八年级数学上册 11.3 多边形及其内角和(第1课时)同步练习 (新版)新人教版
- 格式:doc
- 大小:27.00 KB
- 文档页数:1
11.3 多边形及其内角和一、填空题1.一个多边形是正多边形的条件是___________.2.从多边形的一个顶点可以引出3条对角线,这个多边形是________________________.3.一个多边形共有5条对角线,这个多边形是______________________4.从八边形的—个顶点可以引___________条对角线,八边形总共有___________条对角线.5.n边形一共有___________条对角线.6.如果一个多边形的边数恰好是从—个顶点引出的对角线条数的2倍,则此多边形的边数为_____________.7.过四边形的一个顶点可以把四边形分成两个三角形;过五边形或六边形的一个顶点的对角线,可以分别把它们分成___________个三角形;过n边形的一个顶点的对角线可以把n边形分成___________个(用含n的代数式表示)三角形.二、选择题8.六边形内角和为( )A.360°B.540°C.720°D.1080°9.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,那么这张纸片原来的形状不可能是( )A.六边形B.五边形C.四边形D.三角形三、解答题10.下面的两个网格中,每个小正方形的边长均为1 cm,请你分别在每个网格中画出—个顶点在格点上,且周长为12 cm的形状和大小不同的凸多边形.11.如图,在六边形ABCDEF中,AF∥CD,AB∥DE,且∠A=120°,∠B=80°,求∠C和∠D 的度数.参考答案:1.每条边相等,每个角都相等 2.六边形 3.五边形4. 5;205.6. 67. 3或4;(n-2)8.C 9.A10.11. 向两边延长AB、CD、EF,分别交于H、M、G.因为∠BAF=120°,∠ABC=80°,根据邻补角定义知∠GAF=60°,∠HBC=100°.又因为AF∥CD,根据两直线平行,同位角相等,可得∠H=∠GAF=60°.又因为∠BCD是△BHC的一个外角,所以∠BCD=∠H+∠HBC=160°.因为AB∥DE,根据两直线平行,同位角相等,可得∠EDM=∠H=60°.由邻补角的定义可得∠CDE°=180°-∠EDM=120°.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
11.3 多边形及其内角和一、选择题(共10小题;共50分)1. 用一种正多边形铺满地面的条件是( )A. 内角是整数度数B. 边数是3的倍数C. 内角整除180∘D. 内角整除360∘2. 已知正多边形的一个内角是140∘,则这个正多边形的边数是( )A. 6B. 7C. 8D. 93. 八边形的对角线共有( )A. 8条B. 16条C. 18条D. 20条4. 阿男的父亲想购买同一种大小一样、形状相同的地板砖铺设地面.阿男根据所学的知识告诉父亲,为了能够做到无缝隙、不重叠地铺设,购买的地板砖形状不能是( )A. 正三角形B. 正方形C. 正五边形D. 正六边形5. 如果把一个五边形的边数增加1倍,那么它的对角线共增加( )A. 5条B. 10条C. 20条D. 30条6. 已知实数x,y满足∣x−4∣+√y−8=0,则以x,y的值为两边长的等腰三角形的周长是( )A. 20或16B. 20C. 16D. 以上答案均不对7. 幼儿园的小朋友打算选择一种形状、大小都相同的多边形塑胶板铺活动室的地面,为了保证铺地时既无缝隙又不重叠,请你告诉他们,不可以选择的塑胶板的形状是( )A. 正三角形B. 正方形C. 正五边形D. 正六边形8. 利用边长相等的正三角形和正六边形的地砖密铺地面时,在每个顶点周围有a块正三角形和b块正六边形的地砖(ab≠0),则a+b的值为( )A. 3或4B. 4或5C. 5或6D. 49. 若正多边形的内角和是540∘,则该正多边形的一个外角为( )A. 45∘B. 60∘C. 72∘D. 90∘10. 一个多边形的内角和是720∘,这个多边形的边数是:( )A. 6B. 7C. 8D. 9二、填空题(共6小题;共48分)11. 如果一个多边形的每个外角都等于40∘,那么这个多边形的边数是.12. 一个多边形的对角线的条数与它的边数相等,这个多边形是边形.13. 装修大世界出售下列形状的地砖:(1)正三角形;(2)正五边形;(3)正六边形;(4)正八边形;(5)正十边形,若只选购一种地砖镶嵌地面,你有种选择.14. 如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,那么按照如图所示的方式得到的格点三角形A1B1C1的面积是,格点三角形A2B2C2的面积是,格点三角形A3B3C3的面积为.15. 用三块正多边形的木板密铺地面,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,第三块木板的边数是.16. 如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度.三、解答题(共4小题;共52分)17. 试说明正八边形不能铺满平面的理由.18. 一个多边形的内角和等于外角和的3倍,它是几边形?19. 把图中的五边形剪去一个角,将得到几边形?此时多边形的内角和有什么变化?。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!11.3多边形及其内角和专题一根据正多边形的内角或外角求值1.若一个正多边形的每个内角为150°,则这个正多边形的边数是( )A.12 B.11 C.10 D.92.一个多边形的每一个外角都等于36°,则该多边形的内角和等于________°.3.已知一个多边形的每一个内角都相等,且每个内角都等于与它相邻的外角的9倍,求这个多边形的边数.专题二求多个角的和4.如图为某公司的产品标志图案,图中∠A+∠B+∠C+∠D+∠E+∠F+∠G=( )A.360° B.540° C.630° D.720°5.如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_________°.6.如图,求:∠A+∠B+∠C+∠D+∠E+∠F的度数.状元笔记【知识要点】1.多边形及相关概念多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.多边形的内角和与外角和内角和:n边形的内角和等于(n-2)·180°.外角和:多边形的外角和等于360°.【温馨提示】1.从n边形的一个顶点出发,可以做(n-3)条对角线,它们将n边形分为(n-2)个三角形.对角线的条数与分成的三角形的个数不要弄错.2.多边形的外角和等于360°,而不是180°.【方法技巧】1.连接多边形的对角线,将多边形转化为多个三角形,将多边形问题转化为三角形问题来解决.2.多边形的内角和随边数的变化而变化,但外角和不变,都等于360°,可利用多边形的外角和不变求多边形的边数等.参考答案:1.A解析:∵每个内角为150°,∴每个外角等于30°.∵多边形的外角和是360°,360°÷30°=12,∴这个正多边形的边数为12.故选A.2.1440解析:∵多边形的边数为360°÷36°=10,多边形的内角为180°-36°=144°,∴多边形的内角和等于144°×10=1440°.3.解:设多边形的边数为n,根据题意,得(n-2)·180°=9×360°,解得n=20.所以这个多边形的边数为20.4.B 解析:∵∠1=∠C+∠D,∠2=∠E+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=∠A+∠B+∠1+∠2+∠G=540°.故选B.5.360° 解析:在四边形BEFG中,∵∠EBG=∠C+∠D,∠BGF=∠A+∠ABC,∴∠A+∠ABC+∠C+∠D+∠E+∠F=∠EBG+∠BGF+∠E+∠F=360°.6.解:∵∠POA是△OEF的外角,∴∠POA=∠E+∠F.同理:∠BPO=∠D+∠C.∵∠A+∠B+∠BPO+∠POA=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.。
人教版2021年八年级上册11.3《多边形及其内角和》同步练习一.选择题1.下列多边形中,内角和最大的是()A.B.C.D.2.三角形具有稳定性,所以要使如图所示的五边形木架不变形,至少要钉上()根木条.A.1B.2C.3D.43.正多边形的一个外角等于60°,这个多边形的边数是()A.3B.6C.9D.124.如图,四边形ABCD中,∠1、∠2、∠3分别为∠A、∠B、∠C的外角,下列判断正确的是()A.∠1+∠3=∠ABC+∠D B.∠1+∠3=180°C.∠2=∠D D.∠1+∠2+∠3=360°5.如图,正五边形ABCDE中,∠CAD的度数为()A.72°B.45°C.36°D.35°6.如图,小明从A点出发,沿直线前进6米后向左转45°,再沿直线前进6米,又向左转45°…照这样走下去,他第一次回到出发点A时,共走路程为()米.A.60B.72C.48D.367.如果一个正多边形的一个内角与一个外角的度数之比是7:2,那么这个正多边形的边数是()A.11B.10C.9D.88.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16二.填空题9.三角形具有稳定性,要使一个四边形框架稳定不变形,至少需要钉根木条.10.如图,则x的值为.11.如果一个多边形的每个外角都是60°,那么这个多边形内角和的度数为.12.一个凸n边形的内角和是540°,则n=.13.如图,五边形ABCDE中,AB∥DE,BC⊥CD,∠1、∠2分别是与∠ABC、∠CDE相邻的外角,则∠1+∠2等于度.14.如图,小亮从A点出发前进2m,向右转15°,再前进2m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了m.15.为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(A,B,C,D,E是正五角星的五个顶点),则图中∠A的度数是度.16.如图,∠A+∠B+∠C+∠D+∠E=°.三.解答题17.求出下列图形中x的值.18.已知,四边形ABCD中,∠C+∠D=200°,∠B=3∠A,求∠A和∠B的度数.19.在一个各内角都相等的多边形中,每一个内角都比与它相邻外角的3倍还大20°,求这个多边形的边数以及它的内角和.20.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?21.观察每个正多边形中∠α的变化情况,解答下列问题:(1)将下面的表格补充完整:正多边形边数3456 (18)∠α的度数…(2)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.22.如图①,在四边形ABCD中,∠A=x°,∠C=y°.(1)∠ABC+∠ADC=°(用含x,y的代数式表示);(2)BE、DF分别为∠ABC、∠ADC的外角平分线,①当x=y时,BE与DF的位置关系是;②当y=2x时,若BE与DF交于点P,且∠DPB=10°,求y的值.(3)如图②,∠ABC的平分线与∠ADC的外角平分线交于点Q,则∠Q=(用含x,y的代数式表示).参考答案一.选择题1.解:A.三角形的内角和为180°;B.四边形的内角和为360°;C.五边形的内角和为:(5﹣2)×180°=540°;D.六边形的内角和为:(6﹣2)×180°=720°;故选:D.2.解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.3.解:∵正多边形的外角和为360°,∴此多边形的边长为:360°÷60°=6.故选:B.4.解:∵∠1+∠DAB=180°,∠3+∠BCD=180°,∴∠1+∠3+∠DAB+∠BCD=360°,∵∠ABC+∠BCD+∠D+∠DAB=360°,∴∠1+∠3=∠ABC+∠D,故A符合题意;∵∠1+∠3只有∠ABC和∠D互补时才等于180°,故B不符合题意;∵只有∠ABC和∠D互补时,∠2=∠D,故C不符合题意;∵多边形的外角和是360°,∴∠1+∠2+∠3<360°,故D不符合题意;故选:A.5.解:根据正多边形内角和公式可得,正五边形ABCDE的内角和=180°×(5﹣2)=540°,则∠BAE=∠B=∠E==108°,根据正五边形的性质,△ABC≌△AED,∴∠CAB=∠DAE=(180°﹣108°)=36°,故选:C.6.解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×6=48(米).故选:C.7.解:设这个正多边形的边数为n,由题意得:(n﹣2)×180=360,解得:n=9,故选:C.8.解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的多边形的边数为13或14或15,故选:C.二.填空题9.解:如图所示:要使这个木架不变形,他至少还要再钉上1个木条,故答案为:110.解:因为四边形的内角和是360°,根据题意得,x+x+90+120=360,解得,x=75,故答案为:75.11.解:∵一个多边形的每个外角都是60°,∴n=360°÷60°=6,则内角和为:(6﹣2)•180°=720°,故答案为:720°.12.解:根据题意得,(n﹣2)•180°=540°,解得n=5,故答案为:5.13.解:连接BD,∵BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=180°﹣90°=90°,∵AB∥DE,∴∠ABD+∠EDB=180°,∴∠1+∠2=(180°﹣∠ABC)+(180°﹣∠EDC)=360°﹣(∠ABC+∠EDC)=360°﹣(∠ABD+∠CBD+∠EDB+∠CDB)=360°﹣(90°+180°)=90°,故答案为:90.14.解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为:360°÷15°=24,则一共走了:24×2=48(m),故答案为:48.15.解:如图,∵正五角星中,五边形FGHMN是正五边形,∴∠GFN=∠FNM==108°,∴∠AFN=∠ANF=180°﹣∠GFN=180°﹣108°=72°,∴∠A=180°﹣∠AFN﹣∠ANF=180°﹣72°﹣72°=36°.故答案是:36.16.解:如图,设线段BD,BE分别与线段AC交于点N,M.∵∠AMB=∠A+∠E,∠DNC=∠B+∠AMB,∠DNC+∠D+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,故答案为:180.三.解答题17.解:(1)由三角形的外角性质得,x+(x+10)=x+70,即2x+10=x+70,解得,x=60.(2)根据四边形的内角和为360°得,x+(x+10)+90+60=360,解得,x=100.18.解:∵四边形内角和360°,∠C+∠D=200°,∴∠B+∠A=360°﹣200°=160°,∵∠B=3∠A,∴3∠A+∠A=160°,∴∠A=40°,∴∠B=120°.答:∠A和∠B的度数分别是40°和120°.19.解:设多边形的一个外角为α,则与其相邻的内角等于3α+20°,由题意,得(3α+20°)+α=180°,解得α=40°,即多边形的每个外角为40°,又∵多边形的外角和为360°,∴多边形的外角个数==9,∴多边形的边数=9,∴多边形的内角和=(9﹣2)×180°=1260°.20.解:如图,由三角形的外角性质得,∠AGE=∠A+∠C,∠DFE=∠B+∠D,∵∠AGE+∠DFE+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.21.解:(1)填表如下:正多边形的边数3456 (18)∠α的度数60°45°36°30°……10°故答案为:60°,45°,36°,30°,10°;(2)不存在,理由如下:假设存在n边形使得∠α=21°,得∠α=21°=()°,解得:n=8,又n是正整数,所以不存在正n边形使得∠α=21°.22.解:(1)在四边形ABCD中,∠ABC+∠ADC=360°﹣∠A﹣∠DCB,∵∠A=x°,∠DCB=y°,∴∠ABC+∠ADC=360﹣x﹣y=(360﹣x﹣y)°,故答案为:(360﹣x﹣y),(2)①如图①中,连接AC,过点C作CG∥DF,则有:∠MDC═∠DAC+∠DCA,∠NBC═∠CAB+∠CBA,∵BE、DF分别为∠NBC、∠MDC的角平分线,∠DAB═∠DCB═x°═y°,∴∠FDC+∠CBE═(∠MDC+∠NBC)═(∠DAC+∠DCA+∠CAB+∠CBA)═(∠DAB+DCB)═x°,∴∠FDC═∠GCD,∵∠DCG+∠BCG═∠DCB═x°,∠FDC+∠CBE═x°,∴∠CBE═∠BCG,∴CG∥BE,∴BE∥DF,故答案为:BE∥DF.②由(1)可知:∠ABC+∠ADC=(360﹣x﹣y)°,∵∠ADC+∠MDC=180°,∠ABC+∠NBC=180°,∴∠NBC+∠MDC=(x+y)°,∵BE、DF分别为∠ABC、∠ADC的外角平分线,∴∠PBC=∠NBC,∠PDC=∠MDC,∴∠PBC+∠PDC=[(x+y)]°,∵∠BCD=∠PDC+∠PBC+∠P,∴y=10+(x+y),即y﹣x=20,∵y=2x,∴x=20°,y=40°.(3)如图②中,由题意:∠DNQ=∠ANB=180°﹣x°﹣∠ABC,∠QDN=(180°﹣∠ADC),∴∠Q=180°﹣∠DNQ﹣∠QDN=180°﹣(180°﹣x°﹣∠ABC)﹣(180°﹣∠ADC),=x°+(∠ABC+∠ADC)﹣90°,=x°+180°﹣(x+y)°﹣90°,=[90+(x﹣y)]°,故答案为:[90+(x﹣y)]°.。
《11.3 多边形及其内角和》一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:44.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6三、填空题:10.多边形的内角中,最多有个直角.11.从n边形的一个顶点出发可以引条对角线,这些对角线将这个多边形分成个三角形.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为.14.每一个内角都是144°的多边形有条边.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?16.一个多边形的每一个外角都等于24°,求这个多边形的边数.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.《11.3 多边形及其内角和》参考答案与试题解析一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个【考点】多边形内角与外角.【专题】计算题.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选D.【点评】本题考查了多边形的外角和:n边形的外角和为360°.2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°【考点】多边形内角与外角.【分析】根据n边形的内角和(n﹣2)•180°分别建立方程,求出n,由于n≥3的整数即可得到D 选项正确.【解答】解:A、(n﹣2)•180°=120•n,解得n=6,所以A选项错误;B、(n﹣2)•180°=(128)°•n,解得n=7,所以B选项错误;C、(n﹣2)•180°=144°•n,解得n=10,所以C选项错误;D、(n﹣2)•180°=145°•n,解得n=,不为整数,所以D选项正确.故选D.【点评】本题考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:4【考点】多边形内角与外角.【分析】多边形的外角和是360°,且根据多边形的各内角都相等则各个外角一定也相等,根据选项中的比例关系求出外角的度数,根据多边形的外角和定理求出边数,如果是≥3的正整数即可.【解答】解:A、外角是:180×=60°,360÷60=6,故可能;B、外角是:180×=90°,360÷90=4,故可能;C、外角是:180×=度,360÷=7,故可能;D、外角是:180×=80°.360÷80=4.5,故不能构成.故选D.【点评】本题主要考查了多边形的外角和定理,理解外角与内角的关系是解题的关键.4.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个【考点】多边形内角与外角.【分析】利用多边形的外角和是360度即可求出答案.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.故选A.【点评】本题考查了多边形的内角问题.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.故选:A.【点评】多边形有n条边,则经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形【考点】多边形的对角线.【分析】根据多边形对角线公式,可得答案.【解答】解:设多边形为n边形,由题意,得=14,解得n=7,故选:B.【点评】本题考查了多边形的对角线,熟记公式并灵活运用是解题关键.8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°【考点】多边形内角与外角.【专题】计算题.【分析】可设这是一个n边形,这个内角的度数为x度,利用多边形的内角和=(n﹣2)•180°,根据多边形内角x的范围,列出关于n的不等式,求出不等式的解集中的正整数解确定出n的值,从而求出多边形的内角和,减去其余的角即可解决问题.【解答】解;设这是一个n边形,这个内角的度数为x度.因为(n﹣2)180°=2570°+x,所以x=(n﹣2)180°﹣2570°=180°n﹣2930°,∵0<x<180°,∴0<180°n﹣2930°<180°,解得:16.2<n<17.2,又n为正整数,∴n=17,所以多边形的内角和为(17﹣2)×180°=2700°,即这个内角的度数是2700°﹣2570°=130°.故本题选C.【点评】本题需利用多边形的内角和公式来解决问题.二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.三、填空题:10.多边形的内角中,最多有 4 个直角.【考点】多边形内角与外角.【分析】由多边形的外角和为360°可求得答案.【解答】解:当内角和90°时,它相邻的外角也为90°,∵任意多边形的外角和为360°,∴360°÷90°=4.故答案为:4.【点评】本题主要考查的是多边形的内角与外角,明确任意多边形的外角和为360°是解题的关键.11.从n边形的一个顶点出发可以引n﹣3 条对角线,这些对角线将这个多边形分成n﹣2 个三角形.【考点】多边形的对角线.【分析】根据n边形对角线的定义,可得n边形的对角线,根据对角线的条数,可得对角线分成三角形的个数.【解答】解从n边形的一个顶点出发可以引n﹣3条对角线,这些对角线将这个多边形分成n﹣2个三角形,故答案为:n﹣3,n﹣2.【点评】本题考查了多边形的对角线,由对角线的定义,可画出具体多边形对角线,得出n边形的对角线.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为9 .【考点】多边形内角与外角.【分析】根据多边形的外角和定理,列出不等式即可求解.【解答】解:因为n边形的外角和是360度,每一个内角都大于135°即每个外角小于45度,就得到不等式:,解得n>8.因而这个多边形的边数最少为9.【点评】本题已知一个不等关系就可以利用不等式来解决.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为11 .【考点】多边形内角与外角.【分析】先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:设多边形的一个内角为9x度,则一个外角为2x度,依题意得9x+2x=180°解得x=()°360°÷[2×()°]=11.答:这个多边形的边数为11.【点评】本题考查多边形的内角与外角关系、方程的思想.关键是记住多边形的一个内角与外角互补、及外角和的特征.14.每一个内角都是144°的多边形有10 条边.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.【解答】解:解法一:设所求n边形边数为n,则144°n=(n﹣2)•180°,解得n=10;解法二:设所求n边形边数为n,∵n边形的每个内角都等于144°,∴n边形的每个外角都等于180°﹣144°=36°.又因为多边形的外角和为360°,即36°•n=360°,∴n=10.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?【考点】规律型:图形的变化类.【分析】关键是通过归纳与总结,得到其中的规律,按规律求解.【解答】解:n=1时,有1个三角形,需要火柴的根数为:3×1;n=2时,有5个三角形,需要火柴的根数为:3×(1+2);n=3时,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.【点评】此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形.16.一个多边形的每一个外角都等于24°,求这个多边形的边数.【考点】多边形内角与外角.【分析】根据多边形外角和为360°及多边形的每一个外角都等于24°,求出多边形的边数即可.【解答】解:设这个多边形的边数为n,则根据多边形外角和为360°,可得出:24×n=360,解得:n=15.所以这个多边形的边数为15.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形外角和为360°.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【考点】多边形内角与外角.【分析】设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度得到m:n=180(a ﹣2):360,从而用m、n表示出a的值.【解答】解:设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度,m:n=180(a﹣2):360a=,因为m,n 是互质的正整数,a为整数,所以n=2,故答案为:,2.【点评】本题考查了多边形的内角与外角,解答本题的关键在于熟练掌握多边形内角和与多边形外角和.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.【考点】多边形的对角线.【分析】从n边形的一个顶点出发,最多可以引n﹣3条对角线,然后即可计算出结果.【解答】解:过n边形的一个顶点可引出n﹣3条对角线;n边形共有条对角线.【点评】本题主要考查的是多边形的对角线,掌握多边形的对角线公式是解题的关键.作者留言:非常感谢!您浏览到此文档。
人教新版八年级上学期《11.3 多边形及其内角和》同步练习卷一.解答题(共50小题)1.小明和小亮分别利用图①、②的不同方法求出了五边形的内角和都是540度.请你考虑在图③中再用另外一种方法求五边形的内角和.并写出求解过程.2.提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=AD时(如图②):∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为:;(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:.3.已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.4.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.5.如图,在五边形ABCDE中满足AB∥CD,求图形中的x的值.6.一个n边形的内角和比四边形的外角和大540°,求n.7.如图,在四边形ABCD中,∠DAB,∠CBA的平分线交于点E,若∠AEB=105°,求∠C+∠D的度数.8.一个凸多边形,除了一个内角外,其余各内角的和为2750°,求这个多边形的边数.9.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.10.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.11.如图:在六边形ABCDEF中,AF∥CD,AB∥DE,且∠BAF=100°,∠BCD=120°,求∠ABC和∠D的度数.12.一个正多边形的每一个内角比每一个外角的5倍还小60°,求这个正多边形的边数及内角和.13.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数.14.如图,四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AE.(1)如图1,求证:AD∥BC(2)若∠DAE和∠DCE的角平分线相交于点F,连接AC.①如图2,若∠BAE=70°,求∠F的度数②如图3,若∠BAC=∠DAE,∠AGC=2∠CAE,则∠CAE的度数为(直接写出结果)15.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.16.如图所示,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,求∠EDC的度数.17.(1)已知一个多边形的內角和是它的外角和的3倍,求这个多边形的边数.(2)如图,点F是△ABC的边BC廷长线上一点,DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.18.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?19.已知一个多边形的内角和720°,求这个多边形的边数.20.如图,四边形ABCD中,BE、CF分别是∠B、∠D的平分线.且∠A=∠C=90°,试猜想BE与DF有何位置关系?请说明理由.21.如图,请猜想∠A+∠B+∠C+∠D+∠E+∠F的度数,并说明你的理由.22.如图,在四边形ABCD中,∠A=45°,直线l与边AB,AD分别相交于点M,N,则∠1+∠2度数是多少?23.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C =.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.24.用两块全等的含有30°的直角三角板拼成一个四边形,画出二个可能的图形并写出各个内角的度数(四边形的各个内角的度数若相同视为同一个).25.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取900°;而乙同学说,θ也能取800°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了540°,用列方程的方法确定x.26.(1)如图①,在四边形ABCD中,AD∥BC,点E是线段CD上一点.求证:∠AEB=∠DAE+∠CBE;(2)如图②,若AE平分∠DAC,∠CAB=∠CBA.①求证:∠ABE+∠AEB=90°;②如图③,若∠ACD的平分线与BA的延长线交于点F,与AE交于点P,且∠F=65°,求∠BCD的度数.27.在四边形ABCD中,∠A=140°,∠D=80°(1)如图1,若∠B=∠C,求∠C的度数;(2)如图2,若∠ABC的平分线BE交DC于点E,且BE∥AD,求∠C的度数.28.如图,六边形ABCDEF的各个内角都相等,且∠DAB=60°.(1)求∠E的度数.(2)求∠ADE的度数.(3)判断AB与DE的位置关系,并说明理由.29.如图,四边形ABCD中,AD∥BC,∠BCD=90°,∠BAD的平分线AG交BC于点G.(1)求证:∠BAG=∠BGA;(2)如图2,∠BCD的平分线CE交AD于点E,与射线GA相交于点F,∠B=50°.①若点E在线段AD上,求∠AFC的度数;②若点E在DA的延长线上,直接写出∠AFC的度数;(3)如图3,点P在线段AG上,∠ABP=2∠PBG,CH∥AG,在直线AG上取一点M,使∠PBM=∠DCH,请直接写出∠ABM:∠PBM的值.30.如图,在四边形ABCD中,AD∥BC,连接BD,点E在BC边上,点F在DC边上,且∠1=∠2.(1)求证:EF∥BD;(2)若DB平分∠ABC,∠A=130°,∠C=70°,求∠CFE的度数.31.在各个内角都相等的多边形中,一个外角等于一个内角的,求这个多边形每一个内角的度数和它的边数.32.小月和小东在一起探究有关“多边形内角和”的问题,两人互相出题考对方,小月给小东出了这样的一个题目:一个四边形的各个内角的度数之比为1:2:3:6,求各个内角的度数.小东想了想,说:“这道题目有问题”(1)请你指出问题出在哪里;(2)他们经过研究后,改变题目中的一个数,使这道题没有问题,请你也尝试一下,换一个合适的数,使这道题目没有问题,并进行解答.33.如图1,点E在四边形ABCD的边BA的延长线上,CE与AD交于点F,∠DCE=∠AEF,∠B=∠D.(1)求证:AD∥BC;(2)如图2,若点P在线段BC上,点Q在线段BP上,且∠FQP=∠QFP,FM平分∠EFP,试探究∠MFQ与∠DFC的数量关系,并说明理由.34.已知在四边形ABCD中,∠A=∠C=90°.(1)如图1,若BE平分∠ABC,DF平分∠ADC的邻补角,请写出BE与DF的位置关系,并证明.(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.(3)如图3,若BE、DE分别五等分∠ABC、∠ADC的邻补角(即∠CDE=∠CDN,∠CBE=∠CBM),则∠E=.35.已知:在四边形ABCD中,连接AC、BD,∠1=∠2,∠3=∠4.求证:∠ABC=∠ADC.36.已知在一个十边形中,其中九个内角的和是1320°,求这个十边形另一个内角的度数.37.如图,在四边形ABCD中,∠DAB、∠CBA的平分线交于点E,试说明:∠AEB=(∠C+∠D).38.为了表示几种三角形之间的关系,画了如图结构图:请你采用适当的方式表示正方形、平行四边形、四边形、菱形、矩形之间的关系.39.如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.(1)将下面的表格补充完整:(2)根据规律,是否存在一个正n边形,使其中的∠α=20°?若存在,直接写出n的值;若不存在,请说明理由.(3)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.40.李师傅要为某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的多12°,请你帮李师傅求出这个正多边形的一个内角的度数和它的边数.41.如图1,已知∠A+∠E+∠F+∠C=540°.(1)试判断直线AB与CD的位置关系,并说明理由(2)如图2,∠P AB=3∠P AQ,∠PCD=3∠PCQ,试判断∠APC与∠AQC的数量关系,并说明理由.42.如图,从四边形ABCD的纸片中只剪一刀,剪去一个三角形,剩余的部分是几边形,请画出示意图,并在图形下方写上剩余部分多边形的内角和.43.一个多边形的外角和是内角和的,求这个多边形的边数.44.已知,一个多边形的每一个外角都是它相邻的内角的.试求出:(1)这个多边形的每一个外角的度数;(2)求这个多边形的内角和.45.如图,在四边形ABCD中,∠B+∠ADC=180°,CE平分∠BCD交AB于点E,连结DE.(1)若∠A=50°,∠B=85°,求∠BEC的度数;(2)若∠A=∠1,求证:∠CDE=∠DCE.46.如图,一张四边形纸片ABCD,AB∥CD,AD∥BC,把纸片的一角沿折痕CN折叠,使BC与DC边重合,B′是点B的对应点,过点C作CM⊥CN,(1)证明:AD∥NB′;(2)若∠B=64°,试求∠BCM的度数.47.两条直线相交所形成的四个角中,有一个公共顶点且有一条公共边的两个角叫做邻补角,如图所示,∠AOD与∠BOD就是一对邻补角.(1)多边形的一个外角与其相邻的内角就是一对邻补角,若某多边形的一个外角的度数为x(度),则与该外角相邻的内角度数可用x的代数式表示为;(2)如果设题(1)中的多边形的边数为x,且该外角的度数与其所有不相邻内角的度数之和为460°,则可列二元一次方程为;(3)若某多边形的一个外角的度数与其所有不相邻内角的度数之和为1900°,求这个外角的度数和此多边形的边数.48.如图,在四边形ABCD,AD∥BC,将△ADC沿对角线AC折叠,使得点D落在D′上,AD′与BC交于点E,若∠AEB=70°,求∠CAD的度数.49.解答题:(1)如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.(2)如图②③,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC 与外角∠DCE的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图②,若α+β>180°,求∠P的度数.(用α,β的代数式表示)②如图③,若α+β<180°,请在图③中画出∠P,并直接写出∠P=.(用α,β的代数式表示)(作图2分,写出结果)50.如图,已知四边形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC =70°.(1)AD与BC平行吗?试写出推理过程;(2)求∠DAC和∠EAD的度数.人教新版八年级上学期《11.3 多边形及其内角和》2019年同步练习卷参考答案与试题解析一.解答题(共50小题)1.小明和小亮分别利用图①、②的不同方法求出了五边形的内角和都是540度.请你考虑在图③中再用另外一种方法求五边形的内角和.并写出求解过程.【分析】图①、②的基本思路是把所求的多边形的问题转化为三角形的问题,利用三角形的内角和定理即可解决问题.【解答】解:连接五边形的一对不相邻的顶点,得到一个三角形和一个四边形,三角形的内角和是180度,四边形的内角和是360度,因而五边形的内角和是180+360=540度.【点评】正确理解图①、②的基本解题思路,把五边形内角和问题转化为熟悉的三角形的内角和的问题.2.提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:(1)当AP=AD时(如图②):∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为:S△PBC=S△DBC+S;△ABC(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:S△PBC=S△DBC+S△ABC..【分析】(2)仿照(1)的方法,只需把换为;(3)注意由(1)(2)得到一定的规律;(4)综合(1)(2)(3)得到面积和线段比值之间的一般关系;(5)利用(4),得到更普遍的规律.【解答】解:(2)∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.又∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA.∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.∴S△PBC=S△DBC+S△ABC(3)S△PBC=S△DBC+S△ABC;(4)S△PBC=S△DBC+S△ABC;∵AP=AD,△ABP和△ABD的高相等,∴S△ABP=S△ABD.又∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,∴S△CDP=S△CDA∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP=S四边形ABCD﹣S△ABD﹣S△CDA=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)=S△DBC+S△ABC.∴S△PBC=S△DBC+S△ABC问题解决:S△PBC=S△DBC+S△ABC.【点评】注意总结相应规律,类似问题通常采用类比的方法求解.3.已知正n边形的周长为60,边长为a(1)当n=3时,请直接写出a的值;(2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.【分析】(1)边长=周长÷边数;(2)分别表示出a和b的代数式,让其相等,看是否有相应的值.【解答】解:(1)a=20;(2)此说法不正确.理由如下:尽管当n=3、20、120时,a>b或a<b,但可令a=b,得,即.∴60n+420=67n,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b,即不符合这一说法的n的值为60.【点评】读懂题意,找到相应量的等量关系是解决问题的关键.4.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.【分析】(1)根据多边形内角和公式可得n边形的内角和是180°的倍数,依此即可判断,再根据多边形内角和公式即可求出边数n;(2)根据等量关系:若n边形变为(n+x)边形,内角和增加了360°,依此列出方程,解方程即可确定x.【解答】解:(1)∵360°÷180°=2,630°÷180°=3…90°,∴甲的说法对,乙的说法不对,360°÷180°+2=2+2=4.答:甲同学说的边数n是4;(2)依题意有(n+x﹣2)×180°﹣(n﹣2)×180°=360°,解得x=2.故x的值是2.【点评】考查了多边形内角与外角,此题需要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.5.如图,在五边形ABCDE中满足AB∥CD,求图形中的x的值.【分析】根据平行线的性质先求∠B的度数,再根据五边形的内角和公式求x的值.【解答】解:∵AB∥CD,∠C=60°,∴∠B=180°﹣60°=120°,∴(5﹣2)×180°=x+150°+125°+60°+120°,∴x=85°.【点评】本题主要考查了平行线的性质和多边形的内角和,属于基础题.6.一个n边形的内角和比四边形的外角和大540°,求n.【分析】要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.【解答】解:设多边形的边数为n,可得(n﹣2)•180°=360°+540°,解得n=7.【点评】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征.7.如图,在四边形ABCD中,∠DAB,∠CBA的平分线交于点E,若∠AEB=105°,求∠C+∠D的度数.【分析】先根据角平分线得:∠DAB=2∠EAB,∠CBA=2∠EBA,之后运用三角形内角和定理和四边形内角和定理进行变形可得结论.【解答】解:∵∠DAB,∠CBA的平分线交于点E,∴∠DAB=2∠EAB,∠CBA=2∠EBA,在△EAB中,∠EAB+∠EBA=180°﹣∠AEB=180°﹣105°=75°,∴∠DAB+∠CBA=2(∠EAB+∠EBA)=150°,∴∠C+∠D=360°﹣(∠DAB+∠CBA)=360°﹣150°=210°.【点评】本题考查了角平分线的定义、三角形内角和及四边形内角和,熟练掌握多边形内角和是关键.8.一个凸多边形,除了一个内角外,其余各内角的和为2750°,求这个多边形的边数.【分析】根据多边形的内角和公式(n﹣2)•180°,用2750除以180,商就是n﹣2,余数就是加上的那个外角的度数,进而可以算出这个多边形的边数.【解答】解:2750÷180=15…50,则边数n=18,这个内角的度数是:180°﹣50°=130°.故这个内角的大小是130°,多边形的边数是18.【点评】本题考查多边形内角和公式的灵活运用;关键是找到相应度数的等量关系.9.如图,五边形ABCDE的内角都相等,且AB=BC,AC=AD,求∠CAD的度数.【分析】由五边形ABCDE的内角都相等,先求出五边形的每个内角度数,再求出∠1=∠2=∠3=∠4=36°,从而求出∠CAD=108°﹣72°=36度.【解答】证明:∵五边形ABCDE的内角都相等,∴∠BAE=∠B=∠BCD=∠CDE=∠E=(5﹣2)×180°÷5=108°,∵AB=AC,∴∠1=∠2=(180°﹣108°)÷2=36°,∴∠ACD=∠BCD﹣∠2=72°,∵AC=AD,∴∠ADC=∠ACD=72°,∴∠CAD=180°﹣∠ACD﹣∠ADC=36°.【点评】本题主要考查了正五边形的内角和以及正五边形的有关性质.解此题的关键是能够求出∠1=∠2=∠3=∠4=36°,和正五边形的每个内角是108度.10.在各个内角都相等的多边形中若外角度数等于每个内角度数的,求这个多边形的每个内角度数以及多边形的边数.【分析】已知关系为:一个外角=一个内角×,隐含关系为:一个外角+一个内角=180°,由此即可解决问题.【解答】解:设这个多边形的每一个内角为x°,那么180﹣x=x,解得x=140,那么边数为360÷(180﹣140)=9.答:这个多边形的每一个内角的度数为140°,它的边数为9.【点评】本题考查了多边形内角与外角的关系,用到的知识点为:各个内角相等的多边形的边数可利用外角来求,边数=360÷一个外角的度数.11.如图:在六边形ABCDEF中,AF∥CD,AB∥DE,且∠BAF=100°,∠BCD=120°,求∠ABC和∠D的度数.【分析】连接AD,利用平行线的性质说明∠BAF与∠CDE的关系,从而求出∠CDE的度数.利用四边形的内角和是360°,求出∠ABC.【解答】解:连接AD∵AF∥CD,AB∥DE,∴∠F AD=∠ADC,∠BAD=∠ADE,∴∠BAF=∠CDE=100°∵∠ABC+∠DCB+∠BAD+∠ADC=360°,又∵∠F AB=∠F AD+∠BAD=∠ADC+∠BAD=100°,∴∠ABC=360°﹣120°﹣100°=140°.【点评】本题考查了平行线的性质,多边形的内角和定理.解决本题亦可延长AB、DC,利用平行和三角形的内角和求解.12.一个正多边形的每一个内角比每一个外角的5倍还小60°,求这个正多边形的边数及内角和.【分析】设这个正多边的外角为x,则内角为5x﹣60,根据内角和外角互补可得x+5x﹣60=180,解可得x的值,再利用外角和360°÷外角度数可得边数,根据内角和公式:(n ﹣2)×180°计算内角和即可.【解答】解:设这个正多边的外角为x,则内角为5x﹣60°,由题意得:x+5x﹣60=180,解得:x=40,360°÷40°=9.(9﹣2)×180°=1260°答:这个正多边形的边数是9,内角和是1260°.【点评】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.13.一个多边形的内角和与外角和的和恰好是十二边形的内角和,求这个多边形的边数.【分析】设这个多边形的边数为n,根据题意得出方程(n﹣2)×180°+360°=(12﹣2)×180°,求出方程的解即可.【解答】解:设这个多边形的边数为n,则(n﹣2)×180°+360°=(12﹣2)×180°,解得:n=10,答:这个多边形的边数为10.【点评】本题考查了多边形的内角与外角,能熟记多边形的内角和公式是解此题的关键,注意:边数为n(n≥3)的多边形的内角和=(n﹣2)×180°,多边形的外角和=360°.14.如图,四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AE.(1)如图1,求证:AD∥BC(2)若∠DAE和∠DCE的角平分线相交于点F,连接AC.①如图2,若∠BAE=70°,求∠F的度数②如图3,若∠BAC=∠DAE,∠AGC=2∠CAE,则∠CAE的度数为36°(直接写出结果)【分析】(1)根据平行线的性质得:∠B=∠DCE,由于∠B=∠D,得∠D=∠DCE,根据平行线的判定,可得结论;(2)①如图,设∠DAF=∠EAF=α,∠DCF=∠ECF=β,根据平行线的性质列等式可得结论;②如图3,设∠CAG=x,∠DCG=z,∠BAC=y,△AHD中,x+2y+2z=180①,△ACG中,x+2x+y+z=180,变形后相减可得结论.【解答】解:(1)∵AB∥CD,∴∠B=∠DCE,而∠B=∠D,∴∠D=∠DCE,∴AD∥BC;(2)①如下图,设∠DAF=∠EAF=α,∠DCF=∠ECF=β,∵AD∥BC,∴∠D=∠DCE=2β,∵AB∥CD,∴∠BAE+∠EAD+∠D=180°,∵∠BAE=70°∴70+2α+2β=180整理得:α+β=55°,∵∠DHF=∠DAH+∠D=∠DCF+∠F即:α+2β=∠F+β,∴∠F=α+β=55°;②如图3,设∠CAG=x,∠DCG=z,∠BAC=y,则∠EAD=y,∠D=∠DCE=2z,∠AGC=2∠CAE=2x,∵AB∥CD,∴∠AHD=∠BAH=x+y,∠ACD=∠BAC=y,△AHD中,x+2y+2z=180①,△ACG中,x+2x+y+z=180,3x+y+z=180,6x+2y+2z=360②,②﹣①得:5x=180,x=36°,∴∠CAE=36°.【点评】本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.15.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.【分析】(1)先根据三个内角度数的比设未知数,根据三角形的内角和列一元一次方程求出x的值,再求其对应的三个外角的度数并求比值即可.(2)根据多边形的内角和公式列式求解即可.【解答】解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.【点评】考查了三角形的内角和定理和外角的性质,明确三角形的内角和为180°,并熟知三角形的一个内角与其相邻的外角和为180°.同时考查了多边形的内角和公式,熟记公式是解题的关键.16.如图所示,在四边形ABCD中,点E在BC上,AB∥DE,∠B=78°,∠C=60°,求∠EDC的度数.【分析】由AB∥DE可得∠B=∠DEC=78°,已知∠C=60°,根据三角形内角和定理即可得∠EDC的度数.【解答】解:∵AB∥DE,∴∠B=∠DEC=78°,∵∠C=60°,∴∠EDC=180°﹣∠C﹣∠DEC=180°﹣78°﹣60°=42°.故∠EDC的度数为42°.【点评】本题主要考查了平行线的性质及三角形内角和定理,比较简单.17.(1)已知一个多边形的內角和是它的外角和的3倍,求这个多边形的边数.(2)如图,点F是△ABC的边BC廷长线上一点,DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.【分析】(1)多边形的外角和是360°,内角和是它的外角和的3倍,则内角和是3×360=1080度.n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.(2)在直角三角形DFB中,根据三角形内角和定理,求得∠B的度数;再在△ABC中,根据内角与外角的性质求∠ACF的度数即可.【解答】解:(1)设这个多边形的边数为n,∵n边形的内角和为(n﹣2)•180°,多边形的外角和为360°,∴(n﹣2)•180°=360°×3,解得n=8.∴这个多边形的边数为8.(2)在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=30°+50°=80°.【点评】考查了多边形内角与外角,根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟记.同时考查了三角形的内角和定理,以及三角形的外角等于不相邻的两个内角的和.18.如图,五角星的顶点为A、B、C、D、E,求∠A+∠B+∠C+∠D+∠E的度数?【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠A+∠C,∠2=∠B+∠D,然后利用三角形的内角和定理列式计算即可得解.【解答】解:如图,由三角形的外角性质得,∠1=∠A+∠C,∠2=∠B+∠D,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.19.已知一个多边形的内角和720°,求这个多边形的边数.【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【解答】解:设这个多边形的边数是n,依题意得(n﹣2)×180°=720°,n﹣2=4,n=6.答:这个多边形的边数是6.【点评】本题考查了多边形的内角和定理,关键是根据n边形的内角和为(n﹣2)×180°解答.20.如图,四边形ABCD中,BE、CF分别是∠B、∠D的平分线.且∠A=∠C=90°,试猜想BE与DF有何位置关系?请说明理由.【分析】根据多边形的内角和求出∠ABC+∠ADC=180°,根据角平分线定义求出∠1+∠2=90°,求出∠3+∠2=90°,推出∠1=∠3,根据平行线的判定得出即可.【解答】解:BE∥DF,理由是:∵四边形内角和等于360°,∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE、CF分别是∠B、∠D的平分线,∴∠1=∠ABC,∠2=∠ADC,∴∠1+∠2=90°,∵在Rt△DCF中,∠3+∠2=90°,∴∠1=∠3,∴BE∥DF.【点评】本题考查了角平分线定义、多边形的内角与外角、平行线的判定等知识点,能求出∠1=∠3是解此题的关键.21.如图,请猜想∠A+∠B+∠C+∠D+∠E+∠F的度数,并说明你的理由.【分析】根据三角形外角的性质,可得∠1与∠A、∠B的关系,∠2与∠C、∠D的关系,∠3与∠E、∠F的关系,再根据多边形的外角和公式,可得答案.【解答】解:如图:根据三角形外角可得:∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∵∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°【点评】此题考查多边形的内角与外角,掌握三角形的外角和定理是解决问题的关键.22.如图,在四边形ABCD中,∠A=45°,直线l与边AB,AD分别相交于点M,N,则∠1+∠2度数是多少?【分析】先根据四边形的内角和定理求出∠B+∠C+∠D,然后根据五边形的内角和定理列式计算即可得解.【解答】解:∵∠A=45°,∴∠B+∠C+∠D=360°﹣∠A=360°﹣45°=315°,∴∠1+∠2+∠B+∠C+∠D=(5﹣2)•180°,解得∠1+∠2=225°.【点评】本题考查了多边形的内角和公式,熟记多边形的内角和为(n﹣2)•180°是解题的关键,整体思想的利用也很重要.23.如图1,已知∠ACD是△ABC的一个外角,我们容易证明∠ACD=∠A+∠B,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,∠DBC与∠ECB分别为△ABC的两个外角,则∠DBC+∠ECB=∠A+180°(横线上填>、<或=)初步应用:(2)如图3,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C =45°.(3)解决问题:如图4,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A 有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A.(4)如图5,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P与∠A、∠D的数量关系.【分析】(1)根据三角形外角的性质得:∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,两式相加可得结论;(2)利用(1)的结论:∵∠2+∠1﹣∠C=180°,将∠1=135°代入可得结论;(3)根据角平分线的定义得:∠CBP=∠DBC,∠BCP=∠ECB,根据三角形内角和可得:∠P的式子,代入(1)中得的结论:∠DBC+∠ECB=180°+∠A,可得:∠P=90°﹣∠A;(4)根据平角的定义得:∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,由角平分线得:∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,相加可得:∠3+∠4=180°﹣(∠1+∠2),再由四边形的内角和与三角形的内角和可得结论.【解答】解:(1)∠DBC+∠ECB﹣∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2﹣∠C=45°.理由是:∵∠2+∠1﹣∠C=180°,∠1=135°,∴∠2﹣∠C+135°=180°,∴∠2﹣∠C=45°.故答案为:45°;(3)∠P=90°﹣∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=∠DBC,∠BCP=∠ECB,∵△BPC中,∠P=180°﹣∠CBP﹣∠BCP=180°﹣(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°﹣(180°+∠A)=90°﹣∠A.故答案为:∠P=90°﹣∠A,(4)∠P=180°﹣(∠A+∠D).理由是:∵∠EBC=180°﹣∠1,∠FCB=180°﹣∠2,∵BP平分∠EBC,CP平分∠FCB,∴∠3=∠EBC=90°﹣∠1,∠4=∠FCB=90°﹣∠2,∴∠3+∠4=180°﹣(∠1+∠2),∵四边形ABCD中,∠1+∠2=360°﹣(∠A+∠D),又∵△PBC中,∠P=180°﹣(∠3+∠4)=(∠1+∠2),∴∠P=×[360°﹣(∠A+∠D)]=180°﹣(∠A+∠D).【点评】本题是四边形和三角形的综合问题,考查了三角形和四边形的内角和定理、三角形外角的性质、角平分线的定义等知识,难度适中,熟练掌握三角形外角的性质是关键.24.用两块全等的含有30°的直角三角板拼成一个四边形,画出二个可能的图形并写出各个内角的度数(四边形的各个内角的度数若相同视为同一个).。
同步练习:多边形及其内角和一、选择题1.已知一个多边形的外角和等于它的内角和,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形2.若多边形的边数由3增加到n (n 为正整数,且3>n ),则其外角和的度数( )A .增加B .减少C .不变D .不确定3.若一个多边形的内角和是外角和的k 倍,那么这个多边形的边数是( )A .kB .12+kC .22+kD .22-k4.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )A .5B .6C .7D .85.一个五边形有三个内角是直角,另两个都等于n °,则n 的值是( )A .45B .135C .120D .1086.所有内角都相等的18边形,它的每个内角、外角的度数是( )A .120°,60°B .140°,40°C .160°,20°D .100°,80°7.过n 边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形边数是( )A .8B .9C .10D .118.下列命题中,正确的有( )①七边形有14条对角线;②外角和大于内角和的多边形只有三角形;③若一个多边形的内角和与外角和是4:1,则它是九边形.A .0个B .1个C .2个D .3个二、填空题1.六边形的内角和是_________,十二边形的内角和是_________。
2.如果一个多边形的内角和为1260°,那么边数是________。
3.当多边形的边数增加一条时,其内角和增加_____度。
4.将n 边形的边数增加一倍,那么它的内角和增加_______度。
5.过m 边形的一个顶点有7条对角线,n 边形没有对角线,k 边形共有k 条对角线,则.______)(=-n k m参考答案一、选择题1.B 2.C 3.C 4.C 5.B 6.C 7.C 8.C 二、填空题1.720°,1800°2.93.180°4.︒n⋅1805.125.(提示:可求5nm)=k10=,3,=。
《11.3 多边形及其内角和》同步训练题基础题训练(一):限时30分钟1.如图,AC,BD为四边形ABCD的对角线,∠ABC=90°,∠ABD+∠ADB=∠ACB,∠ADC=∠BCD.(1)求证:AD⊥AC;(2)探求∠BAC与∠ACD之间的数量关系,并说明理由.2.将纸片△ABC沿DE折叠使点A落在点A'处【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是;【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间存在怎样的数量关系?并说明理由.【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为.3.【知识回顾】:如图①,在△ABC中,根据三角形内角和定理,我们知道∠A+∠B+∠C=180°.如图②,在△ABC中,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.请写出∠ACD与∠A、∠B的关系,直接填空:∠ACD=.【初步运用】:如图③,点D、E分别是△ABC的边AB、AC延长线上一点.(1)若∠A=70°,∠DBC=150°,则∠ACB=°.(直接写出答案)(2)若∠A=70°,则∠DBC+∠ECB=°.(直接写出答案)【拓展延伸】:如图④,点D、E分别是四边形ABPC的边AB、AC延长线上一点.(1)若∠A=70°,∠P=150°,则∠DBP+∠ECP=°.(请说明理由)(2)分别作∠DBP和∠ECP的平分线,交于点O,如图⑤,若∠O=40°,求出∠A和∠P 之间的数量关系,并说明理由.(3)分别作∠DBP和∠ECP的平分线BM、CN,如图⑥,若∠A=∠P,求证:BM∥CN.4.如图,已知四边形ABCD中,∠D=∠B=90°,AE平分∠DAB,CF平分∠DCB.试判断∠AEF与∠CFE是否相等?并证明你的结论.5.如图,在四边形ABCD中,∠C+∠D=210°(1)∠DAB+∠CBA=度;(2)若∠DAB的角平分线与∠CBA的角平分线相交于点E,求∠E的度数.基础题训练(二):限时30分钟6.如图,在四边形ABCD中,∠A=∠C=90°,BE∥DF,∠1=∠2.求证:∠3=∠4.7.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F 的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)8.(1)如图1,在△ADC中,∠ADC的平分线和∠ACD的外角平分线交于点P,若∠ADC=70°,∠ACD=50°,求∠P的度数.(2)如图2,在四边形ABCD中,∠ADC的平分线和∠BCD的外角平分线交于点P,∠A=90°,∠B=150°,求∠P的度数.(3)如图3,若将(2)中“∠A=90°,∠B=150°”改为“∠A=α,∠B=β”,其余条件不变,直接写出∠P与α+β之间的数量关系.9.三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角.如图1,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.求证:∠ACD=∠A+∠B证明:过点C作CE∥AB(过直线外一点)∴∠B=∠A=∵∠ACD=∠1+∠2∴∠ACD=∠+∠B(等量代换)应用:如图2是一个五角星,请利用上述结论求∠A+∠B+∠C+∠D+∠E的值为10.如图1,在∠A内部有一点P,连接BP、CP,请回答下列问题:①求证:∠P=∠1+∠A+∠2;②如图2,利用上面的结论,在五角星中,∠A+∠B+∠C+∠D+∠E=;③如图3,如果在∠BAC间有两个向上突起的角,请你根据前面的结论猜想∠1、∠2、∠3、∠4、∠5、∠A之间有什么等量关系,直接写出结论即可.基础题训练(三):限时30分钟11.观察每个正多边形中∠α的变化情况,解答下列问题:(1)将下面的表格补充完整:正多边形边数3 4 5 6 …∠a的度数…10°(2)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.12.阅读材料:如图1,点A是直线MN上一点,MN上方的四边形ABCD中,∠ABC=140°,延长BC,2∠DCE=∠MAD+∠ADC,探究∠DCE与∠MAB的数量关系,并证明.小白的想法是:“作∠ECF=∠ECD(如图2),通过推理可以得到CF∥MN,从而得出结论”请按照小白的想法完成解答:拓展延伸保留原题条件不变,CG平分∠ECD,反向延长CG,交∠MAB的平分线于点H(如图3),设∠MAB=α,请直接写出∠H的度数(用含α的式子表示).13.(1)思考探究:如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P 点,请探究∠P与∠A的关系是.(2)类比探究:如图②,四边形ABCD中,设∠A=α,∠D=β,α+β>180°,四边形ABCD的内角∠ABC与外角∠DCE的平分线相交于点P.求∠P的度数.(用α,β的代数式表示)(3)拓展迁移:如图③,将(2)中α+β>180°改为α+β<180°,其它条件不变,请在图③中画出∠P,并直接写出∠P=.(用α,β的代数式表示)14.如图,在四边形ABCD中,AD∥BC,∠B=∠D,延长BA至点E,连接CE,且CE交AD 于点F,∠EAD和∠ECD的角平分线相交于点P.(1)求证:①AB∥CD;②∠EAD+∠ECD=2∠APC;(2)若∠B=70°,∠E=60°,求∠APC的度数;(3)若∠APC=m°,∠EFD=n°,请你探究m和n之间的数量关系.15.如图1,在四边形ABCD中,∠A=∠C,点E在AB边上,DE平分∠ADC,且∠ADE=∠DEA.(1)求证:AD∥BC;(2)如图2,已知DF⊥BC交BC边于点G,交AB边的延长线于点F,且DB平分∠EDF.若∠BDC<45°,试比较∠F与∠EDF的大小,并说明理由.参考答案1.解:(1)∵在△ABC中,∠ABC=90°,∴∠ACB+∠BAC=90°,在△ABD中,∠ABD+∠ADB+∠BAD=180°,∵∠ABD+∠ADB=∠ACB,∴∠ACB+∠BAD=180°,即∠ACB+∠BAC+∠CAD=180°,∴∠CAD=90°,∴AD⊥AC.(2)∠BAC=2∠ACD;∵∠ABC=90°,∴∠BAC=90°﹣∠ACB=90°﹣(∠BCD﹣∠ACD),∵∠DAC=90°,∴∠ADC=90°﹣∠ACD,∵∠ADC=∠BCD,∴∠BCD=90°﹣∠ACD,∴∠BAC=90°﹣(90°﹣∠ACD﹣∠ACD)=2∠ACD.2.解:(1)如图①,∠1=2∠A.理由如下:由折叠知识可得:∠EA′D=∠A;∵∠1=∠A+∠EA′D,∴∠1=2∠A.(2)如图②,2∠A=∠1+∠2.理由如下:∵∠1+∠A′DA+∠2+∠A′EA=360°,∠A+∠A′+∠A′DA+∠A′EA=360°,∴∠A′+∠A=∠1+∠2,由折叠知识可得:∠A=∠A′,∴2∠A=∠1+∠2.(3)如图③,∵∠1=∠DFA+∠A,∠DFA=∠A′+∠2,∴∠1=∠A+∠A′+∠2=2∠A+∠2,∴2∠A=∠1﹣∠2=56°,解得∠A=28°.故答案为:∠1=2∠A;28°.3.解:【知识回顾】∵∠ACD+∠ACB=180°,∠A+∠B+∠ACB=180°,∴∠ACD=∠A+∠B;故答案为:∠A+∠B;【初步运用】(1)∵∠DBC=∠A+∠ACB,∠A=70°,∠DBC=150°,∴∠ACB=∠DBC﹣∠A=150°﹣70°=80°;故答案为:80;(2)∵∠A=70°,∴∠ABC+∠ACB=110°,∴∠DBC+∠ECB=360°﹣110°=250°,故答案为:250;【拓展延伸】(1)如图④,连接AP,∵∠DBP=∠BAP+∠APB,∠ECP=∠CAP+∠APC,∴∠DBP+∠ECP=∠BAP+∠APB+∠CAP+∠APC=∠BAC+∠BPC,∵∠BAC=70°,∠BPC=150°,∴∠DBP+∠ECP=∠BAC+∠BPC=70°+150°=220°,故答案为:220;(2)∠A和∠P之间的数量关系是:∠P=∠A+80°,理由是:如图⑤,设∠DBO=x,∠OCE=y,则∠OBP=∠DBO=x,∠PCO=∠OCE=y,由(1)同理得:x+y=∠A+∠O,2x+2y=∠A+∠P,2∠A+2∠O=∠A+∠P,∵∠O=40°,∴∠P=∠A+80°;(3)证明:如图,延长BP交CN于点Q,∵BM平分∠DBP,CN平分∠ECP,∴∠DBP=2∠MBP,∠ECP=2∠NCP,∵∠DBP+∠ECP=∠A+∠BPC,∠A=∠BPC,∴2∠MBP+2∠NCP=∠A+∠BPC=2∠BPC,∴∠BPC=∠MBP+∠NCP,∵∠BPC=∠PQC+∠NCP,∴∠MBP=∠PQC,∴BM∥CN.4.解:∠AEF=∠CFE.证明:∵∠D=∠B=90°,∴∠DAB+∠DCB=180°,又∵AE平分∠DAB,CF平分∠DCB,∴∠DAE=∠DAB,∠DCF=∠DCB,∴∠DAE+∠DCF=(∠DAB+∠DCB)=90°,∵∠D=90°,∴∠DAE+∠DEA=90°,∴∠DEA=∠DCF,∴AE∥CF,∴∠AEF=∠CFE.5.解:(1)∵∠DAB+∠CBA+∠C+∠D=360°,∴∠DAB+∠CBA=360°﹣(∠C+∠D)=360°﹣210°=150°.故答案为:150;(2)∵∠DAB与∠ABC的平分线交于四边形内一点E,∴∠EAB=∠DAB,∠EBA=∠ABC,∴∠E=180°﹣(∠EAB+∠EBA)=180°﹣(∠DAB+∠CBA)=180°﹣(360°﹣∠C﹣∠D)=(∠C+∠D),∵∠C+∠D=210°,∴∠E=(∠C+∠D)=105°.6.证明:∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵BE∥DF,∴∠2=∠5,∠AEB=∠3,∵∠1=∠2,∴∠1=∠5,∴∠AEB=∠4,∴∠3=∠4.7.解:(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°;(2)∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°;(3)根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,所以当截去5个角时增加了180×5度,则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180°×5+180°=1080°.8.解:(1)如图1,在射线DC上取一点E,∵∠ADC的平分线和∠ACD的平分线交于点P,∴,,∴∠P=∠PCE﹣∠PDC=30°;(2)如图2,在射线DC上取一点E,∵∠ADC的平分线和∠BCD的外角平分线交于点P,∴,,∴∠P=∠PCE﹣∠PDC======30°;(3).9.证明:过点C作CE∥AB(过直线外一点有且只有一条直线与已知直线平行)∴∠B=∠2(两直线平行,同位角相等),∠A=∠1(两直线平行,内错角相等),∵∠ACD=∠1+∠2,∴∠ACD=∠A+∠B(等量代换)应用:对于△BDN,∠MNA=∠B+∠D,对于△CEM,∠NMA=∠C+∠E,对于△ANM,∠A+∠MNA+∠NMA=180°,∴∠A+∠B+∠D+∠C+∠E=180.故答案为:有且只有一条直线与已知直线平行;∠2(两直线平行,同位角相等);∠1(两直线平行,内错角相等);A;180°10.解:①连接AP并延长,则∠3=∠2+∠BAP,∠4=∠1+∠PAC,故∠BPC=∠1+∠A+∠2;②利用①中的结论,可得∠1=∠A+∠C+∠D,∵∠2=∠B+∠E,∵∠1+∠2=180°,∴∠A+∠B+∠C+∠D+∠E=180°.③连接AP、AD、AG并延长,同①由三角形内角与外角的性质可求出∠4+∠5=∠1+∠2+∠3+∠BAC.故答案为:180°.11.解:(1)填表如下:正多边形的边数 3 4 5 6 (18)∠α的度数60°45°36°30°…10°故答案为:60°,45°,36°,30°,18;(2)不存在,理由如下:假设存在正n边形使得∠α=21°,得∠α=()°=21°,解得:n=8,又n是正整数,所以不存在正n边形使得∠α=21°.12.解:阅读材料:延长CB交MN于点T,∵∠ECF=∠ECD,2∠DCE=∠MAD+∠ADC,∴2∠ECD=∠MAD+∠ADC=360°﹣∠CTA﹣∠DCT=360°﹣(180°﹣∠MTC)﹣(180°﹣∠ECD)=∠MTC+∠ECD,∴∠ECD=∠MTC,∴∠ECF=∠MTC,∴CF∥MN,∵∠ABC=140°,∴∠ABT=40°,∴∠MTC=∠MAB+40°,即∠DCE=∠MAB+40°;拓展延伸:∠H=360°﹣∠CDA﹣∠MAB﹣∠DAB﹣∠HCD=180°﹣[360°﹣(180°﹣∠ECD)﹣∠MAB﹣(180°﹣∠ECD)]=180°﹣(∠ECD﹣∠MAB),∵∠DCE=∠MAB+40°,∴∠H=180°﹣(∠MAB+60°),∵∠MAB=α,∴∠H=120°﹣α.13.解:(1)如图1中,结论:2∠P=∠A.理由:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴2∠PCD=∠ACD,2∠PBC=∠ABC,∴2(∠P+∠PBC)=∠A+∠ABC,2∠P+2∠PBC=∠A+∠ABC,2∠P+∠ABC=∠A+∠ABC,∴2∠P=∠A;(2)如图2中,解法一:由四边形内角和定理得,∠BCD=360°﹣∠A﹣∠D﹣∠ABC,∴∠DCE=180°﹣(360°﹣∠A﹣∠D﹣∠ABC)=∠A+∠D+∠ABC﹣180°,由三角形的外角性质得∠PCE=∠P+∠PBC,∵BP、CP分别是∠ABC和∠DCE的平分线,∴∠PBC=∠ABC,∠PCE=∠DCE,∴∠P+∠PBC=(∠A+∠D+∠ABC﹣180°)=(∠A+∠D)+∠ABC﹣90°,∴∠P=(∠A+∠D)﹣90°,∵∠A=α,∠D=β,∴∠P=(α+β)﹣90°;解法二:延长BA交CD的延长线于F.∵∠F=180°﹣∠FAD﹣∠FDA=180°﹣(180°﹣α)﹣(180°﹣β)=α+β﹣180°,由(1)可知:∠P=∠F,∴∠P=(α+β)﹣90°;②如图3,延长AB交DC的延长线于F.∵∠F=180°﹣α﹣β,∠P=∠F,∴∠P=(180°﹣α﹣β)=90°﹣α﹣β.故答案为:2∠P=∠A;90°﹣α﹣β.14.解:(1)证明:①∵AD∥BC,∴∠EAD=∠B,∵∠B=∠D,∴∠EAD=∠D,∴AB∥CD;②过点P作PQ∥AB,则∠EAP=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠DCP=∠CPQ,∵AB∥CD,∴PQ∥CD,∴∠DCP=∠CPQ,∵∠EAP=∠EAD,∠DCP=,∴;(2)由(1)知AD∥BC,AB∥CD,∴∠EAD=∠B=70°,∠ECD=∠E=60°,由(1)知∠EAD+∠ECD=2∠APC,∴∠APC=;(3)过点F作FH∥AB,则∠EAD=∠AFH,∵AB∥CD,∴FH∥CD,∴∠ECD=∠CFH,∴∠EAD+∠ECD=∠AFH+∠CFH=∠AFC=∠EFD,由(1)知∠EAD+∠ECD=2∠APC,∴∠EFD=2∠APC,∵∠APC=m°,∠EFD=n°,∴.15.解:(1)证明:∵DE平分∠ADC,∴∠CDE=∠ADE,又∵∠ADE=∠DEA,∴∠CDE=∠DEA,∴CD∥AB,∴∠B+∠C=180°,又∵∠A=∠C,∴∠B+∠A=180°,∴AD∥BC;(2)∵DF⊥BC,∴∠BGF=90°,又∵AD∥BC,∴∠ADF=∠BGF=90°,∵CD∥AB,∴∠CDF=∠F.设∠EDB=∠BDF=x°,∠CDF=∠F=y°,则∠EDF=2x°,∠ADE=∠EDC=(2x+y)°,由∠ADF=∠ADE+∠EDF,得2x+y+2x=90,∴y=90﹣4x,∴∠F﹣∠EDF=y°﹣2x°=90°﹣4x°﹣2x°=90°﹣6x,∵∠BDC<45°,∴x+y<45°,x+90﹣4x<45,解得x>15,∴6x>90.∴∠F﹣∠EDF=90°﹣6x°<0,∴∠F<∠EDF.。
第十一章第11.3节多边形及其内角和同步练习一
一.填空题
1.如果多边形的相等,相等,那么就称它为正多边形.
2.过五边形的一个顶点,可以作条对角线,把这个五边形分成个三角形,则五边形的内角和为.
3.n(n≥3)边形的内角和为,外角和为 .
4.四边形的内角和为,六边形的内角和为,七边形的内角和为,九边形的内角和为 .
5.一个多边形的内角和等于它的外角和的三倍,则这个多边形是边形.
二.选择题
1.由一些线段首尾顺次相接组成的图形叫多边形,如果延长多边形的一条边,整个多边形都在这条延长线的一侧,那么这样的多边形称为凸多边形,请根据上面的定义,判断下列图形中不是凸多边形的为()
A B C D
2.若一个多边形从一个顶点,只能引出四条对角线,那么这个多边形是()边形.
A.六B.七C.八D.九
3.六边形有()条对角线.
A.7 B.8 C.9 D.10
4.如果一个多边形的内角和等于它的外角和的两倍,则这个多边形是()边形.
A.四B.五C.六D.七
三.解答题:
内角和等于1800°的多边形是几边形?
答案
一.1.各内角,各边;2.2,3,540°;3.(n-2)180°,360°;
4.360°,720°,900°,1260°;5.八
二.1.A 2.B 3.C 4.C
三.十二边形。
11.3 多边形及其内角和
一、填空题
1.一个多边形是正多边形的条件是___________.
2.从多边形的一个顶点可以引出3条对角线,这个多边形是________________________.
3.一个多边形共有5条对角线,这个多边形是______________________
4.从八边形的—个顶点可以引___________条对角线,八边形总共有___________条对角线.
5.n边形一共有___________条对角线.
6.如果一个多边形的边数恰好是从—个顶点引出的对角线条数的2倍,则此多边形的边数为_____________.
7.过四边形的一个顶点可以把四边形分成两个三角形;过五边形或六边形的一个顶点的对角线,可以分别把它们分成___________个三角形;过n边形的一个顶点的对角线可以把n 边形分成___________个(用含n的代数式表示)三角形.
二、选择题
8.六边形内角和为( )
A.360°
B.540°
C.720°
D.1080°
9.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,那么这张纸片原来的形状不可能是( )
A.六边形
B.五边形
C.四边形
D.三角形
三、解答题
10.下面的两个网格中,每个小正方形的边长均为1 cm,请你分别在每个网格中画出—个顶点在格点上,且周长为12 cm的形状和大小不同的凸多边形.
11. 如图,在六边形ABCDEF中,AF∥CD,AB∥DE,且∠A=120°,∠B=80°,求∠C和∠D 的度数.
参考答案:1.每条边相等,每个角都相等 2.六边形 3.五边形
4. 5;20
5.
6. 6
7. 3或4;(n-2)
8.C 9.A
10.
11. 向两边延长AB、CD、EF,分别交于H、M、G.
因为∠BAF=120°,∠ABC=80°,
根据邻补角定义知∠GAF=60°,∠HBC=100°.
又因为AF∥CD,根据两直线平行,同位角相等,可得∠H=∠GAF=60°.
又因为∠BCD是△BHC的一个外角,所以
∠BCD=∠H+∠HBC=160°.
因为AB∥DE,根据两直线平行,同位角相等,可得∠EDM=∠H=60°.
由邻补角的定义可得∠CDE°=180°-∠EDM=120°.。