实时荧光定量PCR技术的原理及应用
- 格式:doc
- 大小:144.50 KB
- 文档页数:9
192018年11月总第301期ISSN1672-1438CN11-4994/T作者简介:安钢力,医学硕士,实验师。
聚合酶链反应(polymerasechain reaction PCR)技术是20世纪80年代中期发展起来的一项基因检测即一种体外核酸扩增技术。
它具有许多优点:特异性、易重复、高效性等,可以在几个小时完成过去几天或者更长时间完成的实验,因此这项技术在生物医学领域具有划时代的意义。
但是,传统PCR 技术有它的缺点,它通过电泳对扩增反应的最终产物进行定性分析而不能对起始模板准确定量,同时也无法对扩增反应实时检测且在实验过程中易污染而出现假阳性。
人们为了寻找更为灵敏、快速、简便、高特异性的方法进行了许多探索研究,直到1996 年由美国Applied Biosystems 公司推出了一种新的定量试验技术—荧光定量PCR(Flurogenic Quantitative Polymerase Chain Reaction ,FQ-PCR ;real-time quantitative PCR, RT-qPCR or qPCR),它是通过荧光染料或荧光标记的特异性探针,标记跟踪PCR 产物进行实时监测反应,利用与之相适应的软件对产物进行分析,计算待测样品模板的初始浓度,实现了PCR 从定性到定量质的跨越,具有里程碑意义。
目前,此项技术已应用于干细胞研究、肿瘤学和遗传疾病研究、病原体检测和传染病研究、药物分析、药物基因组学、植物学研究和农业生物科技等多领域研究中[1]。
本文对实时荧光定量PCR 的原理、分类和应用进行阐述。
1 实时荧光定量PCR 技术的原理real-time quantitative PCR 技术是指在PCR 反应体系中加入荧光基团,通过荧光信号不断累积而实现实时监测PCR 全程,然后通过标准曲线对未知模板进行定量分析的方法。
在荧光定量PCR 技术中有2个概念比较重要。
(1)荧光域值(threshold)的设定:PCR 反应的前15个循环的荧光信号作为荧光本底信号,荧光域值的缺省设置是3~15个循环的荧光信号标准偏差的10倍。
实时荧光定量PCR的原理操作及其应用实时qPCR的基本原理是利用DNA模板进行PCR扩增,并通过特定荧光探针或抑制剂标记扩增产物,荧光信号的强度与目标模板数量成正比。
PCR扩增过程中,荧光信号逐渐累积,通过荧光检测系统实时监测荧光的强度变化,可以获取PCR扩增曲线,并通过比较样品的荧光信号与标准曲线建立一个浓度与荧光信号的转换关系,从而确定样品中目标物质的数量。
实时qPCR的操作过程通常包括以下几个步骤:1.准备反应体系:根据所需扩增物质选择合适的引物和探针,并根据样品数量和扩增条件计算所需反应体系的配方。
反应体系中通常包括DNA模板、引物、探针、dNTPs、缓冲液和DNA聚合酶等。
2.设定PCR程序:根据不同引物的特性和样品的要求,设置PCR程序。
PCR程序通常包括一个初始变性步骤,多个循环变性/退火/延伸步骤和一个终止步骤。
循环变性/退火/延伸步骤的温度和时间通常根据引物的需求进行设定。
3.反应体系装填:将反应体系装入PCR管或耐热反应板中,确保样品和反应物均匀分布。
4.实时监测:将PCR反应体系置于实时荧光PCR仪中,根据设定的PCR程序进行扩增,并实时监测荧光信号的累积变化。
5.数据分析:根据荧光信号的变化情况,可以绘制PCR扩增曲线,并通过计算荧光信号的阈值周期数(Ct值)来确定样品中目标物质的相对数量。
比较不同样品的Ct值,可以进行定量分析。
实时qPCR具有广泛的应用。
1.基因表达分析:可以通过实时qPCR检测特定基因在不同组织或样品中的表达水平,从而研究基因在生理和病理过程中的作用。
2.病原体检测:实时qPCR可以用于快速、准确地检测和鉴定病原体,如细菌、病毒和寄生虫等,对于临床诊断和流行病学研究具有重要意义。
3.检测基因突变:实时qPCR可以用于检测个体中基因突变的存在与否,并进行基因型分析,从而研究与疾病相关的突变和遗传变异。
4.微生物学研究:可以通过实时qPCR检测微生物的数量和动态变化,了解其在环境中的分布和生物地理学特征,以及其在食品安全、环境保护等方面的应用。
实时荧光定量PCR技术的原理及应用在PCR扩增反应结束之后,可对扩增产物进行定性和定量的分析。
但是无论定性还是定量分析,分析的都是PCR终产物。
但是在许多情况下,我们所感兴趣的是未经PCR扩增之前的起始模板量。
例如我们想知道某一转基因动植物转基因的拷贝数或者某一特定基因在特定组织中的表达量。
在这种需求下荧光定量PCR技术应运而生。
实时荧光定量PCR技术于1996年由美国Applied Biosystems公司推出,实现了PCR从定性到定量的飞跃。
1.实时荧光定量PCR技术的基本原理在实时荧光定量PCR 反应中,引入了一种荧光化学物质,随着PCR 反应的进行,PCR 反应产物不断累计,荧光信号强度也等比例增加。
所谓实时荧光定量PCR技术,是指通过对PCR 扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。
每经过一个循环,收集一个荧光强度信号,这样我们就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线。
一般而言,荧光扩增曲线扩增曲线可以分成三个阶段:荧光背景信号阶段, 荧光信号指数扩增阶段和平台期。
在荧光背景信号阶段,扩增的荧光信号被荧光背景信号所掩盖,无法判断产物量的变化。
而在平台期,扩增产物已不再呈指数级的增加,PCR 的终产物量与起始模板量之间没有线性关系,所以根据最终的PCR产物量不能计算出起始DNA 拷贝数。
只有在荧光信号指数扩增阶段,PCR 产物量的对数值与起始模板量之间存在线性关系,可以选择在这个阶段进行定量分析。
在扩增曲线中:荧光阈值(threshold)是在荧光扩增曲线上人为设定的一个值,它可以设定在荧光信号指数扩增阶段任意位置上,荧光阈值的缺省设置是3~15个循环的荧光本底信号(baseline)标准差的10倍;Ct值的含义是指在PCR循环过程中,荧光信号开始由本底进入指数增长阶段的拐点所对应的循环次数,也就是每个反应管内的荧光信号达到设定的阈值时所经历的循环次数;Rn+表示每点测量的荧光强度,代表反应管含有模板DNA ;Rn-表示荧光基线强度,代表反应管不含有模板DNA,其在理想情况下是一条平线,只具有背景荧光数值;ΔRn表示PCR过程中,探针降解的量,也即PCR产物的量;基线( baseline)是背景曲线的一段,范围为从反应开始不久荧光值开始变得稳定,到所有反应管的荧光都将要但是还未超出背景。
实时荧光定量PCR技术的原理及其应用引言实时荧光定量PCR(Polymerase Chain Reaction)技术是一种细胞遗传学和分子生物学研究中常用的分子检测技术。
它能够迅速、准确地进行DNA或RNA的定量测量,并在许多领域中广泛应用,例如基因表达分析、病原微生物检测和病毒定量等。
本文将重点介绍实时荧光定量PCR技术的原理和一些典型应用。
实时荧光定量PCR技术原理实时荧光定量PCR技术是在传统PCR反应的基础上发展而来的一种PCR变体。
其原理可以简单概括为光信号的实时检测和荧光强度的定量分析。
实时荧光定量PCR技术的具体步骤如下:1.引物与探针设计在实时荧光定量PCR反应中,合适的引物和探针设计是至关重要的。
引物用于在反应中特异性地扩增目标DNA或RNA序列,而探针则用于荧光信号的检测。
引物和探针的设计需要确保其与目标序列的亲和力和特异性,以避免非特异性扩增和假阳性结果。
2.标定曲线制备为了进行定量分析,需要事先制备一条标定曲线。
标定曲线通常是通过浓度已知的目标序列的一系列稀释样品制备的。
这些稀释样品经过PCR扩增后,荧光信号的强度与初始浓度呈线性关系。
通过测量待测样品的荧光信号强度,并利用标定曲线进行外推,可以获得目标DNA或RNA的定量结果。
3.PCR反应体系组装PCR反应体系的组装需要考虑到引物和探针的最优浓度,以及反应缓冲液、酶和模板DNA或RNA的最佳配比。
此外,反应体系中还需要加入辅助成分,如酶抑制剂和荧光染料,以提高PCR反应的特异性和灵敏度。
4.实时荧光检测及数据分析在PCR反应进行过程中,荧光信号会随着目标DNA或RNA的扩增而增强。
实时荧光定量PCR仪会实时监测和记录荧光信号的变化情况,并生成扩增曲线。
通过分析荧光信号的增长速度和荧光信号的峰值,可以确定目标DNA或RNA的起始浓度。
实时荧光定量PCR技术应用1. 基因表达分析实时荧光定量PCR技术在基因表达分析中被广泛应用。
荧光定量pcr实验原理与应用荧光定量PCR(qPCR)是一种高灵敏度、高特异性的DNA扩增技术,通过检测PCR反应体系中的荧光信号实时监测DNA的合成量。
这种技术结合了传统PCR的高效性和荧光探针的高度特异性,广泛应用于基因表达分析、病原体检测、基因定量、基因型鉴定等领域。
一、原理荧光定量PCR利用荧光信号与PCR产物数量呈正比的原理,通过实时监测PCR反应过程中荧光信号的强度变化来确定反应体系中模板DNA的初始量。
在PCR反应中,荧光探针与特定的DNA序列结合,并发出荧光信号。
随着PCR反应的进行,产物数量逐渐增加,荧光信号也随之增加。
通过检测荧光信号的增长曲线,可以确定初始模板DNA的数量。
二、应用1.基因表达分析:荧光定量PCR可用于实时监测基因的表达水平,通过检测靶基因的mRNA量来研究基因在不同条件下的表达情况。
2.病原体检测:荧光定量PCR可用于快速准确地检测病原体的存在,如病毒、细菌等,对临床诊断和疾病监测具有重要意义。
3.基因定量:荧光定量PCR可用于定量分析基因拷贝数、基因表达水平等,对基因功能研究和疾病诊断有重要作用。
4.基因型鉴定:荧光定量PCR可用于检测基因型多态性,如单核苷酸多态性(SNP)、插入缺失等,用于遗传学研究和个体鉴定。
三、优势与传统PCR技术相比,荧光定量PCR具有以下优势:1.高灵敏度:荧光信号与PCR产物数量呈正比,可实现低拷贝数DNA的检测。
2.高特异性:荧光探针设计精准,可准确识别靶基因序列,避免非特异性扩增。
3.实时监测:可实时监测PCR反应过程中的荧光信号,得到实时、准确的反应动态信息。
4.高准确性:荧光定量PCR结果稳定可靠,可用于定量分析和比较研究。
荧光定量PCR作为一种高效、高灵敏的DNA定量技术,在生命科学研究、临床诊断、食品安全监测等领域具有广泛应用前景。
随着技术的不断发展和完善,荧光定量PCR将在更多领域发挥重要作用,为科学研究和临床实践提供强有力的支持。
实时荧光定量PCR仪原理和使用方法荧光定量PCR仪原理将标记有荧光素的Taqman探针与模板DNA混合后,完成高温变性,低温复性,适温延伸的热循环,并遵守聚合酶链反应规律,与模板DNA互补配对的Taqman探针被切断,荧光素游离于反应体系中,在特定光激发下发出荧光,随着循环次数的增加,被扩增的目的基因片段呈指数规律增长,通过实时检测与之对应的随扩增而变化荧光信号强度,求得Ct值,同时利用数个已知模板浓度的标准品作对照,即可得出待测标本目的基因的拷贝数。
Ct值(Cyclethreshold,循环阈值)的含义为:每个反应管内的荧光信号到达设定阈值时所经历的循环数。
1. 荧光阈值(threshold)的设定PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光阈值的缺省(默认)设置是3-15个循环的荧光信号的标准偏差的10倍,即:threshold= 10*SDcycle 3-152. Ct值与起始模板的关系每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系,公式如下。
Ct=-1/lg(1+Ex)*lgX0+lgN/lg(1+Ex)n为扩增反应的循环次数,X0为初始模板量,Ex为扩增效率,N为荧光扩增信号达到阈值强度时扩增产物的量。
起始拷贝数越多,Ct值越小。
利用已知起始拷贝数的标准品可作出标准曲线,其中横坐标代表起始拷贝数的对数,纵坐标代Ct值。
因此,只要获得未知样品的Ct 值,即可从标准曲线上计算出该样品的起始拷贝数。
实时荧光定量PCR所使用的荧光物质可分为两种:荧光探针和荧光染料。
现将其原理简述如下:1.TaqMan荧光探针:PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,该探针为一寡核苷酸,两端分别标记一个报告荧光基团和一个淬灭荧光基团。
探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR扩增时,Taq酶的5'-3'外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,即每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。
实时荧光定量PCR的原理及应用1. 简介实时荧光定量PCR(Real-time quantitative polymerase chain reaction,简称qPCR)是一种强大的分子生物学技术,能够在同一反应体系中完成DNA扩增和定量,具有高灵敏度、高特异性和高精确性的优势。
本文将介绍实时荧光定量PCR 的原理和应用。
2. 原理实时荧光定量PCR基于传统PCR技术的基础上,引入荧光染料或探针来实时监测PCR反应过程中产生的增量扩增DNA量。
其原理如下:1.DNA模板的变性:通过加热将DNA模板的双链DNA变性成两个单链。
2.引物结合:待扩增的特定DNA序列的引物(Forward primer和Reverse primer)与模板DNA的互补序列结合。
3.DNA聚合酶扩增:DNA聚合酶沿着模板DNA链酶解附近的单链DNA,并将新的DNA链合成。
4.荧光信号监测:引入特定的荧光染料(如SYBR Green)或探针(如TaqMan探针),实时监测PCR反应体系中DNA扩增量的变化。
5.数据分析:使用特定的PCR仪器记录和分析荧光信号,根据荧光信号的变化量确定目标DNA序列的起始量。
3. 应用实时荧光定量PCR技术在许多领域中有广泛的应用,主要包括以下方面:3.1 疾病诊断与检测实时荧光定量PCR可以用于快速检测和诊断各种疾病,例如:•新型冠状病毒(COVID-19)检测•癌症标志物的检测•细菌和病毒感染的检测•遗传性疾病的检测3.2 基因表达分析实时荧光定量PCR可以用于研究基因的表达水平,包括:•基因表达差异分析•基因调控网络的研究•基因表达谱的分析•转录因子的研究3.3 环境监测实时荧光定量PCR可以应用于环境监测领域,用于检测和量化环境中的微生物和污染物,例如:•水质监测中细菌和病毒的检测•土壤中污染物降解菌的鉴定和定量•空气中微生物的检测3.4 遗传学研究实时荧光定量PCR在遗传学研究中也有广泛的应用,包括:•DNA定量和质量检测•突变检测和鉴定•群体遗传学分析•基因组学研究4. 总结实时荧光定量PCR技术是一种准确、高效、灵敏的分子生物学技术,广泛应用于医学、生物学、环境科学和农业等领域。
实时荧光定量PCR技术的原理及应用(图)、实时荧光定量PCR原理(一)定义:在PCR反应体系中加入荧光基团,利用荧光信号累积实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。
(二)实时原理1、常规PCR技术:对PCR扩增反应的终点产物进行定量和定性分析无法对起始模板准确定量,无法对扩增反应实时检测。
2、实时定量PCR技术:利用荧光信号的变化实时检测PCR扩增反应中每一个循环扩增产物量的变化,通过Ct值和标准曲线的分析对起始模板进行定量分析3、如何对起始模板定量?通过Ct值和标准曲线对起始模板进行定量分析• 4、几个概念:(1 )扩增曲线斬确餅扩増曲钱图占横坐标:tr增褥环飒(Cv'cle) t纵坐标丈5?光强度每个摘环进行一次荧光信号的牧集(2) 荧光阈值:荧光伫卩阈『i (threshold ):□FTLStS环信号柞均荧光本底信号^baseline),即样本的荧光誉景值和開性对照的黄光值□黄光城嵋的缺省设置是”鮎十蓮环的茨光信号的恬准俄菱的10信口手动设■;忌剧慕丈于样本的荧光背倉值和阴性对黑的荧光星高值F同时要尽虽遥择进人指数期的最初阶段.并且保证回归系数大于699□真正的信号I荣光信号超过域值CT值的重现性:纵轴:菟光信号星楫轴;pcRwgimCt值的特点’■相同模板进行9就扩增,终点处产物量不恒定,・Ct值则极貝重现性5、定量原理:理想的PCR反应:X=Xo*2n非理想的PCR反应:X=Xo (1+Ex) nn:扩增反应的循环次数X :第n次循环后的产物量Xo:初始模板量Ex :扩增效率5、标准曲线: "ind «r口模板DNA®越多.荧光达到域值的循环数越少,即仕值越小口Log浓度与循环数呈线性关系,通过已知起始拷贝数的标准品可作出标准曲线,根据样品G值*就可以计算岀样品中所含的模板量6、绝对定量1 )确定未知样品的C(t )值2)通过标准曲线由未知样品的C(t)值推算出其初始量7、DNA的荧光标记:二、实时荧光定量PCR的几种方法介绍方法一:SYBR Gree n 法(一)工作原理1、SYBR Green 能结合到双链DNA的小沟部位2、SYBR Green 只有和双链DNA结合后才发荧光3、 变性时,DNA 双链分开,无荧光4、 复性和延伸时,形成双链 DNA , SYBR Green 发荧光,在此阶段采集荧光信号r1■ 一 11J1 w-" -1 -_____________________ - ______________________________ 1-|--1 ■Tm 值:DNA 解链一半时的温度1/! ■ /“I 1 I1au i〈TTm[14■<W4$14Vl[iHHfW Awe]•将温度与荧光强度的变化求导乜Cdl/dT)脏解曲涉务析卜出睨杂吃 其悒&關出现非料异性荧 光’因此宦量丁准确U 模板DNAfi g 多.荧光达到 域值的循环数越少□ Log 浓度与循环数呈线性关 系,根据样品G 值.就可以计算 出样品中所含的模板量PCR 反应体系的建立及优化:1、SYBR Green 使用浓度:太高抑制Taq 酶活性,太低,荧光信号太弱,不易检测2、 Primer :引物的特异性高,否则扩增有杂带,定量不准3、 MgCI2的浓度:可以降低到1.5mM,以减少非特异性产物4、 反应Buffer 体系的优化5、 反应温度和时间参数:由酶和引物决定6、 其他与常规 PCR 相同 (二) 应用范围 1、起始模板的测定;2、 基因型的分析;3、 融解曲线分析:可以优化PCR 反应的条件,对常规PCR 有指导意义,如对primer 的评价;可以区分单一引物、引物二聚体、变异产物、多种产物。
实时荧光定量PCR的原理操作及其应用实时荧光定量PCR的基本原理是在PCR反应体系中添加一种或多种荧光标记的探针,它与目标序列的特定区域互补,当探针与目标序列结合时,荧光信号被激发,产生荧光发射。
随着PCR反应的进行,目标序列的数量增加,荧光信号也随之增强。
通过实时监测PCR扩增过程中的荧光信号强度的变化,可以推断出起始模板的数量。
操作上,实时荧光定量PCR主要分为两个步骤:反转录和PCR。
首先,反转录将RNA逆转录合成cDNA,得到DNA模板。
然后,在PCR反应中,将DNA模板与荧光标记的探针、引物和核酸酶混合,开始PCR扩增。
PCR反应体系中的荧光探针在PCR扩增过程中的特定温度下与目标序列结合,产生荧光信号。
荧光信号被特定的光学设备检测和记录,得出PCR产物的数量。
实时荧光定量PCR具有广泛的应用领域。
在基因表达分析方面,qPCR可以用来定量测量特定基因的转录水平,研究基因的表达模式和差异。
在病原微生物检测方面,qPCR可以快速、准确地检测和鉴定细菌、病毒和寄生虫等病原体。
在遗传疾病诊断和监测方面,qPCR可以检测一些突变、插入或缺失等遗传变异,并进行遗传病的筛查与诊断。
此外,qPCR还可以用于检测和定量分析环境样品中的微生物、植物和动物等生物种群,了解物种多样性、群落结构和生态系统功能。
实时荧光定量PCR的优点包括高灵敏度、高特异性、高准确性和高重复性。
与传统PCR方法相比,qPCR不需要进行凝胶电泳分析,减少了实验操作的时间和手动操作的误差。
另外,荧光定量PCR还可以采用多通道检测不同靶标,提高实验的高通量性。
然而,实时荧光定量PCR也有一些局限性。
首先,荧光标记的探针需要根据目标序列的特点设计,设计不当可能会导致假阳性或假阴性结果。
其次,荧光信号的准确性受到反应物质的浓度和质量的影响,需要进行严格的实验操作和数据分析。
此外,实时荧光定量PCR的设备和试剂比传统PCR更昂贵,需要专业的实验室设施和经验。
实时荧光定量PCR技术的原理及应用在PCR扩增反应结束之后,可对扩增产物进行定性和定量的分析。
但是无论定性还是定量分析,分析的都是PCR终产物。
但是在许多情况下,我们所感兴趣的是未经PCR扩增之前的起始模板量。
例如我们想知道某一转基因动植物转基因的拷贝数或者某一特定基因在特定组织中的表达量。
在这种需求下荧光定量PCR技术应运而生。
实时荧光定量PCR技术于1996年由美国Applied Biosystems公司推出,实现了PCR从定性到定量的飞跃。
1.实时荧光定量PCR技术的基本原理在实时荧光定量PCR 反应中,引入了一种荧光化学物质,随着PCR 反应的进行,PCR 反应产物不断累计,荧光信号强度也等比例增加。
所谓实时荧光定量PCR技术,是指通过对PCR 扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。
每经过一个循环,收集一个荧光强度信号,这样我们就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线。
一般而言,荧光扩增曲线扩增曲线可以分成三个阶段:荧光背景信号阶段, 荧光信号指数扩增阶段和平台期。
在荧光背景信号阶段,扩增的荧光信号被荧光背景信号所掩盖,无法判断产物量的变化。
而在平台期,扩增产物已不再呈指数级的增加,PCR 的终产物量与起始模板量之间没有线性关系,所以根据最终的PCR产物量不能计算出起始DNA 拷贝数。
只有在荧光信号指数扩增阶段,PCR 产物量的对数值与起始模板量之间存在线性关系,可以选择在这个阶段进行定量分析。
在扩增曲线中:荧光阈值(threshold)是在荧光扩增曲线上人为设定的一个值,它可以设定在荧光信号指数扩增阶段任意位置上,荧光阈值的缺省设置是3~15个循环的荧光本底信号(baseline)标准差的10倍;Ct值的含义是指在PCR循环过程中,荧光信号开始由本底进入指数增长阶段的拐点所对应的循环次数,也就是每个反应管内的荧光信号达到设定的阈值时所经历的循环次数;Rn+表示每点测量的荧光强度,代表反应管含有模板DNA ;Rn-表示荧光基线强度,代表反应管不含有模板DNA,其在理想情况下是一条平线,只具有背景荧光数值;ΔRn表示PCR过程中,探针降解的量,也即PCR产物的量;基线( baseline)是背景曲线的一段,范围为从反应开始不久荧光值开始变得稳定,到所有反应管的荧光都将要但是还未超出背景。
(如图1所示)(图1)1.1数学原理PCR扩增为指数扩增,每一扩增周期后产物的量可以用下式表达:Yn=Y n-1· (1+E x) = Y n-2· (1+E)2=…= X·(1+E x)n(0≤E x≤1 )其中E x表示扩增效率,Y n表示在n个周期后PCR产物的分子数量,Y n-1表示n-1个周期后PCR产物的分子数量。
等式仅在限定的扩增周期数(通常为20或30)内成立。
超过此周期数,扩增过程即由指数扩增降低至稳定的扩增速率,最终达到平台,不再扩增。
实时荧光定量PCR就是在PCR扩增的指数扩增期来测定起始模板的分子数量。
在实时荧光定量PCR反应中R n =R B+X O(1+E x)n R S,也就是说第n次PCR循环时的荧光信号强度(R n)等于背景信号强度(R B)加上每个分子的荧光强度(即单位荧光强度,R S)与分子数量X O的乘积。
当循环次数n = Ct时,则有R T=R B+X O(1+E x)Ct R S。
两边取对数,得log(R T -R B) = logX0 + Ctlog(1+ E x) + logR s。
整顿此式,得Ctlog(1+E x)=-logX0+log(R T-R B)–logRs 则而对于每一个特定的PCR反应来说,E x、R T、R B和R S都是常数,因此上式可以表示为:Ct=-klogX0+b即Ct值与log X0成反比,也就是说,Ct值与起始模板拷贝数(X0)的对数成反比。
因此,利用已知起始拷贝数的标准品可作出标准曲线,其中横坐标代表起始拷贝数的对数,纵坐标代Ct值。
所以,只要获得未知样品的Ct值,即可从标准曲线上计算出该样品的起始拷贝数(如图2所示)。
(图2)1.2化学原理实时荧光定量PCR 的化学原理包括使用探针和荧光染料两种,探针是利用与靶序列特异杂交的探针来指示扩增产物的增加,后者是利用荧光染料来指示扩增的增加。
前者由于增加了探针的识别步骤,特异性更高,但后者则简便易行。
1.2.1TaqMan荧光探针PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,该探针为一段寡核苷酸序列,两端分别标记一个报告荧光基团和一个淬灭荧光基团。
探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR扩增时,Taq酶的5’-3’外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,即每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步(如图3所示)。
(图3)1.2.2SYBR Green I荧光染料SYBR Green I 是一种结合于小沟中的双链DNA 结合染料。
与双链DNA 结合后,其荧光大大增强。
这一性质使其用于扩增产物的检测非常理想。
SYBR Green I 的最大吸收波长约为497nm ,发射波长最大约为520nm 。
在PCR 反应体系中,加入过量SYBR 荧光染料,SYBR 荧光染料特异性地掺入DNA 双链后,发射荧光信号,而不掺入链中的SYBR 染料分子不会发射任何荧光信号,从而保证荧光信号的增加与PCR 产物的增加完全同步。
SYBR Green I 在核酸的实时检测方面有很多优点,由于它与所有的双链DNA 相结合,不必因为模板不同而特别定制,因此设计的程序通用性好,且价格相对较低。
利用荧光染料可以指示双链DNA 熔点的性质,通过熔点曲线分析可以识别扩增产物和引物二聚体,因而可以、区分非特异扩增,进一步地还可以实现单色多重测定。
此外,由于一个PCR 产物可以与多分子的染料结合,因此SYBR Green I 的灵敏度很高。
但是,由于SYBR Green I 与所有的双链DNA 相结合,因此由引物二聚体、单链二级结构以及错误的扩增产物引起的假阳性会影响定量的精确性。
通过测量升高温度后荧光的变化可以帮助降低非特异产物的影响。
而由解链曲线来分析产物的均一性有助于分析由SYBR Green I 得到定量结果。
2. 实时荧光定量PCR技术的定量方法实时定量PCR大致分为两类,即绝对定量与相对定量。
绝对定量(Absolute Quantification,AQ):指的是用已知浓度的标准样品来推算待测样本的绝对拷贝数。
相对定量(Relative Quantification,RQ):指的是在一定样本中待测样本相对于另一参照样本的量的变化。
2.1绝对定量2.1.1单一的外参照法单一的外参照,即只用外标准品构建标准曲线,测得目的基因的量在标准曲线上有一个对应的值,检测结果的报告方式是目的基因的拷贝数。
该法是最早使用的绝对定量方法,但由于对各样本的个体差异及反应体系无法监控,对造成假阴性的结果也无法控制,因此该方法目前已较少使用。
2.1.2外参照+非竞争性内参照(管家基因)法外参照+非竞争性内参照(管家基因) ,该法一方面利用标准曲线实现了准确定量,另一方面应用内标管家基因来标化结果并补偿待测样本的体积变异、核酸抽提过程造成的目的基因拷贝数的变化,故结果比第一种绝对定量更可信。
另外通过PCR反应条件的优化使目的基因具有最佳的扩增效率,并与内标管家基因扩增效率尽可能相同,但此方法的缺点是成本较高。
2.2相对定量2.2.1标准曲线法首先要制备标准品,包括目的基因的标准品与内参基因的标准品。
标准品可以不知道准确拷贝数或浓度,但必须准确地倍比稀释,一般为10倍倍比稀释制成标准曲线,样品与内参的基因表达量根据标准曲线得出,并用内参进行均一化,即将目的基因的数量(微克、纳克或拷贝数)除以与之相应的内参基因数量。
另外还要选定一个用于表达差异分析的参照体系。
假定目的基因在参照体系中的表达量为1×,那么目的基因在其他情况下的表达量以相对于参照体系的n倍表示。
该方法是目前应用较多的相对定量方法,当标准品内参照因子与目的基因扩增效率不同时可用该方法进行相对定量。
2.2.2比较2-ΔΔCt法该方法所用公式如下: Xn = Xo×(1+ Ex) n①, Xn是第n个循环后目标分子数, Xo是初始目标分子数, Ex是目标分子扩增效率, n是循环数; Xt =Xo×(1 +Ex) Ct, x = Kx②, Xt是目标分子达到设定阈值时的分子数, Ct, x是目标分子扩增达到阈值时的循环数, Kx是一个常数;内参也有同样的公式: Rt =Ro ×(1 + Er) Ct, rt = Kr③,用Xt除以Rt得到: Xt/Rt =Xo×( 1 + Ex) Ct, x /Ro×( 1 + Er) Ct, r = Kx/Kr= K④,假设目标序列与内参序列扩增效率相同Ex = Er = E,则Xo /Ro ×(1 + E) Ct, x-Ct, r = K⑤,或Xn×( 1 + E)ΔCt = K⑥。
Xn表示经过均一化处理过的初始目标分子量,ΔCt表示目标基因和内标基因Ct值的差异(Ct, x - Ct, r) 。
整理上式得: Xn= K×(1 + E) -ΔCt ⑦。
最后用任一样本的Xn除以参照因子的Xn 得到: Xn, q /Xn, cb = K×( 1 + E) -ΔCt, q /K×( 1 +E) -ΔCt, cb = ( 1 + E) -ΔΔCt ⑧。
这里-ΔΔCt = - (ΔCt, q-ΔCt, cb) 。
如果对反应条件进行优化使扩增效率接近1,那么目标分子经均一化处理后相对于参照因子就是:总目标分子=2 -ΔΔCt。
公式⑧中参照因子的选择是根据不同的实验类型确定的,其应用有以下3种情况: (1)某种处理方法对基因表达的影响,将未经处理的样本表达量设为1×,那么可得到经某种方法处理后的样本相对于未处理样本的基因表达差异。
(2)检测基因在不同时间的表达差异,假设某基因在某时刻(可设为0时刻)的表达量为1 ×,则可比较基因在其他时刻的表达量相对于其在0时刻的表达量的变化。
例如,细胞在不同周期内某基因表达量的变化。
(3)比较基因在不同组织中的表达差异,将用作参照的组织中目的基因表达量设定为1×,那么目的基因在待测组织中的表达量用相对于参照组织的N倍表示。