物理学案收集3-机械能机械能守恒功能关系能量守恒定律2018年度
- 格式:doc
- 大小:934.52 KB
- 文档页数:13
第3讲 功能关系 能量守恒定律一.几种常见的功能关系及其表达式[深度思考] 一对相互作用的静摩擦力做功能改变系统的机械能吗? 答案 不能,因做功代数和为零. 二、两种摩擦力做功特点的比较三、能量守恒定律 1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增. 3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.1.上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小,对此现象下列说法是否正确. (1)摆球机械能守恒.( × )(2)总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能.( √ ) (3)能量正在消失.( × )(4)只有动能和重力势能的相互转化.( × )2.如图1所示,在竖直平面内有一半径为R 的圆弧形轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 至B 的运动过程中( )图1A .重力做功2mgRB .机械能减少mgRC .合外力做功mgRD .克服摩擦力做功12mgR答案 D3.如图2所示,质量相等的物体A 、B 通过一轻质弹簧相连,开始时B 放在地面上,A 、B 均处于静止状态.现通过细绳将A 向上缓慢拉起,第一阶段拉力做功为W 1时,弹簧变为原长;第二阶段拉力再做功W 2时,B 刚要离开地面.弹簧一直在弹性限度内,则( )图2A .两个阶段拉力做的功相等B .拉力做的总功等于A 的重力势能的增加量C .第一阶段,拉力做的功大于A 的重力势能的增加量D .第二阶段,拉力做的功等于A 的重力势能的增加量 答案 B4.(多选)如图3所示,轻质弹簧上端固定,下端系一物体.物体在A 处时,弹簧处于原长状态.现用手托住物体使它从A 处缓慢下降,到达B 处时,手和物体自然分开.此过程中,物体克服手的支持力所做的功为W .不考虑空气阻力.关于此过程,下列说法正确的有( )图3A.物体重力势能减少量一定大于WB.弹簧弹性势能增加量一定小于WC.物体与弹簧组成的系统机械能增加量为WD.若将物体从A处由静止释放,则物体到达B处时的动能为W答案AD解析根据能量守恒定律可知,在此过程中减少的重力势能mgh=ΔE p+W,所以物体重力势能减少量一定大于W,不能确定弹簧弹性势能增加量与W的大小关系,故A正确,B错误;支持力对物体做负功,所以物体与弹簧组成的系统机械能减少W,所以C错误;若将物体从A处由静止释放,从A到B的过程,根据动能定理:E k=mgh-W弹=mgh-ΔE p=W,所以D 正确.命题点一功能关系的理解和应用在应用功能关系解决具体问题的过程中:(1)若只涉及动能的变化用动能定理.(2)只涉及重力势能的变化,用重力做功与重力势能变化的关系分析.(3)只涉及机械能变化,用除重力和弹簧的弹力之外的力做功与机械能变化的关系分析.(4)只涉及电势能的变化,用电场力做功与电势能变化的关系分析.例1(多选)如图4所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h.圆环在C处获得一竖直向上的速度v,恰好能回到A.弹簧始终在弹性限度内,重力加速度为g.则圆环( )图4A.下滑过程中,加速度一直减小B .下滑过程中,克服摩擦力做的功为14mv 2C .在C 处,弹簧的弹性势能为14mv 2-mghD .上滑经过B 的速度大于下滑经过B 的速度经过B 处的速度最大,到达C 处的速度为零.答案 BD解析 由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先减小后增大,故A 错误;根据能量守恒,从A 到C 有mgh =W f +E p ,从C 到A 有12mv 2+E p =mgh+W f ,联立解得:W f =14mv 2,E p =mgh -14mv 2,所以B 正确,C 错误;根据能量守恒,从A 到B的过程有12mv B 2+ΔE p ′+W f ′=mgh ′,B 到A 的过程有12mv B ′2+ΔE p ′=mgh ′+W f ′,比较两式得v B ′>v B ,所以D 正确.1.(多选)如图5所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块、通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )图5A .两滑块组成的系统机械能守恒B .重力对M 做的功等于M 动能的增加C .轻绳对m 做的功等于m 机械能的增加D .两滑块组成系统的机械能损失等于M 克服摩擦力做的功 答案 CD解析 两滑块释放后,M 下滑、m 上滑,摩擦力对M 做负功,系统的机械能减少,减少的机械能等于M 克服摩擦力做的功,选项A 错误,D 正确.除重力对滑块M 做正功外,还有摩擦力和绳的拉力对滑块M 做负功,选项B 错误.绳的拉力对滑块m 做正功,滑块m 机械能增加,且增加的机械能等于拉力做的功,选项C 正确.2.(多选)如图6所示,水平桌面上的轻质弹簧一端固定,另一端与小物块相连.弹簧处于自然长度时物块位于O 点(图中未标出).物块的质量为m ,AB =a ,物块与桌面间的动摩擦因数为μ.现用水平向右的力将物块从O 点拉至A 点,拉力做的功为W .撤去拉力后物块由静止向左运动,经O 点到达B 点时速度为零.重力加速度为g .则上述过程中( )图6A .物块在A 点时,弹簧的弹性势能等于W -12μmgaB .物块在B 点时,弹簧的弹性势能小于W -32μmgaC .经O 点时,物块的动能小于W -μmgaD .物块动能最大时弹簧的弹性势能小于物块在B 点时弹簧的弹性势能 答案 BC命题点二 摩擦力做功的特点及应用1.静摩擦力做功时,只有机械能的相互转移,不会转化为内能. 2.滑动摩擦力做功的特点相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果: (1)机械能全部转化为内能;(2)有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.例2 如图7所示,质量为m =1kg 的滑块,在水平力作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端B 与水平传送带相接(滑块经过此位置滑上传送带时无能量损失),传送带的运行速度为v 0=3 m/s ,长为l =1.4 m ;今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数为μ=0.25,g 取10 m/s 2.求:图7(1)水平作用力F 的大小; (2)滑块下滑的高度;(3)若滑块滑上传送带时速度大于3m/s ,滑块在传送带上滑行的整个过程中产生的热量. 答案 (1)1033N (2)0.1m 或0.8m (3)0.5J解析 (1)滑块受到水平力F 、重力mg 和支持力F N 作用处于平衡状态,水平力F =mg tan θ,F =1033N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v , 下滑过程机械能守恒mgh =12mv 2,得v =2gh若滑块冲上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有μmgl =12mv 02-12mv 2则h =v202g-μl ,代入数据解得h =0.1m若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理: -μmgl =12mv 02-12mv 2则h =v202g +μl代入数据解得h =0.8m.(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移x =v 0t ,mgh =12mv 2,v 0=v-at ,μmg =ma滑块相对传送带滑动的位移Δx =l -x 相对滑动生成的热量Q =μmg ·Δx 代入数据解得Q =0.5J.摩擦力做功的分析方法1.无论是滑动摩擦力,还是静摩擦力,计算做功时都是用力与对地位移的乘积. 2.摩擦生热的计算:公式Q =F f ·x 相对中x 相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则x 相对为总的相对路程.3.如图8所示,某工厂用传送带向高处运送物体,将一物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到传送带顶端.下列说法正确的是( )图8A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C .第一阶段物体和传送带间摩擦产生的热等于第一阶段物体机械能的增加量D .物体从底端到顶端全过程机械能的增加量大于全过程摩擦力对物体所做的功 答案 C解析 对物体受力分析知,其在两个阶段所受摩擦力方向都沿斜面向上,与其运动方向相同,摩擦力对物体都做正功,A 错误;由动能定理知,外力做的总功等于物体动能的增加量,B 错误;物体机械能的增加量等于摩擦力对物体所做的功,D 错误;设第一阶段运动时间为t ,传送带速度为v ,对物体:x 1=v 2t ,对传送带:x 1′=v ·t ,摩擦产生的热Q =F f x 相对=F f (x 1′-x 1)=F f ·v 2t ,机械能增加量ΔE =F f ·x 1=F f ·v2t ,所以Q =ΔE ,C 正确.4.(多选)如图9所示,一块长木块B 放在光滑的水平面上,在B 上放一物体A ,现以恒定的外力F 拉B ,由于A 、B 间摩擦力的作用,A 将在B 上滑动,以地面为参考系,A 、B 都向前移动一段距离.在此过程中( )图9A .外力F 做的功等于A 和B 动能的增量 B .B 对A 的摩擦力所做的功等于A 的动能的增量C .A 对B 的摩擦力所做的功等于B 对A 的摩擦力所做的功D .外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所做的功之和 答案 BD解析 A 物体所受的合外力等于B 对A 的摩擦力,对A 物体运用动能定理,则B 对A 的摩擦力所做的功等于A 的动能的增量,B 正确.A 对B 的摩擦力与B 对A 的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A 在B 上滑动,A 、B 对地的位移不等,故二者做功不等,C 错误.对B 应用动能定理W F -W f =ΔE k B ,W F =ΔE k B +W f ,即外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所做的功之和,D 正确.由上述讨论知B 克服摩擦力所做的功与A 的动能的增量(等于B 对A 的摩擦力所做的功)不等,故A 错误. 命题点三 能量守恒定律及应用例3 如图10所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m ,B 的质量为m ,初始时物体A 到C 点的距离为L .现给A 、B 一初速度v 0>gL ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点.已知重力加速度为g ,不计空气阻力,整个过程中轻绳始终处于伸直状态,求:图10(1)物体A 向下运动刚到C 点时的速度; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能.答案 (1)v20-gL (2)v202g -L 2 (3)3mv204-3mgL 4解析 (1)A 与斜面间的滑动摩擦力F f =2μmg cos θ物体A 从初始位置向下运动到C 点的过程中,根据功能关系有 2mgL sin θ+12×3mv 02=12×3mv 2+mgL +F f L解得v =v20-gL(2)从物体A 接触弹簧到将弹簧压缩到最短后又恰好能弹到C 点的整个过程中,对A 、B 组成的系统应用动能定理-F f ·2x =0-12×3mv 2解得x =v202g -L2(3)弹簧从压缩到最短到恰好能弹到C 点的过程中,对A 、B 组成的系统根据功能关系有E p +mgx =2mgx sin θ+F f x所以E p =F f x =3mv204-3mgL4应用能量守恒定律解题的基本思路1.分清有多少种形式的能量[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化.2.明确哪种形式的能量增加,哪种形式的能量减小,并且列出减少的能量ΔE减和增加的能量ΔE增的表达式.3.列出能量守恒关系:ΔE减=ΔE增.5.如图11所示,质量为m的滑块从斜面底端以平行于斜面的初速度v0冲上固定斜面,沿斜面上升的最大高度为H,已知斜面倾角为α,斜面与滑块间的动摩擦因数为μ,且μ<tanα,最大静摩擦力等于滑动摩擦力,取斜面底端为零势能面,则能表示滑块在斜面上运动的机械能E、动能E k、势能E p与上升高度h之间关系的图象是( )图11答案 D解析重力势能的变化仅仅与重力做功有关,随着上升高度h的增大,重力势能增大,选项A错误;机械能的变化仅与重力和系统内弹力之外的其他力做功有关,上滑过程中有-F fhsinα=E-E0,即E=E0-F fhsinα;下滑过程中有-F f2H-hsinα=E′-E0,即E′=E0-2F fHsinα+F f hsinα,故上滑和下滑过程中E-h图线均为直线,选项B错误;动能的变化与合外力做功有关,上滑过程中有-mgh -Ff sin αh =E k -E k0,即E k =E k0-(mg +Ffsin α)h ,下滑过程中有-mgh -F f 2H -h sin α=E k ′-E k0,即E k ′=E k0-2F f H sin α-(mg -Ffsin α)h ,故E k -h 图线为直线,但下滑过程斜率小,选项C 错误,D 正确.6.如图12所示,在竖直方向上A 、B 两物体通过劲度系数为k =16N/m 的轻质弹簧相连,A 放在水平地面上,B 、C 两物体通过细线绕过轻质定滑轮相连,C 放在倾角α=30°的固定光滑斜面上.用手拿住C ,使细线刚好拉直但无拉力作用,并保证ab 段的细线竖直、cd 段的细线与斜面平行.已知A 、B 的质量均为m =0.2 kg ,重力加速度取g =10 m/s 2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C 后它沿斜面下滑,A 刚离开地面时,B 获得最大速度,求:图12(1)从释放C 到物体A 刚离开地面时,物体C 沿斜面下滑的距离; (2)物体C 的质量;(3)释放C 到A 刚离开地面的过程中细线的拉力对物体C 做的功. 答案 (1)0.25m (2)0.8kg (3)-0.6J 解析 (1)设开始时弹簧的压缩量为x B ,得kx B =mg ①设物体A 刚离开地面时,弹簧的伸长量为x A ,得kx A =mg ②当物体A 刚离开地面时,物体C 沿斜面下滑的距离为h =x A +x B③由①②③解得h =2mgk=0.25m④(2)物体A 刚离开地面时,物体B 获得最大速度v m ,加速度为零,设C 的质量为M ,对B 有F T -mg -kx A =0 ⑤ 对C 有Mg sin α-F T =0⑥由②⑤⑥解得M =4m =0.8kg(3)由于x A =x B ,物体B 开始运动到速度最大的过程中,弹簧弹力做功为零,且B 、C 两物体速度大小相等,由能量守恒有Mgh sin α-mgh =12(m +M )v m 2解得v m =1m/s对C 由动能定理可得Mgh sin α+W T =12Mv m 2解得W T =-0.6J.题组1 功能关系的理解和应用1.如图1所示,一质量为m 的小球固定于轻质弹簧的一端,弹簧的另一端固定于O 点.将小球拉至A 点,弹簧恰好无形变,由静止释放小球,当小球运动到O 点正下方与A 点的竖直高度差为h 的B 点时,速度大小为v .已知重力加速度为g ,下列说法正确的是( )图1A .小球运动到B 点时的动能等于mgh B .小球由A 点到B 点重力势能减少12mv 2C .小球由A 点到B 点克服弹力做功为mghD .小球到达B 点时弹簧的弹性势能为mgh -12mv 2答案 D解析 小球由A 点到B 点的过程中,小球和弹簧组成的系统机械能守恒,弹簧由原长到发生伸长的形变,小球动能增加量小于重力势能减少量,A 项错误;小球重力势能减少量等于小球动能增加量与弹簧弹性势能增加量之和,B 项错误;弹簧弹性势能增加量等于小球重力势能减少量与动能增加量之差,D 项正确;弹簧弹性势能增加量等于小球克服弹力所做的功,C 项错误.2.(多选)如图2所示,质量为m 的物体(可视为质点)以某一速度由底端冲上倾角为30°的固定斜面,上升的最大高度为h ,其加速度大小为34g .在这个过程中,物体( )图2A .重力势能增加了mghB .动能减少了mghC .动能减少了3mgh2D .机械能损失了3mgh2答案 AC解析 物体重力势能的增加量等于克服重力做的功,选项A 正确;合力做的功等于物体动能的变化,则可知动能减少量为ΔE k =mah sin30°=32mgh ,选项B 错误,选项C 正确;机械能的损失量等于克服摩擦力做的功,因为mg sin30°+F f =ma ,a =34g ,所以F f =14mg ,故克服摩擦力做的功W f =F fh sin30°=14mg h sin30°=12mgh ,选项D 错误.3.小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上由图3中位置无初速度释放,在小球下摆到最低点的过程中,下列说法正确的是( )图3A .绳对球的拉力不做功B .球克服绳拉力做的功等于球减少的机械能C .绳对车做的功等于球减少的重力势能D .球减少的重力势能等于球增加的动能 答案 B解析 小球下摆的过程中,小车的机械能增加,小球的机械能减少,球克服绳拉力做的功等于减少的机械能,选项A 错误,选项B 正确;绳对车做的功等于球减少的机械能,选项C 错误;球减少的重力势能等于球增加的动能和小车增加的机械能之和,选项D 错误. 4.(2015·福建理综·21)如图4,质量为M 的小车静止在光滑水平面上,小车AB 段是半径为R 的四分之一圆弧光滑轨道,BC 段是长为L 的水平粗糙轨道,两段轨道相切于B 点.一质量为m 的滑块在小车上从A 点由静止开始沿轨道滑下,重力加速度为g .图4(1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A 点由静止下滑,然后滑入BC 轨道,最后从C 点滑出小车.已知滑块质量m =M2,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC 间的动摩擦因数为μ,求: ①滑块运动过程中,小车的最大速度大小v m ; ②滑块从B 到C 运动过程中,小车的位移大小s . 答案 (1)3mg (2)①gR 3 ②13L 解析 (1)滑块滑到B 点时对小车压力最大,从A 到B 机械能守恒mgR =12mv B 2滑块在B 点处,由牛顿第二定律知N -mg =m v2B R解得N =3mg 由牛顿第三定律知N ′=3mg(2)①滑块下滑到达B 点时,小车速度最大.由机械能守恒mgR =12Mv m 2+12m (2v m )2解得v m =gR3②设滑块运动到C 点时,小车速度大小为v C , 由功能关系mgR -μmgL =12Mv C 2+12m (2v C )2设滑块从B 到C 过程中,小车运动加速度大小为a , 由牛顿第二定律μmg =Ma 由运动学规律v C 2-v m 2=-2as解得s =13L .题组2 摩擦力做功的特点及应用5.足够长的水平传送带以恒定速度v 匀速运动,某时刻一个质量为m 的小物块以大小也是v 、方向与传送带的运动方向相反的初速度冲上传送带,最后小物块的速度与传送带的速度相同.在小物块与传送带间有相对运动的过程中,滑动摩擦力对小物块做的功为W ,小物块与传送带间因摩擦产生的热量为Q ,则下列判断中正确的是( ) A .W =0,Q =mv 2B .W =0,Q =2mv 2C .W =mv22,Q =mv 2D .W =mv 2,Q =2mv 2答案 B解析 对小物块,由动能定理有W =12mv 2-12mv 2=0,设小物块与传送带间的动摩擦因数为μ,则小物块与传送带间的相对路程x 相对=2v2μg,这段时间内因摩擦产生的热量Q =μmg ·x 相对=2mv 2,选项B 正确.6.(多选)如图5,质量为M 、长度为L 的小车静止在光滑的水平面上.质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动,物块和小车之间的摩擦力为F f ,物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是( )图5A .物块到达小车最右端时具有的动能为F (L +s )B .物块到达小车最右端时,小车具有的动能为F f sC .物块克服摩擦力所做的功为F f (L +s )D .物块和小车增加的机械能为F f s 答案 BC解析 对物块分析,物块相对于地的位移为L +s ,根据动能定理得(F -F f )(L +s )=12mv 2-0,则知物块到达小车最右端时具有的动能为(F -F f )(L +s ),故A 错误;对小车分析,小车对地的位移为s ,根据动能定理得F f s =12Mv ′2-0,则知物块到达小车最右端时,小车具有的动能为F f s ,故B 正确;物块相对于地的位移大小为L +s ,则物块克服摩擦力所做的功为F f (L+s ),故C 正确;根据能量守恒得,外力F 做的功转化为小车和物块的机械能和摩擦产生的内能,则有F (L +s )=ΔE +Q ,则物块和小车增加的机械能为ΔE =F (L +s )-F f L ,故D 错误.7.如图6所示,一物体质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3 m/s 下滑,A 点距弹簧上端B 的距离AB =4 m .当物体到达B 后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点AD =3 m .挡板及弹簧质量不计,g 取10 m/s 2,sin 37°=0.6,求:图6(1)物体与斜面间的动摩擦因数μ; (2)弹簧的最大弹性势能E pm . 答案 (1)0.52 (2)24.4J解析 (1)最后的D 点与开始的位置A 点比较: 动能减少ΔE k =12mv 02=9J.重力势能减少ΔE p =mgl AD sin37°=36J. 机械能减少ΔE =ΔE k +ΔE p =45J机械能的减少量全部用来克服摩擦力做功,即W f =F f l =45J ,而路程l =5.4m ,则 F f =Wf l≈8.33N.而F f =μmg cos37°,所以 μ=Ffmgcos37°≈0.52.(2)由A 到C 的过程:动能减少ΔE k ′=12mv 02=9J.重力势能减少ΔE p ′=mgl AC sin37°=50.4J. 机械能的减少用于克服摩擦力做功W f ′=F f l AC =μmg cos37°·l AC =35J.由能量守恒定律得:E pm =ΔE k ′+ΔE p ′-W f ′=24.4J.题组3 能量守恒定律及应用8.(2014·广东·16)图7是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中( )图7A .缓冲器的机械能守恒B .摩擦力做功消耗机械能C .垫板的动能全部转化为内能D .弹簧的弹性势能全部转化为动能 答案 B解析 由于车厢相互撞击弹簧压缩的过程中存在克服摩擦力做功,所以缓冲器的机械能减少,选项A 错误,B 正确;弹簧压缩的过程中,垫板的动能转化为内能和弹簧的弹性势能,选项C 、D 错误.9.如图8为某飞船先在轨道Ⅰ上绕地球做圆周运动,然后在A 点变轨进入返回地球的椭圆轨道Ⅱ运动,已知飞船在轨道Ⅰ上做圆周运动的周期为T ,轨道半径为r ,椭圆轨道的近地点B 离地心的距离为kr (k <1),引力常量为G ,飞船的质量为m ,求:图8(1)地球的质量及飞船在轨道Ⅰ上的线速度大小;(2)若规定两质点相距无限远时引力势能为零,则质量分别为M 、m 的两个质点相距为r 时的引力势能E p =-GMmr ,式中G 为引力常量.求飞船在A 点变轨时发动机对飞船做的功.答案 (1)4π2r3GT2 2πrT(2)错误!解析 (1)飞船在轨道Ⅰ上运动时,由牛顿第二定律有G Mmr2=mr (2πT)2求得地球的质量M =4π2r3GT2在轨道Ⅰ上的线速度大小为v =2πrT.(2)设飞船在椭圆轨道上远地点速度为v 1,在近地点的速度为v 2,则由开普勒第二定律有rv 1=krv 2根据能量守恒有 12mv 12-G Mm r =12mv 22-G Mm kr 求得v 1=错误!=错误!错误!因此飞船在A 点变轨时,根据动能定理,发动机对飞船做的功为W =12mv 12-12mv 2=错误!.。
机械能及其守恒定律与能量守恒定律知识点梳理1、动能:物体由于运动而具有的能量。
表达式:E k =221mv2、势能<1>重力势能:物体由于被举高而具有的能量。
表达式:E p =mgh <2>弹性势能:物体由于发生弹性形变而具有的能量。
表达式:E p =21kx 2 3、机械能<1>定义:动能和势能统称为机械能<2>机械能守恒定律:系统中只有重力、弹力做功时,机械能是守恒的。
4、能量守恒定律能量既不会创生,也不会消失。
它只会从一个物体转移到另一个物体,或者由一种形式的能量转化为另一种形式的能量,而使系统的总能量保持不变。
解题突破口分析1、单个物体分析<1>明确研究对象(搞清楚要分析谁) <2>明确该对象运动过程(从哪到哪)<3>分析该物体初末位置的机械能(初位置动能+势能;末位置动能+势能分别是多少) <4>分析该物体在其运动过程中都有哪些力参与做功,正功就加,负功则减。
2、系统(多物体)分析<1>明确研究对象(找出参与运动的每个物体)<2>明确各物体的运动过程(每个物体分别都是从哪到哪)<3>△E 增=△E 减注:对于多物体而言,系统中的单个物体往往能量不守恒,而系统的总能量保持不变。
当然用单个物体的分析方法也能处理此类问题,但是往往比较麻烦,因此,建议系统类问题用能量的变化分析,找出系统中哪些能量增多(做负功),哪些能量减小(做正功),利用增多的能量等于减小的能量,列出方程,进而求解方法突破之典型例题题型一单个物体分析1.如图轻质弹簧长为L,竖直固定在地面上,质量为m的小球,由离地面高度为H处,由静止开始下落,正好落在弹簧上,使弹簧的最大压缩量为x,在下落过程中小球受到的空气阻力恒为f,则弹簧在最短时具有的弹性势能为:()A.(mg-f)(H-L+x)B.mg(H-L+x)-f(H-L)C.mgH-f(H-L)D.mg(L-x)+f(H-L+x)2.如图,在竖直平面内有一固定光滑轨道,其中AB是长为R的水平直轨道,BCD是圆心为O、半径为R的3/4圆弧轨道,两轨道相切于B点。
机械能守恒定律教案机械能守恒定律教案篇一一、教学目标知识与技能知道机械能的概念,能够分析动能和势能之间的相互转化问题;理解机械能守恒定律的内容和适用条件,会判断机械能是否守恒。
过程与方法学习从物理现象分析、推导机械能守恒定律及适用条件的研究方法,初步掌握运用能量转化和守恒来解释物理现象及分析问题的方法。
情感态度与价值观体会科学探究中的守恒思想,养成探究自然规律的科学态度,提高科学素养。
二、教学重难点重点机械能守恒定律的推导及内容。
难点对机械能守恒定律条件的理解。
三、教学过程环节一:导入新课教师先找一名学生配合完成小实验:把钢球用细绳悬起,请一同学靠近,将钢球偏至这位同学鼻尖处释放,当钢球摆回时,观察该同学反应,并让学生分析会不会碰到鼻子,思考原因。
由此引入新课《机械能守恒定律》。
环节二:新课讲授(一)动能与势能的相互转化教师播放视频:荡秋千、过山车、撑杆跳、瀑布等视频材料,初步深刻感受各种丰富多彩的'动能与势能发生相互转化的过程。
教师播放演示实验:滚摆、单摆、自由落体等实验。
教师:演示实验中物体自由下落时,重力势能怎样变化?变化的原因是什么?学生:重力势能减少,因为重力对物体做正功。
思考:减少的重力势能去哪了?学生:物体下落过程中,速度在逐渐增加,说明物体的动能增加了,即物体原来的重力势能转化成了动能。
教师:那如果物体由于惯性在空中竖直上升时,能量又是怎样变化的?学生:物体原有的动能转化为重力势能。
教师播放演示实验:水平弹簧振子在气垫导轨上振动的实验。
感受弹力做功引起弹性势能的变化。
教师举例说明:物体被弹簧弹出去之后,弹力做正功,弹簧的弹性势能减少,而物体的速度增加,动能增加。
也就是弹簧的弹性势能转化成了物体的动能。
学生总结:不仅重力势能可以与动能相互转化,弹性势能也可以与动能相互转化。
教师补充:从上面的例子可以发现:通过重力或弹力做功,机械能可以从一种形式转化成另外一种形式。
(二)机械能守恒定律教师提问:物体动能和势能的相互转化是否存在某种定量的关系呢?以动能和重力势能的相互转化为例,研究这一问题。
第四讲功能原理 机械能守恒定律 能量守恒定律k k k i i i i ii e E E E v m v m W W ∆=-=-=+∑122122)2121(系统的外力和内力作功的总和等于系统动能的增量。
回顾前面学过的知识点:1. 质点系动能定理P1p 2p )(E E E W ∆-=--=2. 保守力作功等于势能的减少3. 成对力的功只与作用力和相对位移有关:r d F dW '⋅= 22/16※ 质点系功能原理1、系统的机械能: 动能与势能的总和称为机械能3、由势能的定义,保守内力的功总等于系统势能的减少pin c E W ∆-= 2、内力的功可分为: 保守内力的功和非保守内力功pk E E E +=(保守内力的功由势能代替)第四讲 功能原理 机械能守恒定律 能量守恒定律 in ncin c in in W W W W i i+==∑非保守内力的功将导致机械能与其他形式的能量转换。
inncex p k W W E E E +=∆+∆=∆k in ncp ex in nc in c ex in ex E W E W W W W W W ∆=+∆-=++=+ 4、系统的功能原理 (由质点系动能定理)在选定的质点系内,在任一过程中,质点系总机械能的增量等于所有外力的功与非保守内力的功的代数和。
4/16※ 机械能守恒定律问题1:有非保守内力作功,系统的机械能不守恒 ?例如:摩擦力作功,机械能转变成热能。
0=+in nc ex W W 0=∆+∆=∆p k E E E 常量=+p k E E 由功能原理:则:或:如果: 如果系统内只有保守内力作功,其他内力和一切外力都不作功,或元功之和恒为零,则系统内各物体的动能和势能可以相互转换,但总机械能保持不变。
问题2:有摩擦力作功:机械能守恒?in nc ex p k W W E E E +=∆+∆=∆力 f 作正功,f ' 作负功,总和为零,机械能守恒。
第4讲功能关系能量守恒定律【基础梳理】一、功能关系1.功是能量转化的量度,即做了多少功就有多少能量发生了转化.2.几种常见的功能关系1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化和转移的过程中,能量的总量保持不变.2.表达式(1)E1=E2.(2)ΔE减=ΔE增.【自我诊断】判一判(1)能量转化是通过做功来实现的.( )(2)力对物体做了多少功,物体就有多少能.( )(3)力对物体做正功,物体的总能量一定增加.( )(4)能量在转化和转移的过程中,其总量会不断减少.( )(5)能量在转化和转移的过程中总量保持不变,因此能源取之不尽,用之不竭,故无需节约能源.( )(6)滑动摩擦力做功时,一定会引起能量的转化.( )提示:(1)√(2)×(3)×(4)×(5)×(6)√做一做(2016·高考四川卷)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J.韩晓鹏在此过程中( )A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J提示:选C.根据动能定理,物体动能的增量等于物体所受所有力做功的代数和,即增加的动能为ΔE k =W G+W f =1 900 J -100 J =1 800 J ,A 、B 项错误;重力做功与重力势能改变量的关系为W G =-ΔE p ,即重力势能减少了1 900 J ,C 项正确,D 项错误.想一想一对相互作用的静摩擦力做功能改变系统的机械能吗? 提示:不能.因为做功代数和为零.对功能关系的理解和应用[学生用书P94]【知识提炼】1.对功能关系的理解(1)做功的过程就是能量转化的过程.不同形式的能量发生相互转化是通过做功来实现的.(2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等.2.几种常见的功能关系及其表达式1.起跳摸高是学生经常进行的一项体育活动.一质量为m 的同学弯曲两腿向下蹲,然后用力蹬地起跳,从该同学用力蹬地到刚离开地面的起跳过程中,他的重心上升了h ,离地时他的速度大小为v .下列说法正确的是( )A .该同学机械能增加了mghB .起跳过程中该同学机械能增量为mgh +12mv 2C .地面的支持力对该同学做功为mgh +12mv 2D .该同学所受的合外力对其做功为12mv 2+mgh解析:选B.该同学重心升高了h ,重力势能增加了mgh ,又知离地时获得动能为12mv 2,则机械能增加了mgh+12mv 2,A 错误、B 正确;该同学在与地面作用过程中,支持力对该同学做功为零,C 错误;该同学所受合外力做功等于动能增量,则W 合=12mv 2,D 错误.2.(多选)(2016·高考全国卷Ⅱ)如图,小球套在光滑的竖直杆上,轻弹簧一端固定于O 点,另一端与小球相连.现将小球从M 点由静止释放,它在下降的过程中经过了N 点.已知在M 、N 两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2.在小球从M 点运动到N 点的过程中,( )A .弹力对小球先做正功后做负功B .有两个时刻小球的加速度等于重力加速度C .弹簧长度最短时,弹力对小球做功的功率为零D .小球到达N 点时的动能等于其在M 、N 两点的重力势能差解析:选BCD.小球在从M 点运动到N 点的过程中,弹簧的压缩量先增大,后减小,到某一位置时,弹簧处于原长,再继续向下运动到N 点的过程中,弹簧又伸长.弹簧的弹力方向与小球速度的方向的夹角先大于90°,再小于90°,最后又大于90°,因此弹力先做负功,再做正功,最后又做负功,A 项错误;弹簧与杆垂直时,小球的加速度等于重力加速度,当弹簧的弹力为零时,小球的加速度也等于重力加速度,B 项正确;弹簧长度最短时,弹力与小球的速度方向垂直,这时弹力对小球做功的功率为零,C 项正确;由于在M 、N 两点处,弹簧的弹力大小相等,即弹簧的形变量相等,根据动能定理可知,小球从M 点到N 点的过程中,弹簧的弹力做功为零,重力做功等于动能的增量,即小球到达N 点时的动能等于其在M 、N 两点的重力势能差,D 项正确.能量守恒定律的应用[学生用书P95]【知识提炼】1.应用能量守恒定律方程的两条基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等. 2.能量转化问题的解题思路(1)当涉及滑动摩擦力做功,机械能不守恒时,一般应用能的转化和守恒定律.(2)解题时,首先确定初末状态,然后分析状态变化过程中哪种形式的能量减少,哪种形式的能量增加,求出减少的能量总和ΔE 减和增加的能量总和ΔE 增,最后由ΔE 减=ΔE 增列式求解.【典题例析】如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可看做质点)轻轻放在皮带的底端,经过时间1.9 s ,工件被传送到h =1.5 m 的高处,取g =10 m/s 2,求:(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能.[审题指导] (1)运动过程分析:1.9 s 内工件是否一直加速?若工件先匀加速后匀速运动,所受摩擦力是否相同?(2)能量转化分析:多消耗的电能转化成了哪几种能量?各如何表示?[解析] (1)由题图可知,皮带长x =h sin θ=3 m .工件速度达v 0前,做匀加速运动的位移x 1=v t 1=v 02t 1,匀速运动的位移为x -x 1=v 0(t -t 1),解得加速运动的时间t 1=0.8 s ,加速运动的位移x 1=0.8 m ,所以加速度a =v 0t 1=2.5 m/s 2,由牛顿第二定律有:μmg cos θ-mg sin θ=ma ,解得:μ=32. (2)从能量守恒的观点,显然电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功发出的热量.在时间t 1内,皮带运动的位移x 皮=v 0t 1=1.6 m 在时间t 1内,工件相对皮带的位移x 相=x 皮-x 1=0.8 m在时间t 1内,摩擦生热Q =μmg cos θ·x 相=60 J 工件获得的动能E k =12mv 20=20 J工件增加的势能E p =mgh =150 J电动机多消耗的电能W =Q +E k +E p =230 J. [答案] (1)32(2)230 J 1.两种摩擦力做功的比较2.求解相对滑动物体的能量问题的方法(1)正确分析物体的运动过程,做好受力情况分析.(2)利用运动学公式,结合牛顿第二定律分析物体的速度关系及位移关系.(3)利用Q =F f x 相对计算热量Q 时,关键是对相对路程x 相对的理解.例如:如果两物体同向运动,x 相对为两物体对地位移大小之差;如果两物体反向运动,x 相对为两物体对地位移大小之和;如果一个物体相对另一个物体往复运动,则x 相对为两物体相对滑行路径的总长度.【迁移题组】迁移1 传送带模型中能量的转化问题 1.(2018·福建八县联考)如图所示,足够长的传送带以恒定速率顺时针运行,将一个物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到达传送带顶端.下列说法正确的是( )A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加C .第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加D .物体从底端到顶端全过程机械能的增加等于全过程物体与传送带间的摩擦生热解析:选C.第一阶段物体受到沿斜面向上的滑动摩擦力;第二阶段物体受到沿斜面向上的静摩擦力做功,两个阶段摩擦力方向都跟物体运动方向相同,所以两个阶段摩擦力都做正功,故A 错误;根据动能定理得知,外力做的总功等于物体动能的增加,第一阶段,摩擦力和重力都做功,则第一阶段摩擦力对物体做的功不等于第一阶段物体动能的增加,故B 错误;由功能关系可知,第一阶段摩擦力对物体做的功(除重力之外的力所做的功)等于物体机械能的增加,即ΔE =W 阻=F 阻s 物,摩擦生热为Q =F 阻s 相对,又由于s 传送带=vt ,s 物=v2t ,所以s 物=s 相对=12s 传送带,即Q =ΔE ,故C 正确.第二阶段没有摩擦生热,但物体的机械能继续增加,故D 错误.迁移2 滑块——滑板模型中能量的转化问题 2.(多选)如图所示,长木板A 放在光滑的水平地面上,物体B 以水平速度v 0冲上A 后,由于摩擦力作用,最后停止在木板A 上,则从B 冲到木板A 上到相对木板A 静止的过程中,下述说法中正确的是( )A .物体B 动能的减少量等于系统损失的机械能 B .物体B 克服摩擦力做的功等于系统内能的增加量C .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和D .摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量解析:选CD.物体B 以水平速度冲上木板A 后,由于摩擦力作用,B 减速运动,木板A 加速运动,根据能量守恒定律,物体B 动能的减少量等于木板A 增加的动能和产生的热量之和,选项A 错误;根据动能定理,物体B 克服摩擦力做的功等于物体B 损失的动能,选项B 错误;由能量守恒定律可知,物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和,选项C 正确;摩擦力对物体B 做的功等于物体B 动能的减少量,摩擦力对木板A 做的功等于木板A 动能的增加量,由能量守恒定律,摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量,选项D 正确.迁移3 能量守恒问题的综合应用 3.如图所示,一物体质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3 m/s 下滑,A 点距弹簧上端B 的距离AB =4 m .当物体到达B 点后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点的距离AD =3 m .挡板及弹簧质量不计,g 取10 m/s 2,sin 37°=0.6,求:(1)物体与斜面间的动摩擦因数μ; (2)弹簧的最大弹性势能E pm .解析:(1)物体从开始位置A 点到最后D 点的过程中,弹性势能没有发生变化,动能和重力势能减少,机械能的减少量为ΔE =ΔE k +ΔE p =12mv 20+mgl AD sin 37°①物体克服摩擦力产生的热量为Q =F f x② 其中x 为物体的路程,即x =5.4 m③ F f =μmg cos 37°④ 由能量守恒定律可得ΔE =Q ⑤由①②③④⑤式解得μ≈0.52. (2)由A 到C 的过程中,动能减少 ΔE ′k =12mv 2⑥重力势能减少ΔE ′p =mgl AC sin 37° ⑦ 摩擦生热Q =F f l AC =μmg cos 37°l AC⑧由能量守恒定律得弹簧的最大弹性势能为E pm =ΔE ′k +ΔE ′p -Q⑨联立⑥⑦⑧⑨解得E pm ≈24.5 J. 答案:(1)0.52 (2)24.5 J[学生用书P96]1.(多选)(2015·高考江苏卷)如图所示,轻质弹簧一端固定,另一端与一质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长.圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC =h .圆环在C 处获得一竖直向上的速度v ,恰好能回到A .弹簧始终在弹性限度内,重力加速度为g .则圆环( )A .下滑过程中,加速度一直减小B .下滑过程中,克服摩擦力做的功为14mv 2C .在C 处,弹簧的弹性势能为14mv 2-mghD .上滑经过B 的速度大于下滑经过B 的速度解析:选BD.圆环下落时,先加速,在B 位置时速度最大,加速度减小至0,从B 到C 圆环减速,加速度增大,方向向上,选项A 错误.圆环下滑时,设克服摩擦力做功为W f ,弹簧的最大弹性势能为ΔE p ,由A 到C 的过程中,根据功能关系有mgh =ΔE p +W f ,由C 到A 的过程中,有12mv 2+ΔE p =W f +mgh ,联立解得W f =14mv 2,ΔE p =mgh -14mv 2,选项B 正确,选项C 错误.设圆环在B 位置时,弹簧弹性势能为ΔE p ′,根据能量守恒,A到B 的过程有12mv 2B +ΔE p ′+W ′f =mgh ′,B 到A 的过程有12mv ′2B +ΔE p ′=mgh ′+W ′f ,比较两式得v ′B >v B ,选项D 正确.2.(多选)(2018·潍坊高三统考)如图所示,甲、乙传送带倾斜放置,并以相同的恒定速率v 逆时针运动,两传送带粗糙程度不同,但长度、倾角均相同.将一小物体分别从两传送带顶端的A 点无初速度释放,甲传送带上小物体到达底端B 点时恰好达到速度v ;乙传送带上小物体到达传送带中部的C 点时恰好达到速度v ,接着以速度v 运动到底端B 点.则小物体从A 运动到B 的过程( )A .小物体在甲传送带上的运动时间比在乙上的大B .小物体与甲传送带之间的动摩擦因数比与乙之间的大C .两传送带对小物体做功相等D .两传送带因与小物体摩擦产生的热量相等解析:选AC.设传送带的长度为L ,小物体在甲传送带上做匀加速直线运动,运动时间t 甲=L v2=2Lv,小物体在乙传送带上先做匀加速运动后做匀速运动,运动时间t 乙=t 加+t 匀=L 2v 2+L2v =3L2v ,所以t 甲>t 乙,A 对.由v 2=2a 甲L 得a 甲=v 22L ,同理得a 乙=v 2L,则a 甲<a 乙,由牛顿第二定律得a 甲=g sin θ+μ甲g cos θ,a 乙=g sinθ+μ乙g cos θ,所以μ甲<μ乙,B 错.由动能定理得W 重+W 传=12mv 2,所以传送带对小物体做功相等,C对.小物体与传送带之间的相对位移Δx 甲=x 传-x 甲=vt 甲-L =L ,Δx 乙=x ′传-x 乙=vt 加-L 2=L2,摩擦产生的热量Q 甲=μ甲mg cos θΔx 甲=12mv 2-mgL sin θ,Q 乙=μ乙mg cos θΔx 乙=12mv 2-12mgL sin θ,所以Q 甲<Q 乙,D 错.3.(多选)(2018·湖北八校联考)如图所示,倾角θ=37°的光滑斜面上固定一个带轻杆的槽,劲度系数k =20 N/m 、原长足够长的轻弹簧的下端与轻杆相连,开始时轻杆在槽外的长度l =0.6 m ,且杆可在槽内移动,轻杆与槽间的滑动摩擦力大小F f 恒为6 N ,轻杆与槽之间的最大静摩擦力等于滑块摩擦力.质量m =1 kg 的小车从距弹簧上端l =0.6 m 处由静止释放沿斜面向下运动.已知弹簧的弹性势能E p =12kx 2,式中x 为弹簧的形变量.在整个运动过程中,弹簧始终处于弹性限度以内.取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.下列说法正确的是( )A .在轻杆完全进入槽内之前,小车先做匀加速运动,然后做加速度逐渐减小的加速运动,最后做匀速直线运动B .从小车开始运动到轻杆完全进入槽内所用时间为55s C .若轻杆与槽间的滑动摩擦力大小变为16 N ,小车、弹簧、轻杆组成的系统机械能一定不守恒 D .若轻杆与槽间的滑动摩擦力大小变为16 N ,小车第一次与弹簧作用的过程中轻杆移动的距离为0.2 m解析:选ACD.在小车和弹簧接触前,小车做加速度大小为a =g sin θ=6 m/s 2的匀加速直线运动,在小车和弹簧接触后,对小车由牛顿第二定律可得mg sin θ-kx =ma 1,小车做加速度逐渐减小的加速运动,当加速度为零时,kx 1=mg sin θ=6 N =F f ,接着小车做匀速直线运动,选项A 正确;设小车做匀加速直线运动的时间为t 1,则l =12at 21,解得t 1=55 s ,从小车开始运动到轻杆完全进入槽内所用时间t >t 1=55 s ,选项B错误;若轻杆与槽间的滑动摩擦力大小变为16 N ,假设轻杆始终不动,小车压缩弹簧至速度为零时弹簧的压缩量为x 2,对小车、弹簧、轻杆组成的系统,由机械能守恒定律有mg (l +x 2)sin θ=12kx 22,得x 2=3+3510 m ,由于kx 2=(6+65) N>16 N ,这说明假设不成立,轻杆一定会在槽中滑动,槽对轻杆的滑动摩擦力一定会对系统做负功,根据功能原理可知,系统机械能一定不守恒,选项C 正确;设弹簧的压缩量为x 3时,弹簧对轻杆的弹力大小等于槽对轻杆的最大静摩擦力大小,即kx 3=F f =16 N ,解得x 3=0.8 m ,此时弹簧和轻杆有共同速度v 2,此后轻杆移动的距离为x 4时速度为零,由能量守恒定律有mg (l +x 3)sin θ=12mv 22+12kx 23,mgx 4sin θ+12mv 22=F f x 4,联立解得x 4=0.2 m ,选项D 正确. 4.(2015·高考北京卷)如图所示,弹簧的一端固定,另一端连接一个物块,弹簧质量不计.物块(可视为质点)的质量为m ,在水平桌面上沿x 轴运动,与桌面间的动摩擦因数为μ.以弹簧原长时物块的位置为坐标原点O ,当弹簧的伸长量为x 时,物块所受弹簧弹力大小为F =kx ,k 为常量.(1)请画出F 随x 变化的示意图;并根据F -x 图象求物块沿x 轴从O 点运动到位置x 的过程中弹力所做的功.(2)物块由x 1向右运动到x 3,然后由x 3返回到x 2,在这个过程中, ①求弹力所做的功,并据此求弹性势能的变化量;②求滑动摩擦力所做的功;并与弹力做功比较,说明为什么不存在与摩擦力对应的“摩擦力势能”的概念. 解析:(1)F -x 图象如图所示.物块沿x 轴从O 点运动到位置x 的过程中,弹力做负功;F -x 图线下的面积等于弹力做功大小.弹力做功W F =-12·kx ·x =-12kx 2.(2)①物块由x 1向右运动到x 3的过程中,弹力做功W F 1=-12·(kx 1+kx 3)·(x 3-x 1)=12kx 21-12kx 23物块由x 3向左运动到x 2的过程中,弹力做功W F 2=12·(kx 2+kx 3)·(x 3-x 2)=12kx 23-12kx 22整个过程中,弹力做功W F =W F 1+W F 2=12kx 21-12kx 22弹性势能的变化量ΔE p =-W F =12kx 22-12kx 21.②整个过程中,摩擦力做功W f =-μmg (2x 3-x 1-x 2)与弹力做功比较,弹力做功与x 3无关,即与实际路径无关,只与始末位置有关,所以,我们可以定义一个由物体之间的相互作用力(弹力)和相对位置决定的能量——弹性势能.而摩擦力做功与x 3有关,即与实际路径有关,所以,不可以定义与摩擦力对应的“摩擦力势能”.答案:见解析[学生用书P309(单独成册)] (建议用时:60分钟)一、单项选择题 1.(2018·河南林州一中高三质量监测)如图所示,倾角为30°的斜面上,质量为m 的物块在恒定拉力作用下沿斜面以加速度a =g2(g 为重力加速度)向上加速运动距离x 的过程中,下列说法正确的是( )A .重力势能增加mgxB .动能增加mgx4 C .机械能增加mgxD .拉力做功为mgx2解析:选C.物块上升的高度为x 2,因而增加的重力势能为ΔE p =12mgx ,A 错误;根据动能定理可得增加的动能为ΔE k =ma ·x =12mgx ,B 错误;根据能量守恒定律可得ΔE =ΔE p +ΔE k ,故增加的机械能为ΔE =mgx ,C正确;由于斜面是否光滑未知,因而不能确定拉力的大小,不能得到拉力做的功,D 错误.2.(2018·安徽合肥一模)如图所示,一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆轨道最低点时,轨道所受压力为铁块重力的1.5倍,则此过程中铁块损失的机械能为(重力加速度为g )( )A.18mgR B .14mgRC.12mgR D .34mgR 解析:选D.铁块在最低点,支持力与重力合力等于向心力,即1.5mg -mg =m v 2R ,即铁块动能E k =12mv 2=14mgR ,初动能为零,故动能增加14mgR ,铁块重力势能减少mgR ,所以机械能损失34mgR ,D 项正确.3.(2018·江西重点中学联考)如图所示,在粗糙的水平面上,质量相等的两个物体A 、B 间用一轻质弹簧相连组成系统,且该系统在水平拉力F 作用下以相同加速度保持间距不变一起做匀加速直线运动,当它们的总动能为2E k 时撤去水平力F ,最后系统停止运动.不计空气阻力,认为最大静摩擦力等于滑动摩擦力,从撤去拉力F 到系统停止运动的过程中( )A .外力对物体A 所做总功的绝对值等于2E kB .物体A 克服摩擦阻力做的功等于E kC .系统克服摩擦阻力做的功可能等于系统的总动能2E kD .系统克服摩擦阻力做的功一定等于系统机械能的减少量解析:选D.当它们的总动能为2E k 时,物体A 动能为E k ,撤去水平力F ,最后系统停止运动,外力对物体A 所做总功的绝对值等于E k ,选项A 、B 错误;由于二者之间有弹簧,弹簧具有弹性势能,根据功能关系,系统克服摩擦阻力做的功一定等于系统机械能的减少量,选项D 正确,C 错误.4.如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( )A .重力做功2mgRB .机械能减少mgRC .合外力做功mgRD .克服摩擦力做功12mgR解析:选D.小球到达B 点时,恰好对轨道没有压力,只受重力作用,根据mg =mv 2R得,小球在B 点的速度v =gR .小球从P 到B 的运动过程中,重力做功W =mgR ,故选项A 错误;减少的机械能ΔE 减=mgR -12mv 2=12mgR ,故选项B 错误;合外力做功W 合=12mv 2=12mgR ,故选项C 错误;根据动能定理得,mgR -W f =12mv 2-0,所以W f=mgR -12mv 2=12mgR ,故选项D 正确.5.如图所示,一张薄纸板放在光滑水平面上,其右端放有小木块,小木块与薄纸板的接触面粗糙,原来系统静止.现用水平恒力F 向右拉薄纸板,小木块在薄纸板上发生相对滑动,直到从薄纸板上掉下来.上述过程中有关功和能的说法正确的是( )A .拉力F 做的功等于薄纸板和小木块动能的增加量B .摩擦力对小木块做的功一定等于系统中由摩擦产生的热量C .离开薄纸板前小木块可能先做加速运动,后做匀速运动D .小木块动能的增加量可能小于系统中由摩擦产生的热量解析:选D.由功能关系,拉力F 做的功等于薄纸板和小木块动能的增加量与系统产生的内能之和,选项A 错误;摩擦力对小木块做的功等于小木块动能的增加量,选项B 错误;离开薄纸板前小木块一直在做匀加速运动,选项C 错误;对于系统,由摩擦产生的热量Q =f ΔL ,其中ΔL 为小木块相对薄纸板运动的路程,若薄纸板的位移为L 1,小木块相对地面的位移为L 2,则ΔL =L 1-L 2,且ΔL 存在大于、等于或小于L 2三种可能,对小木块,fL 2=ΔE k ,即Q 存在大于、等于或小于ΔE k 三种可能,选项D 正确.6.(2018·江西十校模拟)将三个木板1、2、3固定在墙角,木板与墙壁和地面构成了三个不同的三角形,如图所示,其中1与2底边相同,2和3高度相同.现将一个可以视为质点的物块分别从三个木板的顶端由静止释放,并沿斜面下滑到底端,物块与木板之间的动摩擦因数μ均相同.在这三个过程中,下列说法不正确的是( )A .沿着1和2下滑到底端时,物块的速率不同,沿着2和3下滑到底端时,物块的速率相同B .沿着1下滑到底端时,物块的速度最大C .物块沿着3下滑到底端的过程中,产生的热量是最多的D .物块沿着1和2下滑到底端的过程中,产生的热量是一样多的解析:选A.设1、2、3木板与地面的夹角分别为θ1、θ2、θ3,木板长分别为l 1、l 2、l 3,当物块沿木板1下滑时,由动能定理有mgh 1-μmgl 1cos θ1=12mv 21-0,当物块沿木板2下滑时,由动能定理有mgh 2-μmgl 2cosθ2=12mv 22-0,又h 1>h 2,l 1cos θ1=l 2cos θ2,可得v 1>v 2;当物块沿木板3下滑时,由动能定理有mgh 3-μmgl 3cos θ3=12mv 23-0,又h 2=h 3,l 2cos θ2<l 3cos θ3,可得v 2>v 3,故A 错、B 对;三个过程中产生的热量分别为Q 1=μmgl 1cos θ1,Q 2=μmgl 2cos θ2,Q 3=μmgl 3cos θ3,则Q 1=Q 2<Q 3,故C 、D 对.二、多项选择题7.(2018·河北质检)如图所示,在竖直向上的匀强电场中,绝缘轻质弹簧直立于地面上,上面放一个质量为m 的带负电的小球,小球与弹簧不连接.现用外力将小球向下压到某一位置后撤去外力,小球从静止开始运动到刚离开弹簧的过程中,小球克服重力和电场力做功分别为W 1和W 2,小球刚好离开弹簧时速度为v ,不计空气阻力,则在上述过程中,下列说法正确的是( )A .带电小球电势能增加W 2B .弹簧弹性势能最大值为W 1+W 2+12mv 2C .弹簧弹性势能减少量为W 2+W 1D .带电小球和弹簧组成的系统机械能减少W 2解析:选ABD.小球从静止开始运动到刚离开弹簧的过程中,小球克服电场力做的功W 2等于小球增加的电势能,故A 正确;小球从静止开始运动时弹性势能最大,自小球从静止开始运动到刚离开弹簧的过程中,对小球和弹簧组成的系统由能量转化与守恒得,弹性势能的减少量转化为重力势能、电势能和动能三者增量之和,即弹簧弹性势能最大值为W 1+W 2+12mv 2,故B 项正确,C 项错误;由于带电小球电势能增加W 2,所以带电小球和弹簧组成的系统机械能减少W 2,故D 项正确.8.(2018·嘉兴一中模拟)在儿童乐园的蹦床项目中,小孩在两根弹性绳和弹性床的协助下实现上下弹跳,如图所示.某次蹦床活动中小孩静止时处于O 点,当其弹跳到最高点A 后下落可将蹦床压到最低点B ,小孩可看成质点.不计空气阻力,下列说法正确的是( )A .从A 点运动到O 点,小孩重力势能的减少量大于动能的增加量B .从O 点运动到B 点,小孩动能的减少量等于蹦床弹性势能的增加量C .从A 点运动到B 点,小孩机械能的减少量小于蹦床弹性势能的增加量D .从B 点返回到A 点,小孩机械能的增加量大于蹦床弹性势能的减少量解析:选AD.小孩从A 点运动到O 点,由动能定理可得mgh AO -W 弹1=ΔE k1,选项A 正确;小孩从O 点运动到B 点,由动能定理可得mgh OB -W 弹2=ΔE k2,选项B 错误;小孩从A 点运动到B 点,由功能关系可得-W 弹=ΔE 机1,选项C 错误;小孩从B 点返回到A 点,弹性绳和蹦床的弹性势能转化为小孩的机械能,则知小孩机械能的增加量大于蹦床弹性势能的减少量,选项D 正确.9.。
机械能守恒定律专题9 能量守恒定律应用(3)板块模型1.滑块—木板模型根据情况可以分成水平面上的滑块—木板模型和斜面上的滑块—木板模型.2.滑块从木板的一端运动到另一端的过程中,若滑块和木板沿同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板沿相反方向运动,则滑块的位移和木板的位移之和等于木板的长度.3.此类问题涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变),找出物体之间的位移(路程)关系或速度关系是解题的突破口,求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.滑块—木板模型问题的分析和技巧1.解题关键正确地对各物体进行受力分析(关键是确定物体间的摩擦力方向),并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况.2.规律选择既可由动能定理和牛顿运动定律分析单个物体的运动,又可由能量守恒定律分析动能的变化、能量的转化,在能量转化过程往往用到ΔE 内=-ΔE 机=F f x相对,并要注意数学知识(如图象法、归纳法等)在此类问题中的应用.例题1、如图5,质量为M 、长度为L 的小车静止在光滑的水平面上.质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动,物块和小车之间的摩擦力为F f ,物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是(BC)图5A .物块到达小车最右端时具有的动能为F (L +s )B .物块到达小车最右端时,小车具有的动能为F f sC .物块克服摩擦力所做的功为F f (L +s )D .物块和小车增加的机械能为F f s解析 对物块分析,物块相对于地的位移为L +s ,根据动能定理得(F -F f )(L +s )=12m v 2-0,则知物块到达小车最右端时具有的动能为(F -F f )(L +s ),故A 错误;对小车分析,小车对地的位移为s ,根据动能定理得F f s =12M v ′2-0,则知物块到达小车最右端时,小车具有的动能为F f s ,故B 正确;物块相对于地的位移大小为L +s ,则物块克服摩擦力所做的功为F f (L +s ),故C 正确;根据能量守恒得,外力F 做的功转化为小车和物块的机械能和摩擦产生的内能,则有F (L +s )=ΔE +Q ,则物块和小车增加的机械能为ΔE =F(L+s)-F f L,故D错误.例题2、图7甲中,质量为m1=1kg的物块叠放在质量为m2=3kg的木板右端.木板足够长,放在光滑的水平面上,木板与物块之间的动摩擦因数为μ1=0.2.整个系统开始时静止,重力加速度g取10m/s2.甲图7(1)在木板右端施加水平向右的拉力F,为使木板和物块发生相对运动,拉力F至少应为多大?(2)在0~4s内,若拉力F的变化如图乙所示,2s后木板进入μ2=0.25的粗糙水平面,在图丙中画出0~4s 内木板和物块的v-t图象,并求出0~4s内物块相对木板的位移大小和整个系统因摩擦而产生的内能.答案(1)8N(2)见解析系统产生的内能可以直接用能量守恒等于力F做的功解析(1)把物块和木板看成整体,由牛顿第二定律得F=(m1+m2)a物块与木板将要相对滑动时,μ1m1g=m1a联立解得F=μ1(m1+m2)g=8N.(2)物块在0~2s内做匀加速直线运动,木板在0~1s内做匀加速直线运动,在1~2s内做匀速运动,2s后物块和木板均做匀减速直线运动,故二者在整个运动过程中的v-t图象如图所示.0~2s内物块相对木板向左运动,2~4s内物块相对木板向右运动.0~2s内物块相对木板的位移大小Δx1=2m,系统摩擦产生的内能Q1=μ1m1gΔx1=4J.2~4s内物块相对木板的位移大小Δx2=1m,物块与木板因摩擦产生的内能Q2=μ1m1gΔx2=2J;木板对地位移x 2=3m ,木板与地面因摩擦产生的内能Q 3=μ2(m 1+m 2)gx 2=30J.0~4s 内系统因摩擦产生的总内能为Q =Q 1+Q 2+Q 3=36J.例题3、如图4所示,在光滑水平地面上放置质量M =2kg 的长木板,木板上表面与固定的竖直弧形轨道相切.一质量m =1kg 的小滑块自A 点沿弧面由静止滑下,A 点距离长木板上表面高度h =0.6m .滑块在木板上滑行t =1s 后,和木板一起以速度v =1m /s 做匀速运动,取g =10 m/s 2.求:图4(1)滑块与木板间的摩擦力;(2)滑块沿弧面下滑过程中克服摩擦力做的功;(3)滑块相对木板滑行的距离.解析 (1)对木板受力分析F f =Ma 1 由运动学公式,有v =a 1t 解得F f =2N.(2)对滑块受力分析-F f =ma 2 设滑块滑上木板时的初速度为v 0 由公式v -v 0=a 2t 解得v 0=3m/s滑块沿弧面下滑的过程,由动能定理得mgh -W f =12m v 20 W f =mgh -12m v 20=1.5J. (3)t =1s 内木板的位移x 1=12a 1t 2 此过程中滑块的位移 x 2=v 0t +12a 2t 2 故滑块相对木板滑行距离 L =x 2-x 1=1.5m.答案 (1)2N (2)1.5J (3)1.5m例题4、如图1所示,AB 段为一半径R =0.2m 的14光滑圆弧轨道,EF 是一倾角为30°的足够长的光滑固定斜面,斜面上有一质量为0.1kg 的薄木板CD ,开始时薄木板被锁定.一质量也为0.1kg 的物块(图中未画出)从A 点由静止开始下滑,通过B 点后水平抛出,经过一段时间后恰好以平行于薄木板的方向滑上薄木板,在物块滑上薄木板的同时薄木板解除锁定,下滑过程中某时刻物块和薄木板能达到共同速度.已知物块与薄木板间的动摩擦因数μ=36.(g =10m/s 2,结果可保留根号)求:图1(1)物块到达B 点时对圆弧轨道的压力;(2)物块滑上薄木板时的速度大小;(3)达到共同速度前物块下滑的加速度大小及从物块滑上薄木板至达到共同速度所用的时间.答案 (1)3N ,方向竖直向下 (2)433m/s (3)2.5m/s 2 4315s 解析 (1)物块从A 运动到B 的过程,由动能定理得:mgR =12m v 2B,解得:v B =2m/s 在B 点由牛顿第二定律得:F N -mg =m v 2B R解得:F N =3N 由牛顿第三定律得物块对轨道的压力大小为3N ,方向竖直向下.(2)设物块滑上薄木板时的速度为v ,则:cos30°=v B v解得:v =433m/s. (3)物块和薄木板下滑过程中,由牛顿第二定律得:对物块:mg sin30°-μmg cos30°=ma 1对薄木板:mg sin30°+μmg cos30°=ma 2设物块和薄木板达到的共同速度为v ′,则:v ′=v +a 1t =a 2t解得:a 1=2.5m/s 2,t =4315s. 练习1:如图8所示,长木板A 放在光滑的水平地面上,物体B 以水平速度冲上A 后,由于摩擦力作用,最后停止在木板A 上,则从B 冲到木板A 上到相对木板A 静止的过程中,下述说法中正确的是( CD )图8A .物体B 动能的减少量等于系统损失的机械能B .物体B 克服摩擦力做的功等于系统内能的增加量C .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和D .摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量解析 物体B 以水平速度冲上木板A 后,由于摩擦力作用,B 减速运动,木板A 加速运动,根据能量守恒定律,物体B 动能的减少量等于木板A 增加的动能和产生的热量之和,选项A 错误;根据动能定理,物体B 克服摩擦力做的功等于物体B 损失的动能,选项B 错误;由能量守恒定律可知,物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和,选项C 正确;摩擦力对物体B 做的功等于物体B 动能的减少量,摩擦力对木板A 做的功等于木板A 动能的增加量,由能量守恒定律,摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量,选项D 正确.练习2:光滑水平面上静止一质量为M 的木块,一颗质量为m 的子弹以水平速度v 1射入木块,并以速度v 2穿出,对这个过程,下列说法正确的是( AD )A .子弹克服阻力做的功等于12m (v 21-v 22) B .子弹对木块做的功等于子弹克服阻力做的功C .子弹对木块做的功等于木块获得的动能与子弹跟木块摩擦生热产生的内能之和D .子弹损失的动能等于木块的动能和子弹与木块摩擦转化的内能之和练习3-3:如图6所示,木块A 放在木块B 的左端,用恒力F 将A 拉至B 的右端,第一次将B 固定在地面上,F 做功为W 1,生热为Q 1;第二次让B 可以在光滑地面上自由滑动,仍将A 拉到B 的右端,这次F 做功为W 2,生热为Q 2.则应有( A )图6A .W 1<W 2,Q 1=Q 2B .W 1=W 2,Q 1=Q 2C .W 1<W 2,Q 1<Q 2D .W 1=W 2,Q 1<Q 2解析 拉力F 做的功由公式W =Fl cos α求得,其中l 是物体对地的位移,所以W 1<W 2,滑动摩擦力做功过程中产生的内能等于系统克服摩擦力做的功,即ΔE =Q =F f l相对,其中l 相对表示物体之间的相对位移,在这里是B 的长度,所以Q 1=Q 2.练习4:如图9所示,一块长木块B 放在光滑的水平面上,在B 上放一物体A ,现以恒定的外力F 拉B ,由于A 、B 间摩擦力的作用,A 将在B 上滑动,以地面为参考系,A 、B 都向前移动一段距离.在此过程中( BD )图9A .外力F 做的功等于A 和B 动能的增量B .B 对A 的摩擦力所做的功等于A 的动能的增量C .A 对B 的摩擦力所做的功等于B 对A 的摩擦力所做的功D .外力F 对B 做的功等于B 的动能的增量与B 克服摩擦力所做的功之和解析 A 物体所受的合外力等于B 对A 的摩擦力,对A 物体运用动能定理,则B 对A 的摩擦力所做的功等于A 的动能的增量,B 正确.A 对B 的摩擦力与B 对A 的摩擦力是一对作用力与反作用力,大小相等,方向相反,但是由于A 在B 上滑动,A 、B 对地的位移不等,故二者做功不等,C 错误.对B 应用动能定理W F-W f=ΔE k B,W F=ΔE k B+W f,即外力F对B做的功等于B的动能的增量与B克服摩擦力所做的功之和,D正确.由上述讨论知B克服摩擦力所做的功与A的动能的增量(等于B对A的摩擦力所做的功)不等,故A错误.练习5:(2013·山东·16)如图4所示,楔形木块abc固定在水平面上,粗糙斜面ab和光滑斜面bc与水平面的夹角相同,顶角b处安装一定滑轮.质量分别为M、m(M>m)的滑块通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中(CD)图4A.两滑块组成系统的机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成系统的机械能损失等于M克服摩擦力做的功解析两滑块释放后,M下滑、m上滑,摩擦力对M做负功,系统的机械能减小,减小的机械能等于M 克服摩擦力做的功,选项A错误,D正确.除重力对滑块M做正功外,还有摩擦力和绳的拉力对滑块M 做负功,选项B错误.绳的拉力对滑块m做正功,滑块m机械能增加,且增加的机械能等于拉力做的功,选项C正确.练习6:如图所示,上表面光滑,长度为3m、质量M=10kg的木板,在F=50N的水平拉力作用下,以v0=5m /S的速度沿水平地面向右匀速运动。
专题五功和能第2讲功能关系机械能守恒定律和能量守恒定律一、核心知识、方法回扣:1.机械能守恒定律:(1)内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.(2)机械能守恒的条件①对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.②对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.(3)三种表达式:①守恒的观点:____ ____ _____。
②转化的观点:_____ _____。
③转移的观点:_____ ___。
2.几个重要的功能关系(1)重力的功等于的变化,即W G=.(2)弹力的功等于的变化,即W弹=.(3)合力的功等于的变化,即W=.(4)重力之外(除弹簧弹力)的其他力的功等于的变化.W其他=ΔE.(5)一对滑动摩擦力做的功等于的变化.Q=F·s相对.3.静电力做功与无关.若电场为匀强电场,则W=Fs cos α=Eqs cos α;若是非匀强电场,则一般利用W=来求.4.磁场力又可分为洛伦兹力和安培力.洛伦兹力在任何情况下对运动的电荷都;安培力可以做正功、负功,还可以不做功.5.电流做功的实质是电场对做功.即W=UIt=.6.导体棒在磁场中切割磁感线时,棒中感应电流受到的安培力对导体棒做功,使机械能转化为能.7.静电力做功等于的变化,即W AB=-ΔE p.二、方法、规律:1.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功代数和是否.②用能量转化来判断,看是否有机械能转化为其他形式的能.③对一些“绳子突然绷紧”、“”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.(2)应用机械能守恒定律解题的基本思路①选取研究对象——物体系.②根据研究对象所经历的物理过程,进行、分析,判断机械能是否守恒.③恰当地选取参考平面,确定研究对象在运动过程的始末状态时的机械能.④根据机械能守恒定律列方程,进行求解.2.功能关系在电学中应用的题目,一般过程复杂且涉及多种性质不同的力,因此,通过审题,抓住和运动过程分析是关键,然后根据不同的运动过程各力做功的特点来选择规律求解. 3.力学中的动能定理和能量守恒定律在处理电学中能量问题仍然是首选的方法.三、错题集:1、如图所示,桌面高地面高H,小球自离桌面高h处由静止落下,不计空气阻力,则小球触地的瞬间机械能为(设桌面为零势面)()A.mgh B.mgH C.mg(H+h) D.mg(H-h)2、以下过程中机械能守恒的是()A.以8m/s2的加速度在空中下落的石块B.沿固定的光滑斜面自由下滑的滑块C.正在升空的火箭D.吊在轻质弹簧下端正在自由振动的小球3、如图所示,质量分别为2m和m的A、B两物体用不可伸长的轻绳绕过轻质定滑轮相连,开始两物体处于同一高度,绳处于绷紧状态,轻绳足够长,不计一切摩擦。
物理学案专题3-机械能 机械能守恒 功能关系 能量守恒定律一、基本概念1. 重力势能:物体由于被举高而具有的能,叫做重力势能。
公式:mgh E P=h ——物体具参考面的竖直高度 2. 重力势能参考面a 重力势能为零的平面称为参考面;b 选取:原则是任意选取,但通常以地面为参考面选取不同的参考面,物体具有的重力势能不同,但重力势能改变与参考面的选取无关。
3. 重力做功与重力势能的关系:21P P GE E W -=重力做正功时,物体重力势能减少;重力做负功时,物体重力势能增加。
4. 弹簧的弹性势能:221kx E P=5. 弹力做功与弹性势能的关系:21P P FE E W -=6. 势能:相互作用的物体凭借其位置而具有的能量叫势能,势能是系统所共有的。
7. 机械能包含动能和势能(重力势能和弹性势能)两部分,即P K E E E+=。
8. 机械能守恒定律:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变,即21E E =2211P K P K E E E E +=+ΔΕK = —ΔΕP ΔΕ1 = —ΔΕ2。
9. 机械能守恒条件:做功角度:只有重力或弹力做功,无其它力做功; 外力不做功或外力做功的代数和为零; 系统内如摩擦阻力对系统不做功。
能量角度:首先只有动能和势能之间能量转化,无其它形式能量转化;只有系统内能量的交换,没有与外界的能量交换。
10. 能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变, 即1212E E E E +=+其它其它机械能机械能。
二、常规题型只有重力做功,机械能守恒,能量在重力势能和动能之间转变。
例1:在高处的同一点,将三个质量相同的小球,以大小相等的初速度分别上抛、平抛和下抛,并落到同一水平地面上,则( ) A .三个小球落地时,重力的瞬时功率相同B .从抛出到落地的过程中,重力对它们做功的平均功率相同C .从抛出到落地的过程中,重力对它们做的功相同D .三个小球落地时的速率相等 即时练习:1. 下列关于机械能守恒的说法中正确的是( )A .做匀速运动的物体,其机械能一定守恒B .做匀加速运动的物体,其机械能一定守恒C .做匀速圆周运动的物体,其机械能一定守恒D .除重力做功外,其他力没有做功,物体的机械能一定守恒2. 一质量为m 的物体,以13g 的加速度减速上升h 高度,g 为重力加速度,不计空气阻力,则( )A. 物体的机械能守B. 物体的动能减小13mghC. 物体的机械能减少23mgh D. 物体的重力势能减少mgh3.一个高尔夫球静止于平坦的地面上,在t =0时球被击出,飞行中球的速率与时间的关系如图5-3-20所示.若不计空气阻力的影响,根据图象提供的信息可以求出图5-3-20A .高尔夫球在何时落地B .高尔夫球可上升的最大高度C .人击球时对高尔夫球做的功D .高尔夫球落地时离击球点的距离4. 小明和小强在操场上一起踢足球,足球质量为m.如图5-3-16所示,小明将足球以速度v 从地面上的A 点踢起,当足球到达离地面高度为h 的B 点位置时,取B 处为零势能参考面,不计空气阻力.则下列说法中正确的是图5-3-16A .小明对足球做的功等于12mv 2+mgh B .小明对足球做的功等于mghC .足球在A 点处的机械能为12mv 2 D .足球在B 点处的动能为12mv 2-mgh5.如图,两个质量相同的小球A 、B 分别用不计质量的细线悬在等高的O 1、O 2点,A 球的悬线比B 球的长。
把两球的悬线分别拉至水平后无初速度释放,则经过最低点时( )A. A 球的机械能等于B 球的机械能B. A 球的速度等于B 球的速度C. A 球的向心加速度等于B 球的向心加速度D. A 球的动能等于B 球的动能6.(2010·安徽理综)伽利略曾设计如图5-3-14所示的一个实验,将摆球拉至M 点放开,摆球会达到同一水平高度上的N 点.如果在E 或F 处钉上钉子,摆球将沿不同的圆弧达到同一高度的对应点;反过来,如果让摆球从这些点下落,它同样会达到原水平高度上的M 点.这个实验可以说明,物体由静止开始沿不同倾角的光滑斜面(或弧线)下滑时,其末速度的大小图5-3-14A .只与斜面的倾角有关B .只与斜面的长度有关C .只与下滑的高度有关D .只与物体的质量有关图5-3-23弹力做正功弹性势能减小,弹簧做负功弹性势能增加,如果整个过程只有弹力或弹力和重力做功,系统机械能将保持不变。
例2 .如图所示,一个轻质弹簧一端固定在粗糙的斜面底端,弹簧轴线与斜面平行,小滑块A 从斜面的某一高度由静止开始沿斜面向下运动一段距离后与弹簧接触,直到把弹簧压缩到最短.在此过程中下列说法正确的是( )A. 滑块先做匀加速运动后做匀减速运动B. 滑块先做匀加速运动,接触弹簧后再做匀加速运动最后做变减速运动C. 滑块重力做功等于内能与弹性势能的增加量D. 滑块重力势能减少量与内能增加量之和等于弹性势能增加量 即时练习:图5-3-151. 如图5-3-15所示,一质量为m 的小球固定于轻质弹簧的一端,弹簧的另一端固定于O 点处,将小球拉至A 处,弹簧恰好无形变,由静止释放小球,它运动到O 点正下方B 点的速度为v ,与A 点的竖直高度差为h ,则A .由A 到B 重力做功为mgh B .由A 到B 重力势能减少12mv 2C .由A 到B 小球克服弹力做功为mghD .小球到达位置B 时弹簧的弹性势能为⎝⎛⎭⎪⎫mgh -12mv 22.如图5-3-23所示,在倾角为30°的光滑斜面上,有一劲度系数为k的轻质弹簧,其一端固定在固定挡板C上,另一端连接一质量为m的物体A.有一细绳通过定滑轮,细绳的一端系在物体A上(细绳与斜面平行),另一端系有一细绳套,物体A处于静止状态.当在细绳套上轻轻挂上一个质量为m的物体B后,物体A将沿斜面向上运动,试求:(1)未挂物体B时,弹簧的形变量;(2)物体A的最大速度值.图5-3-173.来自福建省体操队的运动员黄珊汕是第一次在奥运会上获得蹦床奖牌的中国选手.蹦床是一项好看又惊险的运动,如图5-3-17所示为运动员在蹦床运动中完成某个动作的示意图,图中虚线PQ是弹性蹦床的原始位置,A为运动员抵达的最高点,B为运动员刚抵达蹦床时的位置,C为运动员抵达的最低点.不考虑空气阻力和运动员与蹦床作用时的机械能损失,A、B、C三个位置运动员的速度分别是v A、v B、v C,机械能分别是E A、E B、E C,则它们的大小关系是A.v A<v B,v B>v C B.v A>v B,v B<v C C.E A=E B,E B>E C D.E A>E B,E B=E C4.如图5所示,跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板(A位置)上,随跳板一同向下运动到最低点(B位置).对于运动员从开始与跳板接触到运动至最低点的过程,下列说法中正确的是图5A.运动员到达最低点时,其所受外力的合力为零B.在这个过程中,运动员的动能一直在减小C.在这个过程中,跳板的弹性势能一直在增加D.在这个过程中,运动员所受重力对他做的功小于跳板的作用力对他做的功5. (2011全国理综).一蹦极运动员身系弹性蹦极绳从水面上方的高台下落,到最低点时距水面还有数米距离。
假定空气阻力可忽略,运动员可视为质点,下列说法正确的是()A. 运动员到达最低点前重力势能始终减小B. 蹦极绳张紧后的下落过程中,弹性力做负功,弹性势能增加C. 蹦极过程中,运动员、地球和蹦极绳所组成的系统机械能守恒D. 蹦极过程中,重力势能的改变与重力势能零点的选取有关机械能与内能的互相转化-摩擦力做功例.如图5-测-4所示,物体以100 J的初动能从斜面底端向上运动,当它通过斜面某一点M时,其动能减小80 J,机械能减少32 J,如果物体能从斜面上返回底端,则物体在运动过程中的下列说法正确的是( )图5-测-4A.物体在M点的重力势能为-48 J B.物体自M点起重力势能再增加21 J到最高点C.物体在整个过程中摩擦力做的功为-80 J D.物体返回底端时的动能为30 J即时练习:图5-测-111.如图5-测-11所示,质量为m的物体从倾角为θ的斜面上的A点以速度v0沿斜面上滑,由于μmg cosθ<mg sinθ,所以它滑到最高点后又滑下来,当它下滑到B点时,速度大小恰好也是v0,设物体与斜面间的动摩擦因数为μ,求AB间的距离.2.水平传送带匀速运动,速度大小为v,现将一小工件放到传送带上.设工件初速度为零,当它在传送带上滑动一段距离后速度达到v 而与传送带保持相对静止.设工件质量为m,它与传送带间的动摩擦因数为μ,则在工件相对传送带滑动的过程中A.滑动摩擦力对工件做的功为mv2/2 B.工件的机械能增量为mv2/2C.工件相对于传送带滑动的路程大小为v2/(2μg) D.传送带对工件做功为零3. 滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来。
如图是滑板运动的轨道,BC和DE是两段光滑弧形轨道,BC段的圆心为O点,圆心角为60o,半径OC与水平轨道CD垂直。
水平轨道CD段粗糙且长为8m。
一运动员从轨道的A点以3m/s 的速度水平滑出,在B点刚好沿轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点的速度减为零,然后返回。
已知运动员与滑板的总质量为60kg,B、E两点距水平面CD的竖直高度分别为h和H。
且h=2m,H=2.8m,g取10m/s2。
求:(1)运动员从A点运动到B点时的速度大小v B(2)轨道CD段的动摩擦因数μ(3)通过计算说明,第一次返回时,运动员能否回到B点。
如能,请求出回到B点时的速度大小;如不能,则最后停在何处?图5-3-224.(2011·金考卷)(12分)如图5-3-22所示,光滑弧形轨道下端与水平传送带连接,轨道上的A点到传送带及传送带到地面的高度均为h=5 m.把一物体自A点由静止释放,物体与传送带之间的动摩擦因数μ=0.2.先让传送带不转动,物体滑上传送带后,从右端B点水平飞出,落在地面上的P点,B、P间的水平距离OP为x=2 m.然后让传送带沿顺时针方向转动,速度大小为v=5 m/s,取g=10 m/s2.求:(1)传送带转动时,物体落在何处?(2)先后两种情况下,传送带对物体做功的比值.(3)两种情况下,物体运动所用时间之差.5. (2010·全国Ⅱ)(15分)如图5-4-18,MNP为竖直面内一固定轨道,其圆弧段MN与水平段NP相切于N,P端固定一竖直挡板.M 相对于N的高度为h,NP长度为s.一物块自M端从静止开始沿轨道下滑,与挡板发生一次完全弹性碰撞(即碰撞过程无机械能损失)后停止在水平轨道上某处.若在MN段的摩擦可忽略不计,物块与NP段轨道间的动摩擦因数为μ,求物块停止的地方与N点距离的可能值.图5-4-186.(浙江卷,18)如图所示为一滑草场。