,(米),斜坡的坡比;任务二:如图③,作交延长线于点O ,作于点Q ,交于点R ,为ECKG K B B P BP 6.5BP BM ⊥FD AB P E F EC CD AB 1:2.4i =12.5PO DB ⊥DB FQ PO ^CE FER FPQ ∽Rt ABH △BH AB 60AH \=∴AB 251:2.460BH i AH ===PO DB ⊥DB FQ PO ^CE则四边形为矩形,四边形为矩形,米,米,,为米,,解得:米,米,米,米,,,,,,解得:,经检验,是原方程的解,米.23. 如图,在中,,延长至点,使得,过点、分别作,,与相交于点,连接.CRQO FDCR,1RQ CO FR DC FD CR OQ\=====,3.51 2.5ER\=-=,90ABH PBO O HÐ=ÐÐ=Ð=°BP 6.525cos cos6.565BOPBO ABH\Ð==Ð=2.5BO=6PO\==615PQ∴=-=10 2.512.5RQ CO==+=,EC AB PQ AB^^ER PQ\∥FER FPQ\∽ER FRPQ FQ\=2.5512.5FRFR\=+12.5FR=12.5FR=12.5CD FR\==Rt ABC△90C∠=︒CB D DB CB=A DAE BC∥DE BA∥AE DE E BE(1)求证:;(2)连接交于点,连接交于点.如果,求证:.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查平行四边形的判定与性质,矩形的判定与性质,勾股定理等,解题的关键是掌握平行四边形和矩形的判定方法.(1)先证四边形是平行四边形,得出从而证出四边形是矩形,即可证明结论;(2)设,算出,证明,求出 ,进而证出结论;【小问1详解】证明:,,四边形是平行四边形,,,,又,点D 在的延长线上,,四边形是平行四边形,又,四边形是矩形,;【小问2详解】解:如图,BE CD ⊥AD BE F CE AD G FBA ADB ∠=∠AG AB =AEDB AE CB =AEBC EF BF a ==AE =AEG DCG V ∽△AGAB = AE BD DE BA ∥∴AEDB ∴AE BD = BD CB =∴AE CB = AE BD CB ∴AE CB ∥∴AEBC 90C ∠=︒∴AEBC ∴BE CD ⊥四边形是平行四边形,,设,,,,,,,,,,,在中,,,,在中,,AEDB ,EF BF AF DF \==EF BF a ==FBA ADB Ð=Ð tan tan FBA ADB \Ð=ÐAE BF BE BD\=AE BD = 222AE a \=AE ∴=BD BC AE \==AE CD AEG DCG \ ∽12AE AG CD DG \==Rt DBF △DF ==AD \=AG \=Rt ABC △AB ==.24. 新定义:已知抛物线(其中),我们把抛物线称为的“轮换抛物线”.例如:抛物线的“轮换抛物线”为.已知抛物线:的“轮换抛物线”为,抛物线、与轴分别交于点、,点在点的上方,抛物线的顶点为.(1)如果点的坐标为,求抛物线的表达式;(2)设抛物线的对称轴与直线相交于点,如果四边形为平行四边形,求点的坐标;(3)已知点在抛物线上,点坐标为,当时,求的值.【答案】(1) (2) (3)或【解析】【分析】本题考查的是二次函数综合题,重点考查二次函数的性质、平行四边形性质及相似三角形性质,(1)将点代入表达式,求出m 的值,根据“轮换抛物线”定义写出即可;AG AB \=AG AB \=2y ax bx c =++0abc ≠2y cx ax b =++2y ax bx c =++2231y x x =++223y x x =++1C ()2445y mx m x m =+-+2C 1C 2C y E F E F 2C P E ()0,12C 2C 38y x =+Q PQEF E ()4,M n -2C N 12,72⎛⎫-- ⎪⎝⎭PMN PEF △∽△m 241y x x =+-20,3E ⎛⎫- ⎪⎝⎭1m =-1732()0,1E(2)根据轮换抛物线定义得出抛物线表达式及点E 、F 坐标,并求出P 、Q 坐标,根据平行四边形性质得出列方程并解出m 值,进而解决问题;(3)先求,结合求出的点P 、E 、F 坐标得出及,根据相似三角形性质得出关于m 的方程,解方程即可解决.【小问1详解】解:抛物线:与轴交于点坐标为,当,代入,得,,抛物线表达式为,抛物线的“轮换抛物线”为表达式为;【小问2详解】解:抛物线:,当时,,即与y 轴交点为,抛物线:的“轮换抛物线”为,抛物线表达式为,同理抛物线与y 轴交点为,抛物线对称轴为直线,当时,,抛物线的顶点坐标为,当时,,抛物线的对称轴与直线交点,点在点的上方,,解得:,2C PQ EF =()4,45M m --2PN 2PF 1C ()2445y mx m x m =+-+y E ()0,10x =1y =1m =451m \-=-∴1C 241y x x =-+∴1C 2C 241y x x =+-1C ()2445y mx m x m =+-+0x =y m =()0,E m 1C ()2445y mx m x m =+-+2C ∴2C ()2445y mx mx m =++-2C ()0,45F m -2C 422m x m=-=-2x =-5y =-∴2C ()25P --,2x =-382y x =+=∴2C 38y x =+()2,2Q - E F 45m m \>-53m <,四边形为平行四边形,,即,解得:,;【小问3详解】解:点在抛物线上,当时,,即,点坐标为,,,,,,,,,,解得:.25. 在梯形中,,点在射线上,点在射线上,连接、相交于点,.()4553EF m m m \=--=- PQEF PQ EF \=()2553m --=-23m =-20,3E ⎛⎫∴- ⎪⎝⎭ ()4,M n -2C 4x =-()244545y mx mx m m =++-=-()4,45M m -- N 12,72⎛⎫-- ⎪⎝⎭()25P --,()0,E m ()0,45F m -()222125225724PN æöç÷\=-++-+=ç÷èø()()22222455416PF m m =-+-+=+()115325322PEF P S EF x m m =×=-´=- ()111557242222PMN M P S PN x x æöç÷=×-=´-+´-+=ç÷èø PMN PEF ∽222PEF PMN S PF PF S PN PN æöç÷\==ç÷èø 25341652524m m -+\=12171,32m m =-=ABCD AD BC ∥E DA F AB CE DF P EPF ABC ∠=∠(1)如图①,如果,点、分别在边、上.求证:;(2)如图②,如果,,,.在射线的下方,以为直径作半圆,半圆与的另一个交点为点.设与弧的交点为.①当时,求和的长;②当点为弧的中点时,求的长.【答案】(1)见解析(2)①;;②【解析】【分析】(1)根据等腰梯形的性质可得,,,根据三角形的外角性质得出,进而可得,即可证明,根据相似三角形的性质,即可求解;(2)①同(1)证明,如图所示,过点作于点,连接,得出,,解直角三角形,分别求得,,进而根据相似三角形的性质求得的长;②根据题意画出图形,根据垂径定理得出,根据题意可设,,则,得出,设,则,则,在中,得出,根据得出,即可求解.【小问1详解】证明:∵梯形中,,,∴,,,又∵,∴AB CD =E F ADAB AF DF DE CE =AD CD ⊥5AB =10BC =3cos 5ABC ∠=DA DE O O CE G DF EG Q 6DE =EG AF Q EG AF EG =215AF =15B DCB DCE BCE ∠=∠=∠+∠A EDC ∠=∠DEC BCE ∠=∠FPE CED EDP ∠=∠+∠ADF DCE ∠=∠ADF DCE ∽ADF PDE ∽A AM BC ⊥M DG cos DEC ∠=sin DEC ∠=EG EP AF OQ EQ ⊥EPF ABC α∠=∠=ODQ OQD β∠=∠=90αβ+=︒43tan tan 34αβ==12FR a =9AR a =15AF a =Rt DFR 16DR a =1697AD DR AR a a a =-=-=1a =ABCD AD BC ∥AB CD =B DCB DCE BCE ∠=∠=∠+∠A EDC ∠=∠DEC BCE ∠=∠FPE CED EDP ∠=∠+∠EPF ABC∠=∠ADF DCE∠=∠∴,∴;【小问2详解】解:∵,∵,则∴∴∵∴又∵∴,如图所示,过点作于点,连接,∵,∴,则,,∵∴∵∴又∵∴,在中,∴∴,ADF DCE ∽AF DF DE CE=EPF ABC ∠=∠DPC EPF∠=∠180FPC DPC ∠+∠=︒180FPC B ∠+∠=︒180ECB PFB ∠+∠=︒ECB AFD∠=∠AD BC∥ECB DEC∠=∠EDP FDA∠=∠ADF PDE ∽A AM BC ⊥M DG 5AB =3cos 5ABC ∠=3BM =4AM =4sin 5AM ABC AB ∠==,AD BC AD CD⊥∥4CD AM==10BC =1037AD MC BC BM ==-=-=6DE =1AE=Rt EDC 6,4ED CD ==EC ===cos DE DEC EC ∠===sin DC DEC EC ∠===∵为直径∴∴,∴,∵∴∴②过点作于点,∵∴∵∴设,,则ED 90DGE ∠=︒cos 6EG ED DEC =⨯∠==sin 6DG ED DEC =∠==sin sin DG DG PD DPG ABC ====∠∠3cos 5PG PD DPG =∠==EP EG PG =-=ADF PDE∽AF AD PE PD=215D A PE AF PD ⋅===F FR AD ⊥R EQGQ =OQ EQ⊥OQ OD=ODQ OQD∠=∠EPF ABC α∠=∠=ODQ OQD β∠=∠=90αβ+=︒∵,则设,则∴∵∴设,则,∴,在中,∴又∵∴∴【点睛】本题考查了解直角三角形,等腰梯形的性质,相似三角形的性质与判定,垂径定理,熟练掌握以上知识是解题的关键.3cos os cos 5DPG EPF ABC ∠=∠=∠=35PG PD =3,5PG k PD k ==4GD k =43tan tan 34αβ==AD BC∥RAF α∠=12FR a =9AR a =15AF a =Rt DFR 3tan 4RF DR β==16DR a=1697AD DR AR a a a =-=-=7=1a =15AF =。
合肥市2020年(春秋版)数学中考二模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 3的相反数是()A . -3B . +3C . 0.3D .2. (2分)我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人,将这个数用科学记数法表示(保留三个有效数字)约为()A . 66.6×107B . 0.666×108C . 6.66×108D . 6.66×1073. (2分)如图,直线c与a、b相交,且a∥b,则下列结论:(1)∠1=∠2;(2)∠1=∠3;(3)∠2=∠3。
其中正确的个数为()A . 0B . 1C . 2D . 34. (2分)下列各式可以写成完全平方式的多项式有()A . x2+xy+y2B . x2﹣xy+C . x2+2xy+4y2D . -x+15. (2分)(2017·吉林) 如图是一个正六棱柱的茶叶盒,其俯视图为()A .B .C .D .6. (2分)为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,那么11只饭碗摞起来的高度更接近()A . 21cmB . 22cmC . 23cmD . 24cm7. (2分)已知甲、乙两组数据的平均数均为90,方差分别是S甲2=10,S乙2=5,比较这两组数据,下列说法正确的是()A . 甲组数据较好B . 乙组数据较好C . 甲组数据的极差较大D . 乙组数据的波动较小8. (2分)已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=-1,则m的值是()A . 3或-1B . 3C . 1D . –3或19. (2分)用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第13个“口”字需用棋子颗数为()A . 52B . 50C . 48D . 4610. (2分)(2020·孝感) 如图,在四边形中,,,,,.动点沿路径从点A出发,以每秒1个单位长度的速度向点D运动.过点作,垂足为 .设点运动的时间为x(单位:),的面积为y,则y关于x的函数图象大致是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2020八下·永春月考) 计算:(﹣1)2014+(π﹣3.14)0﹣()﹣2=________.12. (1分)若无解,则a的取值范围是________.13. (1分) (2019九上·简阳期末) 鸡蛋孵化小鸡后,小鸡为雌与雄的概率相同,如果两个鸡蛋都成功孵化,则孵出的两只小鸡中都为雄鸡的概率为________14. (1分) (2019·龙湖模拟) 如图,在平行四边形ABCD中,AB<AD,∠C=150°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为________.15. (1分)如图,在中,,点为上任意一点,连接,以为邻边作平行四边形,连接,则的最小值为________.三、解答题 (共8题;共68分)16. (5分)(2019·赣县模拟) 化简:.17. (10分) (2019九上·瑞安月考) 如图Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC于点D,与AC的另一个交点E,连接DE,(1)当时,①若=130°,求∠C的度数②求证AB=AP(2)当AB=15,BC=20,时①是否存在点P,使得△BDE是等腰三角形,若存在求出所有符合条件的CP的长;________②以D为端点过P作射线D,作点0关于DE的对称点Q恰好落在∠CPH内,则CP的取值范围为。
2024年中考第二次模拟考试(山西卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)-+-⨯的结果等于()1.计算5(2)3A.11-B.1-C.1D.11【答案】A-+-⨯【解析】解:5(2)3=--56=-,11故选:A.2.以下是“双减”背景下学校社团拓展课程的相关图片,其中是中心对称图形的是()A.剪纸B.琵琶C.钢笔D.乒乓球拍【答案】A【解析】A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意;故选:A.3.下列是一位同学在课堂小测中做的四道题,如果每道题10分,满分40分,那么他的测试成绩是()(1)01π=(2)22(2)4x x +=+(3)2(2)(2)4x x x -+--=-(4)232824a b ab ab-÷=-A .40分B .30分C .20分D .10分【答案】B【解析】第(1)题,01π=,正确,得10分;第(2)题,22(2)44x x x +=++,原题解答错误,得0分;第(3)题,2(2)(2)4x x x -+--=-,正确,得10分;第(4)题,232824a b ab ab -÷=-,正确,得10分;所以这位同学的测试成绩是30分.故选B .4.如图,三位学生在做投圈游戏.他们分别站在Rt ABC △的三个顶点处,目标物放在斜边AC 的中点处.仅从数学的角度看这样的队形哪个位置的学生投中的可能性最大()A .A 处学生投中的可能性最大B .B 处学生投中的可能性最大C .C 处学生投中的可能性最大D .三位学生投中的可能性一样大【答案】D 【解析】解:依题意,他们分别站在Rt ABC △的三个顶点处,目标物放在斜边AC 的中点处.设AC 的中点为D ,则BD AD DC ==,∴三位学生投中的可能性一样大,故选:D .5.《海底两万里》是法国著名作家儒勒·凡尔纳的一部著名作品,他在小说中塑造了尼摩船长这个反对沙皇专制统治的高大形象,赋予其强烈的社会责任感和人道主义精神,以此来表达对现实的批判.如图所示是《海底两万里》中尼摩船长所发明的潜水头盔的示意图.这种头盔具有良好的抗水压性能,能使潜水工作者在水下数百米深处作业而行动自如.现将其抽象为图示的立体图形,则该头盔的俯视图为()A .B .C .D .【答案】D【解析】解:根据俯视图是由从上往下看得到的图形可得,该头盔的俯视图为故选:D .6.随着新能源电动汽车的快速增加,绵阳市正在快速推进全市电动汽车的充电桩建设,已知到2023年底,绵阳全市约有3.5万个充电桩,根据规划到2025年底,全市的充电桩数量将会达到5.04万个,则从2023年底到2025年底,全市充电桩数量的年平均增长率为()A .10%B .15%C .20%D .25%【答案】C【解析】解:设全市充电桩数量的年平均增长率为x ,根据题意得23.5(1) 5.04x +=,解得120.2, 2.2x x ==-(舍去),故全市充电桩数量的年平均增长率为20%.故选C .7.如图是物体AB 在焦距为cm a (即cm OE OF a ==)的凸透镜下成倒立放大实像的光路示意图.从点A 发出的平行于BD 的光束折射后经过右焦点F ,而经过光心O 点的光束不改变方向,最后A 点发出的光汇聚于点C ,B 点发出的光汇聚于点D ,从而得到最清晰的实像.若物距cm OB b =,则像距OD 为()cm .A .2a b a-B .2b b a -C .2b a D .ab b a-【答案】D 【解析】解:由题意得:AB OG CD ∥∥,AB OG =,ABO GOF CDO ∴∠=∠=∠,AOB COD ∠=∠,GFO CDF ∠=∠,ABO CDO ∴ ∽,GFO CDO ∽,AB OB CD OD ∴=,OG OF CD DF=, AB OG =,AB OG OB OF CD CD OD DF ∴===,设cm DF x =,则()cm OD x a =+,b a x a x∴=+,解得:2a xb a=-,经检验2a xb a=-为原分式方程的解,222a a ab a ab OD x a a b a b a b a+-∴=+===---,故选:D .8.如图,A ,B ,C ,D 是电路图中的四个接线柱,闭合开关后,灯泡不发光.小明同学用一根完好导线的两端随机触连A ,B ,C ,D 中的两个接线柱,若电流表有示数或灯泡发光,说明两个接线柱之间的电路元件存在故障.已知灯泡存在断路故障,其他元件完好,则小明触连一次找到故障(用导线触连接线柱BC )的概率为()A .12B .13C .14D .16【答案】D 【解析】解:根据题意列出表格如下:AB C D A (),A B (),A C (),A D B (),B A (),B C (),B D C (),C A (),C B (),C D D (),D A (),D B (),D C 由表可知,一共有12种情况,小明触连一次找到故障的有2种情况,∴小明触连一次找到故障的概率21126==,故选:D .9.创新驱动发展,也使人们的生活更加便捷.如图是一款手机支撑架,我们可以通过改变面板张角的大小来调节视角舒适度.小明将该支撑架放置在水平桌面上,并调节面板CD 的张角至视角舒适,若张角70BCD ∠=︒,支撑杆CB 与桌面夹角65B ∠=︒,那么此时面板CD 与水平方向夹角1∠的度数为().A .45︒B .55︒C .65︒D .70︒【答案】A 由题意可得:DE AB ∥,则65DEC B ∠=∠=︒;然后根据三角形内角和定理即可解答.【解析】解:由题意可得:DE AB ∥,∴65DEC B ∠=∠=︒,∵70BCD ∠=︒,∴118045BCD CED ∠=︒-∠-∠=︒.故选:A .10.已知四个正六边形如图摆放在图中,顶点A ,B ,C ,D ,E ,F 在圆上.若两个大正六边形的边长均为2,则小正六边形的边长是()A .33B .2312C .312D .1312-【答案】D 【解析】解:如图,连接AD 交PM 于O ,则点O 是圆心,过点O 作ON ⊥DE 于N ,连接MF ,取MF 的中点G ,连接GH ,GQ ,由对称性可知,OM =OP =EN =DN =1,由正六边形的性质可得ON =3∴OD 2213DN ON =+==OF ,∴MF 13=-1,由正六边形的性质可知,△GFH 、△GHQ 、△GQM 都是正三角形,∴FH 12=MF 1312-=,故选:D .第Ⅱ卷二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:(3622÷3312-【解析】解:原式331331 362222222-===;故答案为:331 2.12.园林设计师为公园设计了种植月季花的正方形造型:最外层种黄花,用○表示;里面种红花,用●表示.请你观察下图,当红花列数为n时,红花有()朵,黄花有()朵.【答案】2n8n【解析】解:第1个图形中红花的朵数是1,黄花的朵数是8,第2个图形中红花的朵数是4=22,黄花的朵数是16=8×2,,第3个图形中红花的朵数是9=32,黄花的朵数是24=8×3,第4个图形中红花的朵数是16=42,黄花的朵数是32=8×4,…,所以,第n个图形中红花的朵数是n2,黄花的朵数是8n,故答案为:2n,8n.13.商店里的自动扶梯在2 min内可把人送上楼.若扶梯不动,人沿扶梯走上楼需3 min.现在人沿运动的扶梯以同样的速度走上楼,则所需的时间是.【答案】1.2min【解析】解:设人走的速度为1v ,自动扶梯的速度为2v ,设人沿运动的扶梯以同样的速度走上楼,所需的时间是min t ,根据距程=速度×时间,得:自动扶梯在2min 内可把人送上楼,人通过的距离为:22s v =,扶梯不动,人沿扶梯走上楼需3min ,人通过的距离为:13s v =,人沿运动的扶梯以同样的速度走上楼,所需的时间是min t ,人通过的距离为:()12s v v t =+,2123v v ∴=,2132v v ∴=,()1123v v v t =+ ,111332v v v t ⎛⎫∴=+ ⎪⎝⎭,解得 1.2t =.故答案为:1.2min .14.如图,已知ABC 的面积为12,结合尺规作图痕迹所提供的条件可知,APC △的面积为.【答案】4【解析】连MN ,由作图知M ,N 分别为,AB BC 的中点,∴1,2MN AC MN AC = ,由等底同高三角形面积相等得1112622ACM BCM ABC S S S ==⨯=⨯= 又∵MN AC∥∴,,PAC PNM PCA PMN ∠=∠∠=∠∴ACP NMP∴12MP MN PC AC ==∴22123PC CM ==+∴226433APC ACM S S ==⨯= 故答案为:415.如图,在正方形ABCD 内有一点E ,90AEB ∠=︒.以CE ,DE 为邻边作CEDF ,连结EF ,若A ,E ,F 三点共线,且ADF △的面积为10,则CF 的长为.10【解析】解:设EF 、CD 的交点为G ,过E 作EH AD ⊥交于H ,∵四边形ECFD 是平行四边形,∴12DG CG DG ==,DE CF =,EG FG =,设正方形的边长为2x ,则2AD AB CD x ===,DG CG x ==,在Rt ADG 中,5AG x =,∵90AEB ∠=︒,∴90BAE ABE ∠+∠=︒,∵90BAE DAE ∠+∠=︒,∴ABE DAE ∠=∠,又90AEB ADG ∠=∠=︒,∴ABE GAD ∽ ,∴AB AEAG DG =5x AE x x =,∴255AE =,∴355EG x =,∴35EGAG =,∴53ADG DEGSS = ,设5ADG S m = ,则3DEG S m = ,∵EG FG =,∴3DGF DEG S S m == ,∴538ADF S m m m =+= ,∵10ADF S =△,∴810m =,∴54m =,∴22554ADG S m x === ,∴52x =,∴5AD =,5EA =∵15522ADE S HE =⨯⨯= ,∴1HE =,在Rt AHE △中,222AH AE HE =-=,∴3HD =,在Rt HED 中,10ED ∴10CF .10.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(1(2011832123-⎛⎫--- ⎪⎝⎭;(2)下面是王亮同学解方程2358224x x x +=-+-的过程,请阅读并完成相应任务.解:方程两边同乘以24x -,得()()32528x x ++-=第一步36528x x ++-=.第二步2862x =-+第三步6x =第四步经检验:6x =是原方程的解.第五步∴原方程的解是6x =第六步任务一:①以上求解过程中,第一步的依据是______;②王亮同学的求解过程从第______步开始出现错误,整个解答过程.从前一步到后一步的变形共出现______处错误:③分式方程检验的目的是______.任务二:请你直接写出这个方程的正确解______.【解析】解:(1(211832123-⎛⎫--- ⎪⎝⎭329321=--10=-;(2)任务一:①方程两边同乘以24x -,得()()32528x x ++-=,依据是等式的性质;②第二步,()()32528x x ++-=,漏乘了项,应为365108x x ++-=∴王亮同学的求解过程从第二步开始出现错误,第三步,左边35x x +应为8x 不是2x ,第四步,计算错误,应为2x =不是6x =,∴整个解答过程,从前一步到后一步的变形第二步、第三步、第四步共出现3处错误;③分式方程检验的目的是判定解是否是增根.任务二:解:方程两边同乘以24x -,得()()32528x x ++-=,365108x x ++-=.,88106x =+-,32x =,经检验:32x =是原方程的解.∴原方程的解是32x =.17.(7分)如图,在O 中,AC 是直径,DC DE EA AB BE 、、、、是弦,BE 的延长线交AF 于点F ,且,DE EA FBA FAE =∠=∠.(1)试说明直线AF 与O 的位置关系,并说明理由;(2)若2,6DE EA DC ===,求tan CAE ∠的值.【解析】(1)解:直线AF 与O 相切,理由如下:连接CE ,AC 是直径,90AEC ∴∠=︒,90EAC ECA ∴∠+∠=︒,AE AE = ,FBA ECA ∴∠=∠,90EAC FBA ∴∠+∠=︒FBA FAE ∠=∠ ,90EAC FAE ∴∠+∠=︒,即OA AF ⊥,∴直线AF 与O 相切;(2)解:连接OE ,AD 交于点G ,DE EA = ,DE EA ∴=,OG AD ∴⊥,AG DG =,OA OC = ,116322OG CD ∴==⨯=,设O 半径为r ,则3EG OE OG r =-=-,在Rt OAG △中,22222239AG OA OG r r =-=-=-,在Rt EAG △中,()()2222222343AG EA EG r r =-=--=--,()22943r r ∴-=--,解得3172r =或3172r =(舍),2317AC r ∴==+在Rt ACE 中,()2222317222617CE AC EA =-+-=+22617tan 2CE CAE EA +∴∠==18.(8分)为有效落实双减政策,切实做到减负提质,某学校在课外活动中增加了球类项目.学校计划用1800元购买篮球,在购买时发现,每个篮球的售价可以打六折,打折后购买的篮球总数量比打折前多10个.(1)求打折前每个篮球的售价是多少元?(2)由于学生的需求不同,该学校决定增购足球.学校决定购买篮球和足球共50个,每个足球原售价为100元,在购买时打八折,且购买篮球的数量不超过总数量的一半,请问学校预算的1800元是否够用?如果够用,请设计一种最节省的购买方案;如果不够用,请求出至少需要再添加多少元?【解析】(1)设打折前每个篮球的售价是x 元,则打折后每个篮球的售价是0.6x 元,由题意,得180********.6x x-=,解得120x =经检验,120x =是原方程的解,且符合题意答:打折前每个篮球的售价是120元;(2)设购买篮球m 个,则购买足球()50m -个设购买50个篮球和足球的总费用为w 元由题意,得()1200.61000.85084000w m m m =⨯+⨯-=-+80-< ∴w 随着m 的增大而减小又 150252m ≤⨯=∴当25m =时,w 取得最小值,最小值为82540003800-⨯+= 38001800>∴学校预算的1800元不够用380018002000-=(元)∴该学校至少还需要再添加2000元.19.(9分)为增强同学们的环保意识,某校八年级举办“垃圾分类知识竞赛”活动,分为笔试和展演两个阶段.已知年级所有学生都参加了两个阶段的活动.首先将成绩分为以下六组(满分100分,实际得分用x 表示):A :7075x ≤<,B :7580x ≤<,C :8085x ≤<,D :8590x ≤<,E :9095x ≤<,F :95100x ≤≤随机抽取n 名学生,将他们两个阶段的成绩均按以上六组进行整理,相关信息如下:已知笔试成绩中,D 组的数据如下:85,85,85,85,86,87,87,88,89.请根据以上信息,完成下列问题:(1)在扇形统计图中,“E 组”所对应的扇形的圆心角是________︒;(2)n =_____,并补全图2中的频数分布直方图;(3)在笔试阶段中,n 名学生成绩的中位数是_______分;(4)已知笔试和展演两个阶段的成绩是按照2:3的权重计入总成绩,总成绩在91分以上的将获得“环保之星”称号,以下为甲、乙两位同学的成绩,最终谁能获得“环保之星”称号?请通过计算说明理由.【解析】(1)“E 组”所对应的扇形的圆心角是:()360145%20%5%5%10%54︒⨯-----=︒,故答案为:54;(2)945%20n =÷=,并补全频数分布直方图如图,故答案为:20;(3)由(2)得:20n =,即抽取20名学生,即中位数排在第10,11位的平均数,为85.528586=+,故答案为:85.5;(4)甲:92289390.223⨯+⨯=+,乙:9029539323⨯+⨯=+,∵90.293<,∴乙将获得“环保之星”称号.20.(8分)山西省首座独塔悬索桥——通达桥,全长1.54公里,主桥横跨汾河,全长416m ,宽45m ,是太原新建成的一座跨河大桥,桥的主塔由曲线形拱门组成,取意“时代之门”.某数学“综合与实践”小组把“测量通达桥拱门的高度”作为一项课题活动,他们制订了测量方案,并利用课余时间完成了实地测量.测量结果如表:项目内容测量通达桥拱门的高度测量示意图及说明说明:他们利用无人机技术进行测量,AB 代表通达桥拱门,C ,D 是两个观测点,已知CD BM AB BM ⊥⊥,,A ,B ,C ,D 在同一平面内,BM 为桥面测量数据C 处的仰角D 处的俯角观测点C 距桥面的高度DC 之间的距离30︒45︒50m 200m ……任务一:请运用你所学的知识,根据上表中的测量数据,帮助“综合与实践”小组求出通达桥拱门的高度AB ;3 1.73≈2 1.41≈)任务二:请你根据所学的知识,再设计一种方案,画出示意图,并写出需要测量的量.【解析】解:任务一:如图①,延长DC 与BM 交于点N ,过点A 作AP DC ⊥于点P ,∵CDBM AB BM ⊥⊥,,∴90APN PNB ABN ∠=∠=∠=︒,∴四边形APNB 为矩形,∴AB PN =,根据题意可得903060ACP ∠=︒-︒=︒,904545ADP ∠=︒-︒=︒,50m CN =,200m DC =,在Rt APC △中,tan tan 603APACP PC ∠=︒==∴3AP =,在Rt APD 中,tan tan 451APADP DP ∠=︒==,∴3DP AP PC ==,∵200m DC =,∴200m PC PD +=,∴3200m PC PC +=,∴)2001003173m13PC ==-≈+∵50m CN =,∴7350123m AB PN PC CN ==+=+=,∴通达桥拱门的高度AB 约为123m;任务二:测量方案如图②所示,需要测量的数据有ACB ∠的度数,ADC ∠的度数,DC 之间的距离.解Rt ABC △可得tan AB BC ACB =∠,解Rt △ABD 可得tan AB BD ADB =∠,则tan tan AB AB CD BC BD ACB ADB=+=+∠∠,∴需要测量的数据有ACB ∠的度数,ADC ∠的度数,DC之间的距离.21.(8分)阅读以下材料,并按要求完成相应的任务.数学对物理学的发展起着重要的作用,物理学也对数学的发展起着重要的作用,莫尔斯所说:“数学是数学,物理是物理,但物理可以通过数学的抽象而受益,而数学则可以通过物理的见识而受益.”以下是数学中常见的一个问题:若2a b +=,则ab 的最大值是多少?设1a x =+,1b x =-,则22(1)(1)11ab x x x x =+-=-=-+.……以下是物理中的一个问题:物理学中的电路分为串联电路和并联电路,已知电路中有大小分别为1R 和2R 的两个电阻,串联电路的电阻公式为12R R R =+,并联电路的电阻公式为12111R R R =+.在某一段电路上测得两个电阻的和为15kΩ.若根据实际需要把这两个电阻并联在一起,则并联后总电阻的最大值是多少?任务:(1)按照上面的解题思路,完成数学问题的剩余部分.(2)若a ,b 两数的和为定值,则a ,b 满足______时,ab 的值最大.(3)解决这个物理问题主要体现的数学思想是______.(填序号即可)A .统计思想B .分类思想C .模型思想(4)物理问题中并联后总电阻的最大值是______k Ω.【解析】(1)解:按照上面的解题思路,完成数学问题的剩余部分如下:∵10-<,∴当1x =时,ab 取最大值,最大值为1;(2)令a ,b 两数的和为定值m ,设2m a x =+,2m b x =-,则22224m m m ab x x x ⎛⎫⎛⎫=+-=-+ ⎪⎪⎝⎭⎝⎭,∴当0x =时,ab 取最大值为24m ,此时2m a b ==,∴若a ,b 两数的和为定值,则a ,b 满足a b =时,ab 的值最大.故答案为:a b =;(3)解决这个物理问题主要体现的数学思想是模型思想.故选:C ;(4)由以上结论可知,当12R R =时,12R R 取最大值,∴1221212121111515415152R R R R R R R R R +=+====⎛⎫ ⎪⎝⎭,∴15 3.75k 4R ==Ω.故答案为:3.75.22.(12分)问题背景:点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,试判断BE ,EF ,DF之间的数量关系.小云同学的思路是过点A 作AG AE ⊥,交CD 的延长线于点G ,如图1,通过这种证明方法,可发现上述线段BE ,EF ,DF 的数量关系为________(直接写出结果);变式迁移:如图2,在菱形ABCD 中,=60B ∠︒,点E ,F 分别在BC ,CD 上,且1BE =,3DF =,若60EAF ∠=︒,求EF 的长;拓展应用:如图3,在ABC 中,45BAC ∠=︒,AD BC ⊥于D ,6BD =,4CD =,直接写出AD 的长为________.【解析】解:EF BE DF =+;证明:如图1,过点A 作AG AE ⊥,交CD 的延长线于点G .∵四边形ABCD 为正方形,AG AE ⊥,∴90B BAD EAG ADC ∠=∠=∠=∠=︒,AB AD =,∴,90BAE DAG B ADG ∠=∠∠=∠=︒,∴ABE ADG △≌△,∴AE AG =,BE DG =,∵90EAG ∠=︒,45EAF ∠=︒,∴45EAF GAF ∠=∠=︒,∵AF AF =,∴EAF GAF △≌△,∴EF GF =,∴EF GF GD DF BE DF ==+=+,即EF BE DF =+.故答案为:EF BE DF=+变式迁移:如图2,连AC ,过点A 作AM CD ⊥于点M .∵四边形ABCD 为菱形,∴AB BC =,180B BCD ∠+∠=︒,∵=60B ∠︒,∴ABC 为等边三角形,∴AB AC =,60BAC ACB ∠=∠=︒,∴60BAE EAC CAF ∠=︒-∠=∠,60ACF ∠=︒,∴ABE ACFV V ≌∴1BE CF ==,AE AF =,∴4AD AC CD CF DF ===+=,∵AM CD ⊥,∴122CM CD ==,在Rt ACM 中,2223AM AC CM =-=∵2,1CM CF ==,∴1MF =,在Rt ACM 中,2213AF AM FM =+,又∵AE AF =,60EAF ∠=︒,∴AEF △为等边三角形,∴13EF AF ==拓展应用:如图3,以AB 为对称轴作ABD △的轴对称图形ABE ,以AC 为对称轴作ACD 的轴对称图形ACF △,延长EB 、FC 交于点G .∵AD BC ⊥,由轴对称的性质得90,E ADB F ADC AE AD AF ∠=∠=∠=∠=︒==,,EAB DAB FAC DAC ∠=∠∠=∠,6,4BE BD CF CD ====,∵45BAC ∠=︒,∴90EAF ∠=︒,∴四边形AEGF 是正方形,∴90G ∠=︒,设AD x =,则AE AF EG FG x ====,∴6,4BG x CG x =-=-,在Rt BGC △中,根据勾股定理得()()()2226464x x -+-=+,解得1212,2x x ==-(不合题意,舍去),∴12AD =.故答案为:1223.(13分)如图,抛物线294y ax x c =++与x 轴相交于点()1,0A -和点B ,与y 轴相交于点()0,3C ,作直线BC.(1)求抛物线的解析式;(2)若在直线BC 上方的抛物线上有一动点P ,连接OP 交直线BC 于点D ,若:3:4PCD OCD S S =△△,求点P 的坐标;(3)若在直线BC 上方的抛物线上存在点Q ,使2QCB ABC ∠=∠,求点Q 的坐标.【解析】(1)解:把()1,0A -,()0,3C 代入抛物线解析式294y ax x c =++中得9043a c c ⎧=-+⎪⎨⎪=⎩,解得343a c ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为239344y x x =-++.(2)解:如图所示,过点D 作DE x ⊥轴于E ,过点P 作PF x ⊥轴于F ,∵:3:4PCD OCD S S =△△,∴:4:7OCD OCP S S =△△,∴142172OC DE OC PF ⋅=⋅,∴47DEPF =;在239344y x x =-++中,当2393044y x x =-++=时,解得=1x -或4x =,∴()40B ,,设直线BC 解析式为y kx b '=+,∴403k b b ''+=⎧⎨=⎩,∴343k b ⎧=-⎪⎨⎪=⎩',∴直线BC 解析式为334y x =-+,设()433D m m -+,,∴4337DE m OE m PF m ==-+=,,,∴2147637344P m m m ⎛⎫-++ ⎪⎝⎭,,∴214763344OF m m =-++,∵DE OF PF OF ⊥,⊥,∴DE PF ∥,∴OED OFP △∽△,∴47OEDE OF PF ==,∴2334147637344m m m -+=-++,∴214763122121m m m -++=-+,∴21478490m m -+=,∴()()732130m m --=,解得37m =或17m =,∴点P 的坐标为()33,或912⎛⎫⎪⎝⎭,;(3)解:如图,过点C 作CE x ∥轴交抛物线与点E ,过点Q 作QH CE ⊥与于点H ,CE x ∥ 轴,ABC BCE ∴∠=∠,2QCB QCE BCE ABC ∠=∠+∠=∠ ,QCE ABC ∴∠=∠,90QHC BOC ∠=∠=︒ ,CHQ BOC ∴ ∽,QHCHOC OB ∴=,设239,344Q t t x ⎛⎫-++ ⎪⎝⎭,()0,3C ,3OC ∴=,23944QH t t ∴=-+,2394434t t t -+∴=,解得:2t =或0=t (舍)23993442t x ∴-++=,∴点Q 的坐标为92,2⎛⎫⎪⎝⎭.。
河南省中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。
)1.﹣2的倒数是()A.2 B.C.﹣2 D.﹣2.已知一个几何体的三种视图如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.正方体3.下列运算中,结果正确的是()A.(a3)2=a6B.(ab)3=a3b C.a•a3=a3D.a8÷a4=a24.如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30°B.35°C.40°D.50°5.估算的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数B.方差C.平均数D.中位数7.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,在▱ABCD中,E为AD的三等分点,AE=AD,连接BE交AC于点F,AC=12,则AF为()A.4 B.4.8 C.5.2 D.69.星期天,小明从家出发,以15千米/小时的速度骑车去郊游,到达目的地休息一段时间后原路返回,已知小明行驶的路程s(千米)与时间t(小时)之间的函数关系如图所示,则小明返程的速度为()A.15千米/小时B.10千米/小时C.6千米/小时D.无法确定10.如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O 交于点E,则下列结论中不一定正确的是()A.AC⊥BC B.BE平分∠ABC C.BE∥CD D.∠D=∠A二、填空题(本小题共5小题,每小题3分,共15分)11.计算:2﹣2﹣= .12.写出一个二次函数解析式,使它的图象的顶点在y轴上:.13.课外活动中,九(1)班准备把全班男生随机分成两个小组进行拔河比赛,则甲、乙、丙三位同学恰好被分在同一小组的概率为.14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:(﹣)÷,其中实数a,b满足(a﹣2)2+|b﹣2a|=0.17.每年的3月22日为联合国确定的“世界水日”,某社区为了宣传节约用水,从本社区1000户家庭中随机抽取部分家庭,调查他们每月的用水量,并将调查的结果绘制成如下两幅尚不完整的统计图(每组数据包括右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是;(2)补全频数分布直方图,求扇形图中“6吨﹣﹣9吨”部分的圆心角的度数;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社会用户中约有多少户家庭能够全部享受基本价格?18.如图,△ABC是半径为2的⊙O的内接三角形,连接OA、OB,点D、E、F、G分别是CA、OA、OB、CB的中点.(1)试判断四边形DEFG的形状,并说明理由;(2)填空:①若AB=3,当CA=CB时,四边形DEFG的面积是;②若AB=2,当∠CAB的度数为时,四边形DEFG是正方形.19.某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)20.如图,直线y=﹣x+b与反比例函数y=的图形交于A(a,4)和B(4,1)两点.(1)求b,k的值;(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y=的值时,直接写出自变量x 的取值范围;(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.21.某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?22.如图1,四边形ABCD是正方形,点E是AB边的中点,以AE为边作正方形AEFG,连接DE,BG.(1)发现①线段DE、BG之间的数量关系是;②直线DE、BG之间的位置关系是.(2)探究如图2,将正方形AEFG绕点A逆时针旋转,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)应用如图3,将正方形AEFG绕点A逆时针旋转一周,记直线DE与BG的交点为P,若AB=4,请直接写出点P到CD所在直线距离的最大值和最小值.23.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(﹣1,0),与y轴交于点C(0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m 的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题具有四个答案,其中只有一个是正确的。
2024年初中毕业、升学模拟考试试卷数学试题注意事项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟,考试结束后,请将本试卷和答题纸一并交回.2.答题前,请务必将自己的姓名、智学号用0.5毫米黑色字迹的签字笔填写在试卷及答题纸指定的位置.3.答案必须按要求填涂、书写在答题纸上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 在,,,四个数中,比大的数是()A. B. C. D.【答案】D解:,,,,而,,即比大的数是;故选:D.2. 据报道,2024年4月26日05时04分,在轨执行任务的神舟十七号航天员乘组打开舱门,迎接神舟十八号航天员乘组入驻距离地表约米的中国空间站——“天宫”.数用科学记数法表示为()A. B. C. D.【答案】B解:,故选:B.3. 下列几何体中,三视图都是圆的是()A. 圆柱B. 圆锥C. 球D. 正方体【答案】C解:由题意知,圆柱的三视图为圆和长方形,故A不符合要求;圆锥的三视图为带圆心的圆和三角形,故B不符合要求;球的三视图均为圆,故C符合要求;正方体的三视图均为正方形,故D不符合要求;故选:C.4. 下列运算正确的是()A. B. C. D.【答案】A解:A.,正确,故此选项符合题意;B.与不是同类项,无法合并,故此选项不符合题意;C.,故此选项不符合题意;D.∵,,∴,故此选项不符合题意;故选:A.5. 下列调查中,适宜全面调查的是( )A. 了解某班学生的视力情况B. 调查某批次汽车的抗撞击能力C. 调查某城市老年人2020年的日均锻炼时间D. 某鞋厂检测生产的鞋底能承受的弯折次数【答案】A解:.了解某班学生的视力情况,适合使用全面调查,因此选项符合题意;.调查某批次汽车的抗撞击能力,不可以使用全面调查,适用抽样调查,因此选项不符合题意;.调查某城市老年人2020年的日均锻炼时间,适用抽样调查,因此选项不符合题意;.某鞋厂检测生产的鞋底能承受的弯折次,适用抽样调查,因此选项不符合题意;故选:A.6. 如图,小明用一副三角板拼成一幅“帆船图”.,,,,则的度数为()A. B. C. D.【答案】C解:由题意知,,,∵,∴,∴,故选:C.7. 《周髀算经》中记载了“偃矩以望高”的方法,“矩”在古代指两条边呈直角的曲尺(即图中的),“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A,B,E在同一水平线上,,与相交于点D.测得,,,则树高是()A. B. C. D.【答案】B解:∵,,∴,∴,即,∴,故选:B.8. 已知,,将线段平移得到线段,其中,点A的对应点为点C,若,,则的值为()A. B. 1 C. D. 5【答案】D解:与C对应,B与D对应,平移是向右平移2个单位长度,向下平移3个单位长度,,;故选:D.9. 如图,在菱形中,,点P是上一点(不与端点重合),点A关于直线的对称点为E,连接,,则的度数为()A. B. C. D.【答案】D解:连接,如图:由点A关于直线的对称点为E,得:,为等腰三角形,故,由菱形可得,,,,在四边形中,由内角和为得,,由,得,,,,即,故选:D.10. 定义:如果两个实数m,n满足,则称m,n为一对“互助数”.已知a,b为实数,且,是一对“互助数”.若,则p的值可以为()A. B. 6 C. D. 3【答案】A首先根据题意得到,求出,由得到,然后代入,解不等式组求解即可.∵,是一对“互助数”∴去分母得,∵∴∴∵∴∴∴整理得,∴或∴或∴解得或但当时,,,不符合题意,所以或,∴p的值可以为.故选:A.二、填空题(本大题共8小题,第11-12题每小题3分,第13-18题每小题4分,共30分,不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11. 分解因式:3ax2+6axy+3ay2=_____.【答案】3a(x+y)2.解:3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2.故答案为3a(x+y)2.12. 若圆锥的母线为6,底面圆的半径为3,则此圆锥的侧面积为________.【答案】18π解:依题意知母线长=6,底面半径r=3,则由圆锥的侧面积公式得S=πrl=π×3×6=18π.故答案为:18π.13. 计算:________.【答案】0解:==0故答案为:0.14. 若a,b为连续整数,且,则____________.【答案】11解:,,,,,故答案为:11.15. 如图,在中,,,分别以点,为圆心,大于的长为半径画弧,两弧分别相交于,两点,画直线交于点,连接,则的度数为____________.【答案】解:∵分别以点,为圆心,大于的长为半径画弧,两弧分别相交于,两点,∴垂直平分,∴,∴,∵,,∴,∴,故答案为:.16. 中国古代数学家杨辉的田亩比数乘除减法中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步”?翻译成数学问题是:一块矩形田地的面积为平方步,它的宽比长少步,问它的长与宽各多少步?利用方程思想,设长为步,则依题意列方程为______.【答案】根据矩形的长为x,宽为,利用矩形面积公式列方程即可.∵矩形长为x,宽比长少12,∴宽为,∵矩形面积为864,∴,故答案:.17. 如图,的顶点在反比例函数的图象上,顶点在轴的负半轴上,点为边的中点,若反比例函数的图象经过点C,E,则与的关系为____________.【答案】解:∵中,,∴点和点纵坐标相同,∵点在反比例函数上,点在反比例函数上,设,则,∴,∴,∵点为边的中点,∴点坐标为,即,∵点在反比例函数上,∴,化简得,故答案为:.18. 如图,在四边形中,,,.作,垂足为点M,连接,若,则的最小值为____________.【答案】解:如图,过D作的平行线,过A作的平行线,两平行线交于点E,即,四边形是平行四边形;,四边形是矩形,,,;连接,则当点M与的交点重合时,最小,从而最小,且最小值为线段的长;过C作,交延长线于点F,则,四边形是矩形,,,;在中,由勾股定理得,最小值为.故答案为:.三、解答题(本大题共8小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (1)解不等式组:(2)化简求值:,其中.【答案】(1);(2),解:(1)解不等式①得:,解不等式②得:,∴不等式组的解集为;(2)解:原式,当时,原式.20. 如图,点A,F,C,D一条直线上,,,.(1)求证:;(2)若,,求的长.【答案】(1)见解析(2)∵,,∴,.∵,∴.∴;【小问2】∵,∴.∴.即.∵,,∴.∴.∴.21. 移动支付由于快捷便利已成为大家平时生活中比较普遍的支付方式.某商店有“微信”和“支付宝”两种移动支付方式,甲、乙、丙三人在该商店购物时随机从这两种支付方式中选择一种支付.(1)甲选择“微信”支付的概率为____________;(2)求三人选择同一种支付方式的概率.【答案】(1)(2)【小问1】解:∵某商店有“微信”和“支付宝”两种移动支付方式,∴甲选择“微信”支付的概率为;【小问2】分别设“微信”和“支付宝”为A和B画树状图如下:∴一共有8种等可能得结果,其中三人选择同一种支付方式的结果有2种∴三人选择同一种支付方式的概率为.22. 某校举办“绿色低碳,美丽中国”主题作品展活动,五名评委对每组同学的参赛作品进行打分.对参加比赛的甲、乙、丙三个组参赛作品得分(单位:分)的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两组参赛作品得分的折线图:b.在给丙组参赛作品打分时,三位评委给出的分数分别为85,92,95,其余两位评委给出的分数均高于85;c.甲、乙、丙三个组参赛作品得分的平均数与中位数:甲组乙组丙组平均分88m90中位数n9292根据以上信息,回答下列问题:(1)填空:____________,____________;(2)若某组作品评委打分的5个数据的方差越小,则认为评委对该组作品的评价越“一致”.据此推断:对于甲、乙两组的参赛作品,五位评委评价更“一致”的是____________组(填“甲”或“乙”);(3)该校现准备推荐一个小组的作品到区里参加比赛,你认为应该推荐哪个小组,请说明理由·【答案】(1)90,86(2)乙(3)推荐丙小组,理由见解析【小问1】乙组平均数,甲组得分按从小到大排列为82,83,86,94,95,故中位数,故答案为:90,86;【小问2】甲组方差为,乙组方差为,∴乙组方差更小,∴对于甲、乙两组的参赛作品,五位评委评价更“一致”的是乙组,故答案为:乙.【小问3】推荐丙小组;理由:乙、丙两组的平均分高于甲组,所以可以在乙组或丙组中选一组,而乙组与丙组的平均分与中位数及最高分都相同,但丙组的最低分更高,所以推荐丙组去.23. 如图,是的直径,,是的两条切线,切点分别为A,B,,垂足为E,交于点D,连接.(1)求证:;(2)若,,求阴影部分的面积.【答案】(1)见解析(2)【小问1】解:∵与相切,∴.∵,∴.∴.∴.∵,∴,∴,∴;【小问2】解:如图,连接,过点O作.∵,∴.∵,∴为等边三角形.∴,.∵.∴.∴.∵与相切,∴.∵,,∴四边形为矩形.∴,.∴,,.∴,∴阴影部分面积为.24. 为了满足市场需求,提高生产效率,某工厂决定购买10台甲、乙两种型号的机器人来搬运原材料,甲、乙两种型号的机器人的工作效率和价格如下表:型号甲乙效率(单位:千克/时)m每台价格(单位:万元)46已知甲型机器人搬运500千克所用时间与乙型机器人搬运750千克所用时间相等.(1)求m的值;(2)若该工厂每小时需要用掉原材料710千克,则如何购买才能使总费用最少?最少费用是多少?【答案】(1)90(2)当购买方案为甲型6台,乙型4台时,最少费用为48万元【小问1】由题意列方程,得.解得.检验:当时,.所以原分式方程的解为.答:m的值为90;【小问2】设总费用为w万元,购买甲型号的机器人x台,则乙型号的机器人为台,则.∵,∴.∵,∴w随x的增大而减小.∴当时,w取得最小值,最小值为48万元.∴当购买方案为甲型6台,乙型4台时,最少费用为48万元.25. 在数学活动课上,老师给同学们提供了一个矩形纸片,其中,,要求各小组开展“矩形的折叠”探究活动.【操作猜想】(1)甲小组给出了下面框图中的操作及猜想:甲小组的操作与猜想操作:如图,在,上分别取一点N,M,将沿直线翻折,得到.猜想:当时,.请判断甲小组的猜想是否正确,并说明理由;【深入探究】(2)如图2,乙小组按照甲小组的方式操作发现,当时,点E恰好落在矩形的对角线上.请求出图中线段的长度;【拓广延伸】(3)丙小组按照甲小组的过程操作,进一步探究并提出问题:当时,过点E作交射线于点F,若,则的长是多少?请解答这个问题.【答案】(1)正确,理由见解析;(2);(3)或解:(1)甲小组的猜想正确.理由:∵四边形为矩形,∴,∴,∵折叠,∴,又∵,∴,∴;(2)在中,,,∴,∵折叠,∴,,由(1)可知,∴,,∴,∴,∴,同理,;(3)当点E在下方时,如图1,延长交于点H,同(2)可证.∴,∵,∴.∴.∴,由(1)可得,∴.∵,∴.设,则,∴,,∴,∴,∴,∴,∴;②当点E在下方时,设交于点H,如图2.同①可得,.∴.∴,∴,∴,∴;综上或.26. 在平面直角坐标系中,以A为顶点的抛物线与直线有两个公共点M,N,其中,点M在x轴上.直线与y轴交于点B,点B关于点A的对称点为C.(1)用含k的式子分别表示点B,N的坐标为:B____________,N____________;(2)如图,当时,连接,.求证:平分;(3)若函数的图象记为,将其沿直线翻折后的图象记为,当,两部分组成的图象与线段恰有一个公共点时,请确定k的取值范围.【答案】(1),(2)见解析(3)或【小问1】根据直线与y轴交于点B,令,得∴点,根据题意,得,解得,∴交点坐标分别为,∵点M在x轴上.∴点,故答案为:,.【小问2】∵抛物线,∴,解得,∴抛物线与x轴的交点为,∴,∵,∴,根据(1),得,,∵点B关于点A的对称点为C,,∴,设直线的解析式为,∴.∴,∵,∴,∴,故直线的解析式为,∴不论k为何值,直线过定点,∴点在直线上.∴平分;【小问3】设图象上的任意一点,图象上的任意一点,根据题意,得,,解得,∴即图象的解析式为,当时,图象的解析式为经过点B时,图象,图象与线段有唯一交点,∴满足解析式,∴,解得(舍去),经过点M时,图象,图象与线段有唯一交点,∴满足解析式,∴,解得(舍去)∴;当时,当时,图象,图象与线段没有交点,当时,图象,图象与线段有M,B两个交点,不符合题意;∴当时,图象与线段有两个交点,不符合题意;∴时,图象与线段有一个交点,∴,故,∴,综上所述,符合题意的范围是或.。
海口市2021版中考数学二模考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共16个小题,共42分,1~10小题,每小题3 (共16题;共40分)1. (3分) (2019七上·杭州期末) 下列各式的值一定是正数的是()A .B .C .D .2. (3分) (2017七下·东城期末) 如图,为估计池塘岸边A,B的距离,小明在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离可能是()A . 30米B . 25米C . 20米D . 5米3. (2分) (2020七下·邛崃期末) 下列说法.正确的个数有()① 三角形具有稳定性;② 如果两个角相等,那么这两个角是对顶角;③ 三角形的角平分线是射线;④ 直线外一点到这条直线的垂线段叫做这点到直线的距离;⑤ 任何一个三角形都有三条高、三条中线、三条角平分线;⑥ 三角形的三条角平分线交于一点,且这点在三角形内;A . 2B . 3C . 4D . 54. (2分)如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是()A . 2B . 3C . 4D . 55. (3分)据《宁波市休闲旅游基地和商务会议基地建设五年行动计划》预计到2012年,宁波市接待游客容量将达到4640万人次.其中4640万人次用科学记数法可表示为()人次。
A . 0.464×109B . 4.64×108C . 4.64×107D . 46.4×1066. (3分)化简的结果是()A . 4aB . 16C . 2aD . 2|a|7. (3分)要了解全区八年级学生身高在某一范围内的学生所占比例的大小,需知道相应的样本的()A . 平均数B . 频率C . 众数D . 方差8. (3分)如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()A . 7.5°B . 10°C . 15°D . 18°9. (3分)若÷ 等于3,则x等于()A .B . ﹣C . 2D . ﹣210. (3分) (2018八下·东台期中) 已知四边形ABCD是平行四边形,下列结论中不正确的是()A . 当AB=BC时,它是菱形B . 当AC=BD时,它是正方形C . 当∠ABC=90°时,它是矩形D . 当AC⊥BD时,它是菱形11. (2分)|a-|+(b+1)2=0,则ab的值是()A . -B .C .D .12. (2分) (2019八上·遵义月考) 如图,已知,,,且、、在同一直线上,且,,则的长为()A .B .C .D . 不确定13. (2分)若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过A . 第一、三象限B . 第一、二象限C . 第二、四象限D . 第三、四象限14. (2分) (2015九上·盘锦期末) 已知k是不等于0的常数,反比例函数与二次函数在同一坐标系的大致图象如图,则它们的解析式可能分别是()A . y=﹣,y=﹣kx2+kB . y= ,y=﹣kx2+kC . y= ,y=kx2+kD . y=﹣,y=﹣kx2﹣k15. (2分)(2020·长沙) 2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day)”国际数学日之所以定在3月14日,是因为3.14与圆周率的数值最接近的数字,在古代,一个国家所算的的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展的水平的主要标志,我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠,该成果领先世界一千多年,以下对圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆大小有关的常数,它等于该圆的周长与半径的比;其中正确的是()A . ②③B . ①③C . ①④D . ②④16. (2分)(2020·北京模拟) 如图,直线直线分别与,交于点,,,且与的平分线交于,若,则的度数是()A . 35°B . 30°C . 55°D . 20°二、填空题 (本大题有3个小题,共12分,17~18小题各3分; (共3题;共11分)17. (3分) (2019七上·永定月考) 已知和是同类项,则∣2-4x∣+∣4y-1∣的值为________.18. (2分)(2018·凉州) 已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为________.19. (6分) (2019七上·江苏期中) 一只小虫在数轴上从A点出发,第1次向正方向爬行1个单位后,第2次向负方向爬行2个单位,第3次又向正方向爬行3个单位……按上述规律,它第2018次刚好爬到数轴上的原点处,求小虫爬行的起始位置A点所表示的数________.三、解答题(本大题有7个小题,共66分。
2023年河北省唐山市路南区中考数学二模试卷一、选择题(本大题共16小题,共42.0分。
在每小题列出的选项中,选出符合题目的一项)1. −(+3)=( )A. −3B. 3C. −2D. 12.如图,用圆规比较两条线段的大小,其中正确的是( )A. A′B′>A′C′B. A′B′=A′C′C. A′B′<A′C′D. 不能确定3.如图,数轴上的两个点分别表示数a和−2,则a可以是( )A. −3B. −1C. 1D. 24.如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=( )A. 2B. 3C. 4D. 55. 已知a、b都是正整数,若18=a2,8=2b,则( )A. a=bB. a<bC. a+b=4D. a−b=16. 如图,将线段AB绕点A旋转,下列各点能够落到线段AB上的是( )A. 点CB. 点DC. 点ED. 点F7. 由棱长为1的小正方体组成新的大正方体,如果不允许切割,至少要几个小正方体( )A. 4个B. 8个C. 16个D. 27个8. 能与−(34−65)相加得0的是( )A. −34−65B. 65+34C. −65+34D. −34+659. 如图,数轴上的点A 、B 分别表示数1、−2x +3,则表示数−x +2的点P 与线段AB 的位置关系是( )A. P 在线段AB 上B. P 在线段AB 的延长线上C. P 在线段BA 的延长线上D. 不能确定10. 若x <y ,且(a−3)x >(a−3)y ,则a 的取值范围是( )A. a <3B. a >3C. a ≥3D. a ≤311. 设“●”“■”“▲”分别表示不同的物体,如图所示,前两架天平保持平衡,如果要第三架天平也平衡,那么“?”处应放“■”的个数为( )A. 5B. 4C. 3D. 212.如图,从笔直的公路l 旁一点P 出发,向西走4km 可到达公路l上的A 点;从点P 出发沿与l 垂直的方向走4km 可到达点P 关于公路l的对称点B 点;从点P 出发向正北方向走到l 上,需要走的路程是( )A. 2kmB. 2.5kmC. 4 33kmD. 432km 13. 对于点P (2a 3b ,23)和直线l :y =x ,下列说法正确的是( )A. 若a =b =0,则l 经过点PB. 若a =b =2,则l 不经过点PC. 若a =3,b =1,则点P 在l 上方D. 若a =2,b =1,则点P 在l 下方14. 我国古代《孙子算经》记载“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”意思是说“每三人共乘一辆车,最终剩余2辆车;每2人共乘一辆车,最终有9人无车可乘,问人和车的数量各是多少?”则下列结论正确的是(( )A. 设共有x 人,根据题意得:x 3−2=x−92B. 共有37人C. 设共有车y 辆,根据题意得:3(y +2)=2y +9D. 共有15辆车15. 在数据4,5,6,5中去掉n (n >0)个数据,若平均数没有发生变化,则n 的值是( )A. 1或3B. 2或3C. 1或2或3D. 1或216. 如图,已知A B 的半径为5,所对的弦AB 长为8,点P 是A B 的中点,将A B 绕点A 逆时针旋转90°后得到A B ′,三位同学提出了相关结论:嘉嘉:点P 到AB 的距离为2淇淇:AP 的长为2 3嘉淇:线段AP 扫过的面积为2 5π下列结论正确的是( )A. 嘉嘉对,淇淇错B. 淇淇对,嘉淇错C. 嘉嘉错,嘉淇错D. 淇淇错,嘉淇对二、填空题(本大题共3小题,共12.0分)17. 已知b 4=b ×8,则b = ______ ,b 的倒数为______ .18. 四边形具有不稳定性:如图,将面积为5的矩形“推”成面积为4的平行四边形,则cosα的值为______ ;若α=30°,则平行四边形的面积为______ .19. 如图,在平面直角坐标系xOy中,等边△AOB的顶点A在第一象限,点B(3,0),双曲线y=k(k>0,x>0)把△AOB分成两部分.x(1)双曲线与边OA,AB分别交于C,D两点,若OC=2,点D的横坐标为______ ;(2)连接CD,则△ACD的面积为______ .三、解答题(本大题共7小题,共66.0分。
中考数学二模试卷A卷
一、选择题 (共8题;共16分)
1. (2分)能说明“对于任何实数a,”是假命题的一个反例可以是()
A .
B .
C .
D .
2. (2分)计算:(-2)2 015· 等于()
A . -2
B . 2
C . -
D .
3. (2分)下列交通标志“慢性通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中,不是中心对称图形但是轴对称图形的是()
A .
B .
C .
D .
4. (2分)若关于x的不等式组无解,则a的取值范围为()
A . a<4
B . a≥4
C . a≤4
D . a>4
5. (2分)一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小华在袋中放入10个除颜色外其它完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发现,摸到白球的频率是,则袋中红球约为()个.
A . 4
B . 25
C . 14
D . 35
6. (2分)由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()
A . 4
B . 5
C . 6
D . 7
7. (2分)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()
A .
B . 2
C .
D . 3
8. (2分)定义:在同一平面内,如果矩形ABCD的四个顶点到⊙M上一点的距离相等,那么称这个矩形ABCD是⊙M的“伴侣矩形”.如图,在平面直角坐标系xOy中,直线l:y= x﹣3交x轴于点M,⊙M的半径为2,矩形ABCD沿直线运动(BD在直线l上),BD=2,AB∥y轴,当矩形ABCD是⊙M的“伴侣矩形”时,点C的坐标为()
A . (﹣,﹣)
B . (﹣,﹣)
C . (﹣,﹣)或( + ,﹣)
D . (﹣,﹣)或( + ,)
二、二.填空题 (共8题;共8分)
9. (1分)大家翘首以盼的南京地铁号线将于年春节前开通,它从龙江站到仙林湖站线路长度千米.则数据用科学记数法表示为________.
10. (1分)设m是方程x2﹣3x+1=0的一个实数根,则 =________.
11. (1分)函数中,自变量x的取值范围是________.
12. (1分)如图,已知抛物线y=x2+2x﹣3,把此抛物线沿y轴向下平移,平移后的抛物线和原抛物线与经过点(﹣4,0),(2,0)且平行于y轴的两条直线所围成的阴影部分的面积为s,平移的距离为m,则s与m的函数关系式为________ (不写自变量取值范围).
13. (1分)如图,四边形ABCD,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为________ .
14. (1分)如图,已知△ABC中,∠BAC=90°,AB=AC=6.D为BC边一点,且BD∶DC =1∶2,以D为一个顶点作正方形DEFG,且DE=BC,连接AE,将正方形DEFG绕点D旋转一周,在整个旋转过程中,当AE取得最大值时AG的长为________
15. (1分)如图,在△ABC中,AB=AC=6,中线CE=5.延长AB到点D,使BD=AB,则CD的长________.
16. (1分)如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB沿射线OC方向平移个单位,则平移后直线的解析式为________。
三、解答题 (共10题;共94分)
17. (5分)计算:(﹣)2+﹣2sin45°﹣|1﹣|.
18. (7分)在边长为1的小正方形网格中,△AOB的顶点均在格点上.
(1)B点关于y轴的对称点坐标为________;
(2)将△AOB向左平移3个单位长度得到△A1O1B1 ,请画出△A1O1B1;
(3)在(2)的条件下,A1的坐标为________.
19. (15分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:
项目月功能费基本话费长途话费短信费
金额/元550
(1)请将表格补充完整;
(2)请将条形统计图补充完整;
(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?
20. (10分)小强的钱包内有10元钱、20元钱和50元钱的纸币各1张.
(1)若从中随机取出1张纸币,求取出纸币的金额是20元的概率;
(2)若从中随机取出2张纸币,求取出纸币的总额可购买一件51元的商品的概率.
21. (10分)如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O交边BC于点D,过点D作DE⊥AC交AC于点E,延长ED交AB的延长线于点F.
(1)求证:DE是⊙O的切线;
(2)若AB=8,AE=6,求BF的长.
22. (5分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间
工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
23. (5分)如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)
24. (15分)为积极支持鄂州市创建国家卫生城市工作,某商家计划从厂家采购A,B 两种清洁产品共20件,产品的采购单价(元/件)是采购数量(件)的相关信息如下表所示.采购数量(件)246…
A产品单价(元)146014201380…
B产品单价(元)128012601240…
(1)设B产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;
(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且B产品采购单价不高于1250元,求该商家共有几种进货方案?
(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大?并求最大利润.
25. (7分)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.
(1)连结BE,CD,求证:BE=CD;
(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.
①当旋转角为________度时,边AD′落在AE上;
②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.________
26. (15分)如图,抛物线与直线交于A,B两点,交x轴于D,C两点,已知, .
(1)求抛物线的函数表达式并写出抛物线的对称轴;
(2)在直线AB下方的抛物线上是否存在一点E,使得的面积最大?如果存在,求出E点坐标;如果不存在,请说明理由.
(3)为抛物线上一动点,连接PA,过点P作交y轴于点Q,问:是否存在点P,使得以A、P、Q为顶点的三角形与相似?若存在,请直接写出所有符合条件的P点的坐标;若不存在,请说明理由.
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、二.填空题 (共8题;共8分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共10题;共94分)
17-1、
18-1、
18-2、
18-3、
19-1、
19-2、
19-3、
20-1、
20-2、
21-1、
21-2、22-1、
23-1、
24-1、24-2、
24-3、25-1、
25-2、26-1、
26-2、
26-3、。