规范作业D(上)03功能原理机械能守恒解答
- 格式:ppt
- 大小:546.50 KB
- 文档页数:9
高中物理机械能及守恒定律专题及解析高中物理机械能及守恒定律专题及解析一、机械能的概念及计算公式机械能是指一个物体同时具有动能和势能的能量,它是物体运动时的总能量。
机械能可以通过以下公式计算:机械能 = 动能 + 势能其中,动能的公式为:动能 = 1/2 ×质量 ×速度²势能的公式为:势能 = 质量 ×重力加速度 ×高度二、机械能守恒定律的表述及应用机械能守恒定律指的是,在一个封闭系统中,如果只有重力做功,没有其他非保守力做功,那么该系统的机械能守恒,即机械能的总量不会发生变化。
这一定律可以通过以下实验进行验证:将一个小球从一定高度上自由落下,当小球下落到一定高度时,用一个弹性绳接住小球,使其反弹上升,然后再次自由下落。
实验结果表明,当小球反弹的高度恰好等于初始下落高度时,机械能守恒定律成立。
在实际应用中,机械能守恒定律常常用于解决与能量转换和效率有关的问题。
例如,我们可以利用机械能守恒定律计算斜面上物体的滑动速度或滑动距离,来评估机械装置的效率。
此外,机械能守恒定律还可以用于解决弹簧振子、单摆等周期性运动问题。
三、机械能守恒定律的应用实例分析1. 斜面上物体滑动问题假设一个物体从斜面的顶端自由滑下,忽略空气阻力和摩擦力,那么当物体滑到斜面的底端时,动能和势能的变化可以用机械能守恒定律来表达。
设物体的质量为m,斜面的高度差为h,斜面的倾角为θ。
假设物体在斜面上的速度为v,那么动能和势能的变化可以表示为:动能的变化:ΔK = K(终) - K(始) = 1/2 × m × v² - 0 = 1/2 × m ×v²势能的变化:ΔU = U(终) - U(始) = m × g × h × sinθ - 0 = m × g× h × sinθ根据机械能守恒定律,动能的变化等于势能的变化,即:1/2 × m × v² = m × g × h × sinθ通过求解上述方程,可以得到物体在斜面上的滑动速度v的数值。
什么是机械能守恒举例说明机械能守恒的应用知识点:什么是机械能守恒以及机械能守恒的应用一、什么是机械能守恒机械能守恒是指在一个封闭的系统中,不受外力或外力做功可以忽略不计的情况下,系统的机械能(动能和势能的总和)保持不变。
这里的机械能包括动能和势能,其中动能是指物体由于运动而具有的能量,势能是指物体由于位置或状态而具有的能量。
二、机械能守恒的原理机械能守恒的原理可以概括为能量不能被创造或消灭,只能从一种形式转化为另一种形式。
在封闭的系统中,没有外力做功,系统的总机械能(动能和势能之和)保持恒定。
这意味着,如果一个物体在运动过程中没有外力作用,它的动能和势能之间的相互转化不会改变它们的总和。
三、机械能守恒的应用1.自由落体运动:在真空中,一个物体从高处自由下落,没有空气阻力作用。
在这种情况下,物体的势能逐渐转化为动能,但总机械能(势能加动能)保持不变。
2.抛体运动:在忽略空气阻力的情况下,抛出物体(如抛物线运动),物体的机械能同样保持不变。
在抛体运动中,物体的势能和动能会根据其位置和速度发生变化,但总机械能保持恒定。
3.理想弹性碰撞:在理想弹性碰撞中,两个物体碰撞后,它们的机械能(动能和势能之和)在碰撞前后保持不变。
这意味着碰撞过程中,动能可能从一个物体转移到另一个物体,但总机械能不会改变。
4.滑梯:一个孩子在滑梯上滑下时,势能转化为动能。
在没有外力作用(如摩擦力)的情况下,孩子的总机械能保持不变。
5.摆钟:摆钟的摆动过程中,势能和动能之间的相互转化使摆钟保持恒定的周期运动。
在没有外力作用(如摩擦力和空气阻力)的情况下,摆钟的机械能保持不变。
通过以上知识点的学习,我们可以更好地理解机械能守恒的概念及其在实际中的应用。
在解决相关问题时,要善于运用机械能守恒原理,分析物体在不同状态下的能量转化,从而得出正确答案。
习题及方法:1.习题:一个物体从地面上方以初速度v0竖直下落,不计空气阻力。
求物体落地时的速度大小。
机械能守恒的条件(参考答案)一、知识清单1.【答案】2.【答案】二、选择题3.【答案】ACD【解析】物体在斜面上运动的时候与斜面间有摩擦,摩擦就会发热,同学们往往认为能量就会损失,实际上热能也是能量的一种形式,摩擦会导致热能增加,同时机械能在减少,但总的能量一定是不变的.物体在斜面上运动时,机械能不断减少,那么物体所能达到的高度就要不断降低,由于圆弧面没有摩擦,所以物体最终将在圆弧面上做往复运动.4.【答案】C【解析】依据机械能守恒条件,只有重力做功的情况下,物体的机械能才能守恒,由此可见,A、B均有外力参与做功,D中有摩擦力做功,故只有选项C的情况符合机械能守恒的条件.5.【答案】BC【解析】在平衡力作用下物体的运动是匀速直线运动,动能保持不变,但如果物体的高度发生变化,则机械能也发生变化,例如降落伞匀速下降时,机械能减少;在光滑水平面上沿圆轨道做匀速率运动的小球,其动能不变,势能也不变,小球的机械能守恒;在粗糙斜面上下滑的物体,在下滑过程中,除重力做功外,滑动摩擦力和沿斜面向下的拉力的合力为零,这两个力所做的功之和为零,物体所受斜面的弹力不做功,所以整个过程中相当于只有重力做功,物体的机械能守恒;如题图所示,在压缩弹簧的过程中,弹簧的弹性势能在增加,所以小球的机械能在减少(但球和弹簧组成的系统机械能守恒)。
故选B、C。
6.【答案】D【解析】根据机械能守恒定律可知:在只有重力做功的条件下,质点和地球构成的系统机械能守恒.雨滴匀速下落时,必受竖直向上的阻力,且阻力做功;在水中下沉的铁块,水的浮力做功;“神舟十号”飞船穿过大气层时,由于速度很大,空气阻力不可忽略,且克服阻力做功,所以A、B、C错误.用细线拴一个小球,使小球在竖直面内做圆周运动,虽然绳对小球有作用力,但作用力方向始终和小球速度垂直,故小球只有重力对它做功,所以D正确.7.【答案】AC【解析】物体做平抛运动或沿光滑曲面自由运动时,不受摩擦力,在曲面上弹力不做功,只有重力做功,机械能守恒,所以A、C项正确;匀速吊起的集装箱,绳的拉力对它做功,不满足机械能守恒的条件,机械能不守恒;物体以45g的加速度向上做匀减速运动时,由牛顿第二定律mg-F=m×45g,有F=15mg,则物体受到竖直向上的大小为15mg的外力作用,该力对物体做了正功,机械能不守恒.8.【答案】A【解析】起重机吊起物体匀速上升,物体的动能不变而势能增加,故机械能不守恒,A正确;物体做平抛运动,只有重力做功,机械能守恒,B错误;圆锥摆球在水平面内做匀速圆周运动,没有力做功,机械能守恒,C错误;一个轻质弹簧上端固定,下端系一个重物,重物在竖直方向上下振动,只有重力和弹力做功,机械能守恒,D错误.9.【答案】 D【解析】物体做匀速运动其动能不变,但机械能可能变,如物体匀速上升或下降,机械能会相应的增加或减少,选项A错误;物体仅受重力作用,只有重力做功,或受其他力但其他力不做功或做功的代数和为零时,物体的机械能守恒,选项B、C错误;物体沿竖直方向向下做加速度为5 m/s2的匀加速运动时,物体一定受到一个与运动方向相反的力的作用,此力对物体做负功,物体的机械能减少,故选项D正确。
机械能守恒定律习题及答案机械能守恒定律习题及答案机械能守恒定律是物理学中的重要概念,它指出在没有外力做功的情况下,一个物体的机械能保持不变。
这个定律在解决各种物理问题时非常有用,下面将介绍一些与机械能守恒定律相关的习题及答案。
习题一:一个小球从高度为h的位置自由落下,落地后以速度v反弹,反弹高度为h/2。
求小球的初始速度。
解答:根据机械能守恒定律,小球在自由落体过程中的机械能等于反弹过程中的机械能。
自由落体过程中,小球的机械能只有动能,反弹过程中,小球的机械能有动能和势能。
在自由落体过程中,小球的动能为mgh,势能为0。
在反弹过程中,小球的动能为mv^2/2,势能为mgh/2。
根据机械能守恒定律,可以得到以下等式:mgh = mv^2/2 + mgh/2化简后可得:gh = v^2/2 + gh/2再次化简可得:gh/2 = v^2/2代入反弹高度为h/2,可得:gh/2 = v^2/2解得:v = sqrt(gh)所以小球的初始速度为sqrt(gh)。
习题二:一个弹簧恢复力常数为k的弹簧,一个质量为m的物体以速度v撞向弹簧,撞击后弹簧被压缩到最大距离x。
求物体的初始动能和弹簧的势能。
解答:在撞击前,物体的动能为mv^2/2,弹簧的势能为0。
在撞击后,物体的动能为0,弹簧的势能为kx^2/2。
根据机械能守恒定律,可以得到以下等式:mv^2/2 = kx^2/2化简后可得:mv^2 = kx^2解得:v = sqrt(k/m) * x所以物体的初始动能为mv^2/2 = kx^2/2,弹簧的势能为kx^2/2。
习题三:一个质量为m的物体以速度v从高度为h的位置滑下,滑到底部后撞击一个质量为M的物体,撞击后两个物体一起向上弹起,达到最高点时的高度为H。
求M与m的比值。
解答:在滑下过程中,物体的机械能只有动能,滑到底部后的动能为mv^2/2。
在弹起过程中,物体的机械能有动能和势能,两个物体的总机械能为(M+m)gH。
机械能守恒解析机械能的转化与守恒机械能是物体在运动过程中所具有的能量。
它由物体的动能和势能组成,能够在不同形式之间进行转化。
机械能守恒是指在一个孤立系统内,机械能的总和保持不变。
本文将对机械能的转化与守恒进行解析。
一、机械能的转化机械能的转化包括动能和势能之间的相互转化。
动能是由物体的运动所带来的能量,它与物体的质量和速度有关。
势能是由于物体所处位置的高低而具有的能量,它与物体的质量和高度有关。
在物体运动的过程中,动能和势能可以相互转化。
例如,当一个物体从高处自由落下时,由于重力的作用,物体的势能逐渐减小,而动能逐渐增大。
当物体下落到最低点时,势能降为零,动能达到最大值。
同样,当一个物体被抛起时,动能逐渐减小,而势能逐渐增大。
当物体达到最高点时,动能降为零,势能达到最大值。
在这个过程中,机械能的总和保持不变。
这是因为在没有外力的情况下,只有重力对物体做功,而重力做的正功等于负功,总功为零。
根据机械能定理,物体的动能增加的部分等于势能减少的部分,动能减少的部分等于势能增加的部分。
因此,机械能在转化中保持不变。
二、机械能的守恒机械能的守恒是指在一个孤立系统内,机械能的总和始终保持不变。
一个孤立系统是指受到孤立于外界的系统,没有与外界发生物质和能量交换。
在一个孤立系统中,物体的动能和势能可以相互转化,但它们的总和保持不变。
这是根据能量守恒定律得出的结论。
能量守恒定律是指在一个孤立系统中,能量总量在转化过程中保持不变。
例如,一个滑块沿着光滑水平地面运动。
当滑块开始运动时,它具有一定的动能和势能。
随着滑块的移动,动能减少,而势能增加。
然而,机械能的总和保持不变,因为没有外力对系统做功,也没有能量从系统中流入或流出。
同样地,一个摆锤在摆动的过程中,动能和势能也可以相互转化。
摆锤摆动时,动能逐渐减小,而势能逐渐增加。
但机械能的总和仍然保持不变,因为摆锤只受到引力的作用,没有外力对其做功。
在实际应用中,机械能的守恒原理被广泛运用。
能量守恒定律与功能原理主要内容:一、能量守恒定律1)在机械运动范围内,物体所具有的动能、势能(重力势能和弹性势能),统称为机械能。
物体的动能和势能之间是可以相互转化的。
例如:自由下落的物体,由于重力做功,所以其势能减少,动能增加,势能转化为动能;竖直上抛的物体,由于要克服重力做功,所以其动能减少,势能增加,动能转化为势能。
下面从动能定理出发,推证机械能守恒的条件:选某物体为研究对象,根据动能定理,有:ΣW=ΔE k可写成:W重+W弹+W其它=ΔE k,其中W弹为弹簧弹力的功。
又根据重力、弹簧弹力做功与势能的关系有:W重=-ΔE P重,W弹=-ΔE P弹-ΔE P重-ΔE P弹+W其它=ΔE k,如果W其它=0,即其它力不做功,则:-ΔE P重-ΔE P弹=ΔE k,即ΔE k+ΔE P重+ΔE P弹=0即ΔE=0(机械能的增量为零)从上面推证可以看出,系统机械能守恒的条件为:除了重力、弹簧弹力以外无其它力对物体做功。
2)实际上,物质运动的形式不仅是机械运动,另外,热运动、电磁运动、化学运动、核运动等也是物质的不同运动形式,不同的运动形式对应着不同形式的能量,物质各种形式的运动是可以相互转化的,因此不同形式的能也是可以相互转化的,且在能量转化的过程中,总的能量守恒。
因此,系统机械能守恒条件的严格表述为:物体系(系统)内只有重力、弹力做功,而其它一切力都不做功时,系统机械能守恒。
二、功能原理(或称功能关系)1)由动能定理可以知道,外力对物体做功的代数和等于物体动能的增量,可表示为:ΣW=ΔE k 这里说的外力包括作用于物体上的全部做功的力,可分为三部分:(1)系统内的重力、弹力;(2)系统内的摩擦力;(3)系统外物体对它的作用力,则动能定理的表达式可写成W重+W弹+W摩擦+W外=ΔE k,又因为:W重=-ΔE P重,W弹=-ΔE P弹,所以有:W摩擦+W外=ΔE k+ΔE P重+ΔE P弹等式的右边为动能的增量跟势能增量的和,即为物体机械能的增量,即:W摩擦+W外=ΔE表述为:除重力、弹簧弹力以外力对物体做功的代数和,等于物体机械能的增量。
机械能守恒题解题技巧机械能守恒是物理学中一个非常重要的概念,涉及到物体在力的作用下发生的运动和能量转化。
对于解题来说,掌握机械能守恒的技巧是非常关键的。
本文将介绍一些在解题过程中常用的机械能守恒题解题技巧,帮助读者更好地理解和应用这一概念。
首先,我们需要明确机械能守恒的概念。
机械能是指物体的动能和势能之和,其中动能是由物体的运动而产生的能量,势能则是物体由于位置或形状而具有的能量。
在不考虑摩擦等能量损失的情况下,机械能总量在运动过程中保持不变。
在解题过程中,我们可以将机械能守恒原理应用于两种情况下:自由下落和弹性碰撞。
对于自由下落的情况,我们可以利用机械能守恒来求解物体的速度和位置。
例如,一个物体从一定高度自由下落,我们可以通过令物体的势能转化为动能,从而求得其下落的速度。
同时,也可以通过测量物体在不同高度处的速度来计算其重力势能的变化。
对于弹性碰撞的情况,我们同样可以利用机械能守恒来解答问题。
在弹性碰撞中,两个物体之间的动能在碰撞前后保持不变。
这意味着我们可以通过测量碰撞前后两个物体的速度,来计算它们的质量或者其他相关参数。
例如,两个相互碰撞的球之间的动量守恒可以通过机械能守恒来推导和计算。
在解题过程中,我们常常需要注意以下几点:第一,要仔细分析题目中给出的条件和要求。
题目通常会给出物体的质量、速度、高度等信息,同时也会给出一些限制条件,如摩擦力等。
我们需要将这些条件整理清楚,确定需要计算的量和所需使用的公式。
第二,要善于利用动能和势能的转化关系。
在问题中,物体通常会从一种能量形式转化为另一种能量形式,我们需要准确地确定转化的过程,并利用机械能守恒原理。
第三,要注意引入合适的参考系。
在解题过程中,我们可以通过选择合适的参考系简化问题的分析。
特别是在求解碰撞问题时,选择合适的参考系将使计算更加简单。
第四,要练习应用不同的数学工具。
在解题过程中,往往需要运用到一些数学工具,如代数、几何和微积分等。