单摆的等效摆长、等效重力加速度、等效模型问题
- 格式:ppt
- 大小:347.00 KB
- 文档页数:22
2.5 实验:用单摆测量重力加速度问题引入:理论上,与重力加速有关的物理现象都可以用来测量重力加速度g ,例如:利用自由落体运动就可以测量g ,也可以研究平抛运动测量g ,上一节课中我们又学习了单摆的周期公式T =2πlg,我们是否能从该公式出发设计一个实验用来单摆测量重力加速度g 呢?解析:能,由公式T =2πlg可知,只需要设计一个单摆,测出单摆的长度l ,周期T ,然后代入公式即可测出重力加速度g. 一、实验原理:单摆在摆角很小时,由单摆周期公式T =2πl g ,得g =4π2lT2,测得单摆的摆长l 和振动周期T ,就可以测出当地的重力加速度g . 二、实验器材:铁架台及铁夹、金属小球(最好上面有一个通过球心的小孔)、秒表、细线(1 m 左右)、刻度尺(最小刻度为mm)、游标卡尺. 三、实验步骤: 1.做单摆:让线的一端穿过小球的小孔,然后打一个比小孔大一些的结,把线的上端用铁夹固定在铁架台上并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自由下垂,在单摆平衡位置处作上标记. 2.测摆长:l = l ′+ d2①.用毫米刻度尺量出悬线长l ′,如图甲所示. ②.用游标卡尺测出摆球的直径d ,如图乙所示. ③.摆线悬点固定方法:用“夹”不用“绕”3.测周期:将单摆从平衡位置拉开一个角度,且满足偏角小于5°,然后释放摆球,当单摆摆动稳定后,用秒表测量单摆完成30次(或50次)全振动的时间t ,计算出平均摆动一次的时间T =tn,即为单摆的振动周期.(注意:应以摆球经平衡位置时开始或停止计时.) 4.求重力加速度:把测得的周期和摆长的数值代入公式,求出重力加速度g 的值.5.多次改变摆长,重测周期,并记录数据.四、数据处理:方案一:平均值法改变摆长,重做几次实验.计算出每次实验的重力加速度.最后求出几次实验得到的重力加速度的平均值,即可作为本地区的重力加速度.分别以l和T 2为纵坐标和横坐标,作出l =g4π2T 2的图象,它应该是过原点的一条直线,根据这条直线可以求出斜率k,则重力加速度值g =4π2k.由于l-T的图象不是直线,不便于进行数据处理,所以采用l-T 2的图象,目的是将曲线转换为直线,便于利用直线的斜率计算重力加速度.五、误差分析:1.系统误差:主要来自于单摆模型本身是否符合要求,即悬点是否固定,摆球和摆长是否符合要求,最大摆角是否不超过5°,是否在同一竖直平面内摆动等。
类单摆问题学校:_________班级:___________姓名:_____________模型概述1.对l 、g 的理解1)公式中l 是摆长,即悬点到摆球球心的距离。
①普通单摆,摆长l =l +D2,l ′为摆线长,D 为摆球直径。
②等效摆长:(a )图中,甲、乙在垂直纸面方向上摆动起来效果是相同的,甲摆的等效摆长为l sin α,其周期T =2πl sin αg。
(b )图中,乙在垂直纸面方向摆动时,其等效摆长等于甲摆的摆长;乙在纸面内小角度摆动时,等效摆长等于丙摆的摆长。
2)等效重力加速度①公式中g 是单摆所在地的重力加速度,由单摆所在的空间位置决定。
②等效重力加速度:一般情况下,公式中g 的值等于摆球静止在平衡位置时,摆线的拉力与摆球质量的比值。
如图中等效重力为g =g sin α,其周期T =2πlg sin α2.几种类单摆模型1)一切在竖直放置的光滑圆弧形内轨道上的小幅度振动(运动范围远小于圆弧半径)都可以等效成单摆模型,其等效摆长l 即为圆弧半径R ,质点的振动周期为T =2πRg2)非惯性参考系中的单摆周期公式T=2πLg适合于惯性系中单摆在竖直平面内做小幅振动的情况,如果单摆处于做匀变速运动的非惯性参考系中,仍可类比竖直平面内的单摆,通过求解平衡位置(相对参考系静止的位置)时细线拉力的平衡力而得到等效重力加速度。
①参考系具有竖直方向的加速度时如:在一升降机中有一摆长为L的单摆,当升降机以加速度a竖直向上匀加速运动时,如图所示,平衡位置仍在悬点正下方,根据牛顿第二定律易知摆球静止在平衡位置时,摆线拉力F T的平衡力F=mg+ma,等效重力加速度g =Fm=g+a,故其振动周期T=2πLg+a同理知,当升降机以加速度a减速上升时单摆振动周期T=2πLg-a。
②参考系具有水平方向加速度时如:在沿水平路面向左匀加速行驶的车厢内有一单摆,当它做小幅振动时,平衡位置(相对车厢静止的位置)不在悬点正下方,根据受力分析知摆球静止在平衡位置时,摆线拉力的平衡力F=(mg)2+(ma)2,F产生的等效重力加速度g =Fm=g2+a2,故此单摆的振动周期T=2πLg2+a2。
《单摆》典型例题例1:关于单摆的说法,正确的是()A.单摆摆球从平衡位置运动到正的最大位移处时的位移为A(A为振幅),从正的最大位移处运动到平衡位置时的位移为-A.B.单摆摆球的回复力等于摆球所受的合外力C.单摆摆球的回复力是摆球重力沿运动轨迹切线方向的分力D.单摆摆球经过平衡位置时加速度为零出题目的:此题主要考查单摆摆动中的回复力掌握情况.解析:简谐运动中的位移是以平衡位置作为起点,摆球在正向最大位移处时位移为A,在平衡位置时位移应为零,摆球的回复力由合外力沿圆弧切线方向的分力(等于重力沿圆弧切线方向的分力)提供,合外力在摆线方向的分力提供向心力,摆球经最低点(振动的平衡位置)时回复力为零,但向心力不为零,所以合外力不为零,(摆球到最高点时,向心力为零,回复力最大,合外力也不为零).正确选项为C.例2:如图所示,MN为半径较大的光滑圆弧轨道的一部分,把小球A放在MN的圆心处,再把另一小球B放在MN上离最低点C很近的B处,今使两球同时自由释放,则在不计空气阻力时有().A.A球先到达C点B.B球先到达C点C.两球同时到达C点D.无法确定哪一个球先到达C点出题目的:此题考查单摆周期公式的灵活运用情况.解析:做自由落体运动,到C所需时间,R为圆弧轨道的半径.因为圆弧轨道的半径R很大,B球离最低点C又很近,所以B球在轨道给它的支持力和重力的作用下沿圆弧作简谐运动(等同于摆长为R的单摆),则运动到最低点C所用的时间是单摆振动周期的,即,所以A球先到达C点.例3:如图所示为一双线摆,它是在一水平天花板上用两根等长细线悬挂一小球而构成,每根摆线的长均为l,摆线与天花板之间的夹角为,当小球在垂直纸面的平面内做简谐运动时,其振动的周期是多少?出题目的:此题主要考查振动周期公式中摆长的实际确定.解析:双线摆可等效为摆长为的单摆,利用单摆振动的周期公式得双线摆的周期为。
例4:北京地区重力加速度,南京地区重力加速度。
1 / 7摆钟快慢中“万能公式”的应用在机械振动中,摆钟快慢的计算问题往往是同学们学习的难点。
下面就谈谈对这类问题理解和处理。
正确理解摆钟走时原理 摆钟实际上是利用钟摆的周期性摆动,通过一系列的机械传动,从而带动钟面上的指针转动。
钟摆每摆动一次,指针就转过一个角度,并且这个角度θ0是固定的,其大小就表示钟面走过的时间。
对走时准确的摆钟而言,钟摆摆一次,实际耗时T 0(即摆的振动周期),指针转过的角度θ0当然就应表示钟面走时为T 0。
对走时不准的摆钟而言,钟摆摆一次,虽然实际耗时T (即不准摆的振动周期),但由于钟机械设计的关系,钟摆带动指针转动的角度依旧是θ0,所以钟面上所显示的时间(并非真实时间)依旧是T 0,正是由于T T ≠0,从而引起摆钟走时不准。
一条重要的计算公式 设有一段时间t 0(比如1天),由前面的分析可知不准钟摆动的次数为T t 0。
由于每摆一次,钟面上所显示的时间依旧是T 0,所以在这段t 0时间内,不准钟钟面所显示的时间为00T Tt ⋅,因而该钟比标准钟快(或慢): 000t T Tt t -⋅=∆ 此即钟摆快慢的计算公式,此公式容易理解,也便于记忆,更重要的是它方便实用,不妨称之为钟摆问题中的“万能公式”。
下面举例说明:例1.某摆钟的摆长为l =30cm ,一昼夜快10min ,则应如何调整摆长,才能使摆钟走时准确? 解答:由题意可知min 10=∆t ,g l T π2=,设调整好后的摆长为l 0,则gl T 002π=,直接代入公式000t T Tt t -⋅=∆,可解得l 0=30.418cm 。
即应使摆长调整至30.418cm 。
例2.某摆钟,当其摆长为l 1时,在一段时间内快了t ∆;当其摆长为l 2时,在同样一段时间内慢了t ∆,试求走时准确摆钟的摆长。
解答:由题意易得g l T 112π=,g l T 222π=,设标准摆钟的摆长为l 0,则gl T 002π=。
2024版新课标高中物理模型与方法“等效重力场”模型目录一.“等效重力场”模型解法综述二.“等效重力场”中的直线运动模型三.“等效重力场”中的抛体类运动模型四.“等效重力场”中的单摆类模型五.“等效重力场”中的圆周运动类模型一.“等效重力场”模型解法综述将一个过程或事物变换成另一个规律相同的过程和或事物进行分析和研究就是等效法.中学物理中常见的等效变换有组合等效法(如几个串、并联电阻器的总电阻);叠加等效法(如矢量的合成与分解);整体等效法(如将平抛运动等效为一个匀速直线运动和一个自由落体运动);过程等效法(如将热传递改变物体的内能等效为做功改变物体的内能)“等效重力场”建立方法--概念的全面类比为了方便后续处理方法的迁移,必须首先搞清“等效重力场”中的部分概念与复合之前的相关概念之间关系.具体对应如下:等效重力场重力场、电场叠加而成的复合场等效重力重力、电场力的合力等效重力加速度等效重力与物体质量的比值等效“最低点”物体自由时能处于稳定平衡状态的位置等效“最高点”物体圆周运动时与等效“最低点”关于圆心对称的位置等效重力势能等效重力大小与物体沿等效重力场方向“高度”的乘积二.“等效重力场”中的直线运动模型【运动模型】如图所示,在离坡底为L的山坡上的C点树直固定一根直杆,杆高也是L.杆上端A到坡底B之间有一光滑细绳,一个带电量为q、质量为m的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角θ=30º.若物体从A点由静止开始沿绳无摩擦的滑下,设细绳始终没有发生形变,求物体在细绳上滑行的时间.(g=10m/s2,sin37º=0.6,cos37º=0.8)因细绳始终没有发生形变,故知在垂直绳的方向上没有压力存在,即带电小球受到的重力和电场力的合力方向沿绳的方向.建立“等效重力场”如图所示“等效重力场”的“等效重力加速度”,方向:与竖直方向的夹角30°,大小:g =gcos30°带电小球沿绳做初速度为零,加速度为g 的匀加速运动S AB=2L cos30° ①S AB=12g t2 ②由①②两式解得t=3L g“等效重力场”的直线运动的几种常见情况匀速直线运动匀加速直线运动匀减速直线运动1如图所示,相距为d的平行板A和B之间有电场强度为E、方向竖直向下的匀强电场.电场中C点距B板的距离为0.3d,D点距A板的距离为0.2d,有一个质量为m的带电微粒沿图中虚线所示的直线从C点运动至D点,若重力加速度为g,则下列说法正确的是()A.该微粒在D点时的电势能比在C点时的大B.该微粒做匀变速直线运动C.在此过程中电场力对微粒做的功为0.5mgdD.该微粒带正电,所带电荷量大小为q=mg E【答案】 C【解析】 由题知,微粒沿直线运动,可知重力和电场力二力平衡,微粒做匀速直线运动,微粒带负电,B、D 错误;微粒从C点运动至D点,电场力做正功,电势能减小,A错误;此过程中电场力对微粒做的功为W= Fx=mg(d-0.3d-0.2d)=0.5mgd,C正确.2(2023·全国·高三专题练习)AB、CD两块正对的平行金属板与水平面成30°角固定,竖直截面如图所示。
细说等效重力加速度(343100)江西省吉安县二中尹国圣单摆的周期公式:,摆长指悬点到小球重心的距离,重力加速度为单摆所在处的测量值。
此公式是惠更斯从实验中总结出来的,在有些振动系统中不一定是绳长,g也不一定为9.8 m/s2,因此出现了等效摆长和等效重力加速度的问题.本文着重谈谈如何来等效重力加速度。
公式中的g由单摆所在的空间位置决定.由知,g随地球表面不同位置、不同高度而变化,在不同星球上也不相同,因此应求出单摆所在处的等效值g’,代入公式,即g 不一定等于9.8 m/s2.g还由单摆系统的运动状态决定,如单摆处在向上加速发射的航天飞机内,沿圆弧切线方向的回复力变大,摆球质量不变,则重力加速度的等效值g等=g+a,再如,单摆若在轨道上运行的航天飞机内,摆球完全失重,回复力为零,则重力加速度的等效值g等=0,所以周期为无穷大,即单摆将不再摆动.当单摆有竖直向上的加速度a时,等效重力加速度为g等=g+a;当单摆有竖直向下的加速度a(a<g)时,等效重力加速度为g等=g-a,a>g时,等效重力加速度g等=a-g.比如当单摆有水平加速度a时(如加速运动的车厢内),等效重力加速g等=,平衡位置已经改变.请同学们看个例子:在下图中,几个相同的单摆处在不同的条件下,关于它们的周期的关系,下列判断正确的是()A. T1>T2>T3>T4;B. T1<T2=T3<T4;C. T1>T2=T3>T4;D. T1<T2<T3<T4.解析:单摆周期与重力加速度有关,由重力沿运动方向的分力提供回复力.当单摆处于(1)图所示的条件下时,摆球偏离平衡位置后,是重力平行斜面的分量(mgsinθ)沿切向的分量提供回复力,在图示的条件下,回复力相对竖直放置的单摆的回复力减小,加速运动的加速度减小,回到平衡位置的时间变长,即周期T变大,所以图(1)中的单摆的周期大于竖直放置单摆的周期.此时;对于(2)图所示的条件,带正电的摆球在振动过程中要受到天花板上带正电小球斥力,但两球间的斥力与运动的方向总是垂直,不影响回复力,故单摆的周期不变,与(3)图所示的单摆周期相同.即;对于(4)图所示的条件下,单摆在升降机内,与升降机一起做加速上升的运动,摆球在该升降机中是超重的,相当于摆球的重力增大,沿摆动方向分量也增大,也就是回复力增大,摆球回到相对平衡的位置时间变短,故周期变小.此时。
摆钟问题中的“万能公式”在机械振动中,摆钟快慢的计算问题往往是同学们学习的难点。
下面就谈谈对这类问题理解和处理。
正确理解摆钟走时原理 摆钟实际上是利用钟摆的周期性摆动,通过一系列的机械传动,从而带动钟面上的指针转动。
钟摆每摆动一次,指针就转过一个角度,并且这个角度θ0是固定的,其大小就表示钟面走过的时间。
对走时准确的摆钟而言,钟摆摆一次,实际耗时T 0(即摆的振动周期),指针转过的角度θ0当然就应表示钟面走时为T 0。
对走时不准的摆钟而言,钟摆摆一次,虽然实际耗时T (即不准摆的振动周期),但由于钟机械设计的关系,钟摆带动指针转动的角度依旧是θ0,所以钟面上所显示的时间(并非真实时间)依旧是T 0,正是由于T T ≠0,从而引起摆钟走时不准。
一条重要的计算公式 设有一段时间t 0(比如1天),由前面的分析可知不准钟摆动的次数为T t 0。
由于每摆一次,钟面上所显示的时间依旧是T 0,所以在这段t 0时间内,不准钟钟面所显示的时间为00T Tt ⋅,因而该钟比标准钟快(或慢): 000t T Tt t -⋅=∆ 此即钟摆快慢的计算公式,此公式容易理解,也便于记忆,更重要的是它方便实用,不妨称之为钟摆问题中的“万能公式”。
下面举例说明:例1.某摆钟的摆长为l =30cm ,一昼夜快10min ,则应如何调整摆长,才能使摆钟走时准确? 解答:由题意可知min 10=∆t ,g l T π2=,设调整好后的摆长为l 0,则gl T 002π=,直接代入公式000t T Tt t -⋅=∆,可解得l 0=30.418cm 。
即应使摆长调整至30.418cm 。
例2.某摆钟,当其摆长为l 1时,在一段时间内快了t ∆;当其摆长为l 2时,在同样一段时间内慢了t ∆,试求走时准确摆钟的摆长。
解答:由题意易得g l T 112π=,g l T 222π=,设标准摆钟的摆长为l 0,则gl T 002π=。
直接代入公式000t T Tt t -⋅=∆有: 0010t T T t t -⋅=∆ (1) 0100T T t t t ⋅-=∆ (2) 解得:221210)(4l l l l l +=。
高中物理探究复杂摆中等效摆长及等效重力加速度的概念面对目前的新课程改革,本人尝试着用实验探究的方法讲授复杂单摆的周期公式。
在此课中,我先提问学生简易单摆的周期公式(T=2π√L/g),其次,给学生在黑板上画出两个装置:一是双线摆,二是光滑斜面上一摆球。
让学生猜测它们的周期应等于什么?学生绝大部分猜测应是等效摆长对应的周期,然后把学生分成两组分别做上述实验,进行验证自己的假设是否正确。
实验后,学生认为对双线摆周期的猜测是正确的,但对光滑斜面上的摆的周期猜测是错的。
此时,教师引导:简易单摆中g应是不摆动时拉力F与质量m的比值,即g=F/m,那么,在斜面上拉力F=mgsinθ,公式中的重力加速度是否可换成F/m,即gsin θ呢?学生通过对比,得出光滑斜面的摆的周期确实与T=2π√L/g计算的周期相同。
此时,教师给出等效重力加速度的概念,由学生得出T=2π√L/g中可外推为等效重力加速度。
关键词:复杂摆周期等效摆长等效重力加速度科学探究活动案例——探究复杂摆中等效摆长及等效重力加速度的概念一、问题的提出:单摆的周期是机械振动中的一个重要组成部分,它反映了周期与摆长及重力加速度的关系。
从课本中我们学习了最简单的单摆周期公式,那么学生应该如何从最简单的单摆处理稍复杂的单摆呢?过去我们在教学中往往是教师直接给出等效摆长及等效重力加速度的概念,向学生强行灌输,不利于学生主动参与和“在做中学”,我认为应该由教师在实验室或课外引导学生进行探究活动,它的目的绝不只是让学生记住“结论”,而是鼓励学生在探究过程中积极动手动脑,通过自主的实验研究,体验到学科学的乐趣,了解科学的探索能力。
从探究的主体来看,学生已经具备了简单单摆的知识,具有一定的实验操作能力,能设计简单的实验。
从探究的目的来看,该实验能培养学生拟订简单的科学探究计划的实验方案的能力,学会处理实验数据,得出实验结论的能力。
从探究的过程来看,该实验目的明确,能锻炼学生的思维能力。