AB是一般位置直线;EF是侧垂线;
CD是侧平线;KL是铅垂线。
2、作下列直线的三面投影:
(1)水平线AB,从点A向左、向前,β=30°,长18。
(2)正垂线CD,从点C向后,长15。
●该题主要应用各种位置直线的投影特性进行做题。(具体参见教P73~77)
3、判断并填写两直线的相对位置。
●该题主要利用两直线的相对位置的投影特性进行判断。(具体参见教P77)
6、用直角三角形法求直线AB的真长及其对H面、V面的倾角α、β。
●用直角三角形求一般位置直线的实长及其对投影面的倾角。
第9页平面的投影(一)
1、按各平面对投影面的相对位置,填写它们的名称和倾角(0°、30°、45°、60°、90°)。
●解题要点:利用各种位置平面的投影特性及有积聚性的迹线表示特殊位置平面的投影特性做题。
简单时可用直观法。
6、作?EFG与 PQRS的交线,并表明可见性。
●铅垂面PQRS与一般平面相交,从铅垂面的水平投影积聚为一条直线入手,先利用公有性得到交线的一个投影,再根据从属关系求出交线的另一个投影。本题可见性判断可用直观法。
7、作正垂面M与 ABCD的交线,并表明可见性。
●正垂面MV与一般平面相交,从正垂面的正面投影积聚为一条直线入手,先利用公有性得到交线的一个投影,再根据从属关系求出交线的另一个投影。本题可见性判断可用直观法。
第13页曲面面立体及其表面上的点和线
1、作圆柱的正面投影,并补全圆柱表面上的素线AB、曲线BC、圆弧CDE的三面投影。
●利用圆柱的投影特点(积聚性)和其表面取点的方法做题,注意可见性的判断。
2、已知圆柱的轴线的两面投影以及圆柱的正面投影,作出圆柱及其表面上点A和点B的水平投影。