概率论与数理统计(经管类)分类试题2007年4月-2009年10月
- 格式:doc
- 大小:1.34 MB
- 文档页数:30
全国自考概率论与数理统计(经管类)试卷2009-11-3全国2009年7月自考 概率论与数理统计(经管类)试卷课程代码:04183一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。
错选、多选或未选均无分。
1.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) A .P (AB )=l B .P (A )=1-P (B ) C .P (AB )=P (A )P (B )D .P (A ∪B )=12.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) A .P (AB )=0 B .P (A -B )=P (A )P (B ) C .P (A )+P (B )=1D .P (A |B )=03.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ) A .0.125 B .0.25 C .0.375D .0.504.设函数f (x )在[a ,b ]上等于sin x ,在此区间外等于零,若f (x )可以作为某连续型随机变量的概率密度,则区间[a ,b ]应为( )A .[0,2π-]B .[2π,0]C .]π,0[D .[23π,0] 5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤<-≤<其它021210x xx x ,则P (0.2<X<1.2)=( ) A .0.5 B .0.6 C .0.66D .0.76.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( ) A .61 B .41C .31D .21 7.设随机变量X ,Y 相互独立,其联合分布为则有( )A .92,91==βαB .91,92==βαC .32,31==βαD .31,32==βα8.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( ) A .-2 B .0 C .21D .29.设n μ是n 次独立重复试验中事件A 出现的次数,P 是事件A 在每次试验中发生的概率,则对于任意的0>ε,均有}|{|lim εμ>-∞→p nP nn ( )A .=0B .=1C .> 0D .不存在10.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H 0 :μ=μ0,那么在显著水平0.01下,下列结论中正确的是( ) A .不接受,也不拒绝H 0 B .可能接受H 0,也可能拒绝H 0 C .必拒绝H 0D .必接受H 0二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
Ⅱ、综合测试题概率论与数理统计(经管类)综合试题一(课程代码4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。
错选、多选或未选均无分。
1.下列选项正确的是( B ).A. A B A B+=+ B.()A B B A B+-=-C. (A-B)+B=AD. AB AB=2.设()0,()0P A P B>>,则下列各式中正确的是( D ).A.P(A-B)=P(A)-P(B)B.P(AB)=P(A)P(B)C. P(A+B)=P(A)+P(B)D. P(A+B)=P(A)+P(B)-P(AB)3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是( D ).A. 18B.16C.14D.124.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为( B ).A.1120B.160C.15D.125.设随机事件A,B满足B A⊂,则下列选项正确的是( A ).A.()()()P A B P A P B-=- B. ()()P A B P B+=C.(|)()P B A P B =D.()()P AB P A =6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ). A. 0()1f x ≤≤ B. f (x )连续C.()1f x dx +∞-∞=⎰D. ()1f +∞=7.设离散型随机变量X 的分布律为(),1,2, (2)k bP X k k ===,且0b >,则参数b 的值为 ( D ).A.12 B. 13 C. 15D. 1 8.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += ( A ). A.1 B.2 C.1.5 D.09.设总体X 服从正态分布,21,()2EX E X =-=,1210,,...,X X X 为样本,则样本均值101110i i X X ==∑~ ( D ).A.(1,1)N -B.(10,1)NC.(10,2)N -D.1(1,)10N - 10.设总体2123(,),(,,)XN X X X μσ是来自X 的样本,又12311ˆ42X aX X μ=++ 是参数μ的无偏估计,则a = ( B ). A. 1 B. 14 C. 12 D. 13二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
全国2010年10月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设随机事件A 与B 互不相容,且P (A )>0,P (B )>0,则( ) (事件的关系与运算) A.P (B |A )=0 B.P (A |B )>0 C.P (A |B )=P (A ) D.P (AB )=P (A )P (B )解:A 。
因为P (AB )=0.2.设随机变量X ~N (1,4),F (x )为X 的分布函数,Φ(x )为标准正态分布函数,则F (3)=( ) A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3)(正态分布) 解:C 。
因为F(3)=)1()213(Φ=-Φ 3.设随机变量X 的概率密度为f (x )=⎩⎨⎧≤≤,,0,10 ,2其他x x 则P {0≤X ≤}21=( )A.41 B.31C.21D.43 (连续型随机变量概率的计算)解:A。
因为P {0≤X ≤}21412210==⎰xdx4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-+, ,0 ,01,21其他x cx 则常数c =( ) A.-3 B.-1 C.-21D.1解:D.(求连续型随机变量密度函数中的未知数) 由于1)(=⎰+∞∞-dx x f112121212121)(01201=⇒=-=⎥⎦⎤⎢⎣⎡+=+=--∞+∞-⎰⎰c c x cx dx cx dx x f5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是( ) A. f (x )=-e -x B. f (x )=e -x C. f (x )=||-e 21xD. f (x )=||-e x解:选C。
(概率密度函数性质)A .0<--x e 不满足密度函数性质 由于1)(=⎰+∞∞-dx x f ,B 选项∞=-=+∞∞--+∞∞--⎰xx e dx eC选项12122100||||=-===+∞-+∞-+∞-+∞∞--⎰⎰⎰xx x x e dx e dx e dx eD选项2220||||=-===+∞-+∞-+∞-+∞∞--⎰⎰⎰x xx x edx e dx e dx e6.设二维随机变量(X ,Y )~N (μ1,μ2,ρσσ,,2221),则Y ~( )(二维正态分布)A.N (211,σμ) B.N (221,σμ) C.N (212,σμ)D.N (222,σμ)解:D 。
概率论与数理统计考试题及答案一、单项选择题(每题3分,共30分)1. 随机变量X服从标准正态分布,P(X≤0)=______。
A. 0.5B. 0.3C. 0.7D. 0.8答案:A2. 已知随机变量X服从二项分布B(n, p),若n=10,p=0.5,则E(X)=______。
A. 2B. 5C. 10D. 15答案:B3. 设随机变量X服从泊松分布,其概率质量函数为P(X=k)=λ^k/e^λ*k!,其中λ>0,则E(X)=______。
A. λB. e^λC. kD. 1答案:A4. 若随机变量X与Y相互独立,则P(X>a, Y>b)=______。
A. P(X>a) + P(Y>b)B. P(X>a) * P(Y>b)C. P(X>a) - P(Y>b)D. P(X>a) / P(Y>b)答案:B5. 设随机变量X服从正态分布N(μ, σ^2),其中μ=3,σ^2=4,则P(X>3)=______。
A. 0.5B. 0.25C. 0.75D. 0.3答案:A6. 若随机变量X服从均匀分布U(a, b),则E(X)=______。
A. (a+b)/2B. a+bC. a-bD. b-a答案:A7. 设随机变量X服从指数分布,其概率密度函数为f(x)=λe^(-λx),其中x≥0,λ>0,则D(X)=______。
A. 1/λ^2B. 1/λC. λD. λ^2答案:A8. 若随机变量X与Y相互独立,且X~N(μ1, σ1^2),Y~N(μ2, σ2^2),则X+Y~______。
A. N(μ1+μ2, σ1^2+σ2^2)B. N(μ1-μ2, σ1^2-σ2^2)C. N(μ1+μ2, σ1^2-σ2^2)D. N(μ1-μ2, σ1^2+σ2^2)答案:A9. 设随机变量X服从二项分布B(n, p),则D(X)=np(1-p)。
——给所有为知识而追求的人朋友是会计专业,要参加自考2011年10月的自考,报了两门公共课:概率与数理统计/线性代数,要我给她辅导下。
回想起自己的考研经历,那时都是根据考试大纲/考点复习的,不知道为什么自考没有找到考试大纲,如果有这个东西的话希望有人分享下。
其他方面,个人觉得做真题是最有效果的,因此特意花了点时间整理了历年试题(奇怪的是没找到2011年7月全国卷)。
在此分享给大家,祝她考试顺利,也祝所有参加考试的人,考试顺利。
为了照顾2003版的朋友,以及以后的更新,这里以doc格式上传。
如果大家有新的试题,也请及时更新与共享。
谢谢!注:更新时麻烦更新目录,以方便大家查找。
其中,有个别目录出现乱码,本人没有找到原因,是手动删除的。
目录浙江省2011年7月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。
全国2011年1月自考概率论与数理统计(经管类)试题 ............... 错误!未定义书签。
全国2011年1月自考概率论与数理统计(经管类)参考答案 ....... 错误!未定义书签。
浙江省2011年1月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。
全国2010年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2010年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2010年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2009年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2009年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2009年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2009年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2008年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
概率论与数理统计(经管类)A一、单项选择题。
1. 【 】A .至少有一个发生B .三个都不发生C .至多有一个发生D .恰有一个发生2.甲袋中装有两白一黑共3个球,乙袋中装有一白两黑共3个球,由甲袋任取一个放入乙袋,再由乙袋中任取一个,则取到白球的概率为 【 】A .32B .43C .31D .125 3.三个人独立地破译一密码,每人能够译出的概率分别为51,41,31,则密码能够被破译的概率为 【 】A .65 B .53 C .32 D .60474.【 】5. 【 】A. 1B. 2C. 3D. 46.【】7.将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于【】8. 【】A. 极大似然估计B. 矩估计C. 有偏估计D. 有效估计9. 【】A.0.6915 B.0.1915C.0.5915D.0.391510. 【】二、填空题11.将红、黄、蓝3个球随机地投入4只盒子中,若每只盒子容球数不限,则3只盒子各放一个球的概率是。
12.一批电子元件共有100个,次品率为0.05,连续两次不放回地从中任取一个,则第二次才取到正品的概率为 _。
13.。
14.每天某种商品的销售量(件)服从参数为 的泊松分布,随机选取4天,其中恰有一天的销售量为5件的概率是。
15.16.。
17.=Y)= 。
18. (写出自由度)。
19.。
20.。
21.。
22.。
23.。
24.是。
25.。
三、计算题26.27.盒中有5白3红共8个球,依次从中不放回的抽取,每次抽取一个,令X表示抽到红球前的抽取次数,求X的分布列、数学期望和方差。
四、综合题28.29.五、应用题30.概率论与数理统计(经管类)B一、单项选择题1. 【 】A .“甲负”B .“甲乙平局”C .“甲负或甲乙平局”D .“甲胜或甲乙平局”2.有5间办公室,有3个人,每人以相等概率被安排在某一间中,则恰有3间中各有1人的概率为 【 】A .1256B .53C .12510D .2512 3. 【 】A .P (A|B )=P (A ) B.P(B|A)=0C.P(AB)=P(A)P(B)D.P(B|A)=P(B)4.【 】A.3B.27C.4D.115. 【 】6. 【 】A .正态分布B .2X 分布C .t 分布D . F 分布7. 【 】8.【】A.不可能犯错误 B.只可能犯第Ⅰ类错误C.只可能犯第Ⅱ类错误 D.两类错误均可能犯9.【】10.【】二、填空题11.。
概率论与数理统计(经管类)真题试卷及答案全国2010年4月高等教育自学考试、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未 选均无分。
1. 设A 与B 是任意两个互不相容事件,则下列结论中正确的是( D )A . P(A)=1-P(B)B . P(A-B)=P(B) C. P(AB)=P(A)P(B)D . P(A-B)=P(A)2. 设A, B 为两个随机事件,且 B A,P(B) .0,则P(A|B)= ( A )A . 1C . P(B)3 . 下列函数中可作为随机变量分布函数的是(^1 0兰x 兰1;A . F1(X)= * 0,1其他.10,x c0; C . F 3(X )x, 0 Wx £1;1,x ^1.4 .设离散型随机变量 X 的分布律为XB . P(A) D . P(AB)C )"-1,xc0;B . F 2(x)詔 x, 0 兰 xc1;1,xZ1. 0, 0:::0;D . F 4 (x) = x, 0 込 x :::1;2,x _1.,贝U P{-1<X w 1}=-10 12A . 0.3 D . 0.75.设二维随机变量(X , Y )的分布律为 且X 与Y 相互独立,则下列结论正确的是(B . 0.4C . 0.6B . a=-0.1 , b=0.9 D . a=0.6, b=0.2A. a=0.2, b=0.6 C . a=0.4, b=0.4'16.设二维随机变量(X, Y)的概率密度为f(x, y)=」4‘I 0,则 P{0<X<1 , 1 '4 3 4A . 5B . 7C . 11D . 139 . 设(X, Y)为二维随机变量,且 D (X)>0 , D (Y)>0 ,则下列等式成立的是(B)A . E(XY)二E(X) E(Y)B . Cov(X,Y) = 'XY D(X) , D(Y)C . D(X Y) =D(X) D(Y)D . Cov(2X,2Y) =2Cov(X,Y)10•设总体X 服从正态分布 N(〜二2),其中二2未知.X 1, X 2,…,X n 为来自该总体的样本, 本标准差,欲检验假设 H °:」=」0, H 1:0,则检验统计量为.n x 」0C.•. n -1(x - ‘0)、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。
第一章 随机事件与概率一、单项选择题1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A.P (A )=1-P (B )B.P (AB )=P (A )P (B )C.P 1)(=ABD.P (A ∪B )=12.设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )=( )A.P (AB )B.P (A )C.P (B )D.13.从标号为1,2,…,101的101个灯泡中任取一个,则取得标号为偶数的灯泡的概率为( )A .10150B .10151C .10050D .10051 4.设事件A 、B 满足P (A B )=0.2,P (B )=0.6,则P (AB )=( )A .0.12B .0.4C .0.6D . 0.85.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A .0)|(=B A P B .P (B |A )=0 C .P (AB )=0 D .P (A ∪B )=16.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( )A .P (A )B .P (AB )C .P (A|B )D .17.设事件A 与B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( )A.AB=φB.P(A B )=P(A)P(B )C.P(B)=1-P(A)D.P(B |A )=08.设A 、B 、C 为三事件,则事件=C B A ( ) A.A C B B.A B C C.( A B )C D.( A B )C9.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为( )A .601 B .457 C .51 D .157 10.设随机事件A 与B 互不相容,P (A )=0.2,P(B)=0.4,则P (B|A )=( )A .0B .0.2C .0.4D .1 11.设事件A ,B 互不相容,已知P (A )=0.4,P(B)=0.5,则P(A B )=( )A .0.1B .0.4C .0.9D .112.已知事件A ,B 相互独立,且P (A )>0,P(B)>0,则下列等式成立的是( )A .P(A B)=P(A)+P(B)B .P(A B)=1-P(A )P(B )C .P(A B)=P(A)P(B)D .P(A B)=113.某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为( )A .0.002B .0.04C .0.08D .0.10414.设A 为随机事件,则下列命题中错误..的是( )A .A 与A 互为对立事件B .A 与A 互不相容C .Ω=⋃A AD .A A =15.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2 B .0.4 C .0.6 D .0.816.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( )A.0.125B.0.25C.0.375D.0.517.设A 、B 为任意两个事件,则有( )A.(A ∪B )-B=AB.(A-B)∪B=AC.(A ∪B)-B ⊂AD.(A-B)∪B ⊂A18.某人射击三次,其命中率为0.7,则三次中至多击中一次的概率为( )A.0.027B.0.081C.0.189D.0.21619.设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A .P (AB )=0B .P (A ∪B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )20.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则P (A|B )=( ) A .151 B .51 C .154 D .31 21.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) A .P (AB )=l B .P (A )=1-P (B ) C .P (AB )=P (A )P (B ) D .P (A ∪B )=122.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( )A .P (AB )=0 B .P (A -B )=P (A )P (B )C .P (A )+P (B )=1D .P (A |B )=023.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( )A .0.125B .0.25C .0.375D .0.5024.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( )A .61 B .41 C .31 D .21 25.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( ) A .A 1A2 B .21A C .21A D .2126.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( )A .p 2B .(1-p )2C .1-2pD .p (1-p )27.已知P (A )=0.4,P (B )=0.5,且A ⊂B ,则P (A |B )=( )A .0B .0.4C .0.8D .128.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( )A .0.20B .0.30C .0.38D .0.57二、填空题1.设事件A ,B 相互独立,且P (A )=0.2,P (B )=0.4,则P (A ∪B )=___________。
2.从0,1,2,3,4五个数中任意取三个数,则这三个数中不含0的概率为___________。
3.设P (A )=31,P (A ∪B )=21,且A 与B 互不相容,则P (B )=___________。
4.一批产品,由甲厂生产的占31,其次品率为5%,由乙厂生产的占32,其次品率为10%,从这批产品中随机取一件,恰好取到次品的概率为___________。
5.设事件A 与B 互不相容,且P (A )=0.4,P (A ∪B )=0.7,则P (B )=___________.6.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___________.7.设P (A )=0.3,P (B )=P (C )=0.2,且事件A ,B ,C 两两互不相容,则=⋃⋃)(C B A P___________.8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于___________.9.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)=____________.10.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为____________.11.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为____________.12.20件产品中,有2件次品,不放回地从中接连取两次,每次取一件产品,则第二次取到的是正品的概率为____________.13.连续抛一枚均匀硬币5次,则正面都不出现的概率为 ___________。
14.袋中有红、黄、蓝球各一个,从中任取三次,每次取一个,取后放回,则红球出现的概率为___________。
15.设P (A | B )=,61P (B )=,21P (B | A )=,41则P (A )= ___________。
16.设事件A 、B 相互独立,P (A B )=0.6, P( A )=0.4,则P (B )= ___________。
17.设A 与B 是两个随机事件,已知P (A )=0.4,P (B )=0.6, P (A ⋃B )=0.7,则P (B A )=___________.18.设事件A 与B 相互独立,且P (A )=0.3,P (B )=0.4,则P (A ⋃B )=_________.19.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=________.20.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________________.21.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________________.22.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=______________.23.有甲、乙两人,每人扔两枚均匀硬币,则两人所扔硬币均未出现正面的概率为_______.24.某射手对一目标独立射击4次,每次射击的命中率为0.5,则4次射击中恰好命中3次的概率为_______.25.连续抛一枚均匀硬币6次,则正面至少出现一次的概率为___________。
26.设事件A,B相互独立,且P(A)=0.5,P(B)=0.2, 则P(A∪B)= ___________。
27.某人工作一天出废品的概率为0.2,则工作四天中仅有一天出废品的概率为___________。
28.袋中有5个黑球3个白球,从中任取4个球中恰有3个白球的概率为___________。
29.设A,B为两个随机事件,且A与B相互独立,P(A)=0.3,P(B)=0.4,则P(A B)=__________.30.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为_________.31.将三个不同的球随机地放入三个不同的盒中,则出现两个空盒的概率为______.32.袋中有8个玻璃球,其中兰、绿颜色球各4个,现将其任意分成2堆,每堆4个球,则各堆中兰、绿两种球的个数相等的概率为______.33.已知事件A、B满足:P(AB)=P(BA),且P(A)=p,则P(B)= ______.34.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________.35.设随机事件A与B互不相容,且P(A)=0.2,P(A∪B)=0.6,则P(B)= ________.36.设事件A与B相互独立,且P(A∪B)=0.6,P(A)=0.2,则P(B)=________.37.设3.0AP,P(B|A)=0.6,则P(AB)=________.)(38.10件同类产品中有1件次品,现从中不放回地接连取2件产品,则在第一次取得正品的条件下,第二次取得次品的概率是________.39.某工厂一班组共有男工6人、女工4人,从中任选2名代表,则其中恰有1名女工的概率为________.三、计算题1.设P(A)=0.4,P(B)=0.5,且P(B|A )=0.3,求P(AB).2.某用户从两厂家进了一批同类型的产品,其中甲厂生产的占60%,若甲、乙两厂产品的次品率分别为5%、10%,今从这批产品中任取一个,求其为次品的概率.3.100张彩票中有7张是有奖彩票,现有甲、乙两人且甲先乙后各买一张,试计算甲、乙两人中奖的概率是否相同?4.设有两种报警系统Ⅰ与Ⅱ,它们单独使用时,有效的概率分别为0.92与0.93,且已知在系统Ⅰ失效的条件下,系统Ⅱ有效的概率为0.85,试求:(1)系统Ⅰ与Ⅱ同时有效的概率;(2)至少有一个系统有效的概率.5.某商店有100台相同型号的冰箱待售,其中60台是甲厂生产的,25台是乙厂生产的,15台是丙厂生产的,已知这三个厂生产的冰箱质量不同,它们的不合格率依次为0.1、0.4、0.2,现有一位顾客从这批冰箱中随机地取了一台,试求:(1)该顾客取到一台合格冰箱的概率;(2)顾客开箱测试后发现冰箱不合格,试问这台冰箱来自甲厂的概率是多大?6.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率;(2)该件次品是由甲车间生产的概率.7.设A,B是两事件,已知P(A)=0.3,P(B)=0.6,试在下列两种情形下:(1)事件A ,B 互不相容;(2)事件A ,B 有包含关系;分别求出P(A | B)。