数学选修—导数及其应用(基础)
- 格式:doc
- 大小:298.50 KB
- 文档页数:5
同济大学高等数学《导数及其应用》w o r d教案(总35页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第 9 次课 2 学时第二章 导数与微分导数和微分是高等数学中的重要内容之一,也是今后讨论一切问题的基础。
导数数大体上变化多少,它从根本上反映了函数的变化情况。
本章主要学习和讨论导数和微分的概念以及它们的计算方法,以后将陆续的介绍它们的用途。
§2、1 导数的概念 一、 引例 1、切线问题:切线的概念在中学已见过。
从几何上看,在某点的切线就是一直线,它在该点和曲线相切。
准确地说,曲线在其上某点P 的切线是割线PQ 当Q 沿该曲线无限地接近于P 点的极限位置。
设曲线方程为)(x f y =,设P 点的坐标为),(00y x p ,动点Q 的坐标为),(y x Q ,要求出曲线在P 点的切线,只须求出P 点切线的斜率k 。
由上知,k 恰好为割线PQ 的斜率的极限。
我们不难求得PQ 的斜率为:0)()(x x x f x f --;因此,当Q P →时,其极限存在的话,其值就是k ,即00)()(limx x x f x f k x x --=→。
若设α为切线的倾角,则有αtan =k 。
2、速度问题:设在直线上运动的一质点的位置方程为)(t s s =(t 表示时刻),又设当t 为0t 时刻时,位置在)(0t s s =处,问:质点在0t t =时刻的瞬时速度是多少?为此,可取0t 近邻的时刻t ,0t t >,也可取0t t <,在由0t 到t 这一段时间内,质点的平均速度为00)()(t t t s t s --,显然当t 与0t 越近,用00)()(t t t s t s --代替0t 的瞬时速度的效果越佳,特别地,当0t t →时,00)()(t t t s t s --→某常值0v ,那么0v 必为0t 点的瞬时速度,此时,00)()(lim 0t t t s t s v t t --=→二、 导数的定义综合上两个问题,它们均归纳为这一极限00)()(limx x x f x f x x --→(其中0x x -为自变量x在0x 的增量,)()(0x f x f -为相应的因变量的增量),若该极限存在,它就是所要讲的导数。
导数及其应用课标解读1、整体定位《标准》中对导数及其应用的整体定位如下:“微积分的创立是数学发展中的里程碑,它的发展和广泛应用开创了向近代数学过渡的新时期,为研究变量和函数提供了重要的方法和手段。
导数概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。
在本模块中,学生将通过大量实例,经历由平均变化率到瞬时变化率刻画现实问题的过程,理解导数概念,了解导数在研究函数的单调性、极值等性质中的作用,初步了解定积分的概念,为以后进一步学习微积分打下基础。
通过该模块的学习,学生将体会导数的思想及其丰富内涵,感受导数在解决实际问题中的作用,了解微积分的文化价值。
”为了更好地理解整体定位,需要明确以下几个方面的问题:(1)要防止将导数仅仅作为一些规则和步骤来学习,而忽视它的思想和价值。
由于在中学阶段,学生没有学习极限,而导数又作为一种特殊的极限,我们如何处理这部分内容呢?导数及其应用在编排上更侧重于思想和概念的本质,不能把导数作为一种特殊的极限(增量比的极限)来处理,而是通过实际的背景和具体应用事例—膨胀率、加速度、增长率等实例,引导学生经历由平均变化率到瞬时变化率的过程,认识和理解导数的概念,同时加强学生对导数几何意义的认识和理解。
(2)导数的运算不宜要求过高由于没有学习极限,因此,我们不能过多地要求学生利用极限去求过于复杂的函数导数。
这里,只要求学生能根据导数定义求函数y=c,y=x,y=x 2,y=x 3,y=x 1,y=x 的导数;能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(a+b))的导数。
(3)注重导数在研究函数和生活实践中的应用导数概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用。
它是研究函数增减、变化快慢、最大(小)值等问题最一般,最有效的工具。
这里,我们要求学生能借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值。
3.2导数的计算[教材研读]预习课本P81~85,思考以下问题1.幂函数f(x)=x2,f(x)=x 12的导数是什么?2.根据导数的运算法则,积f(x)g(x)的导数与f′(x),g′(x)有何关系?[要点梳理]1.基本初等函数的导数公式2.导数运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );当g (x )=c 时,[cf (x )]′=cf ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). [自我诊断]判断(正确的打“√”,错误的打“×”)1.y =1x ,y =x ,y =x 2等求导函数,都可以看成y =x α(α∈Q *),并用其导数公式求导.( )2.y =ln x 在x =2处的切线的斜率为12.( )3.f (x )=e x 在点(0,1)处的切线的方程为x -y +1=0.( )[答案] 1.√ 2.√ 3.√题型一 利用导数公式求函数的导数思考:如何充分利用基本初等函数的导数公式?提示:若函数解析式不能直接使用导数公式,则化成能应用导数公式的形式.求下列函数的导数:(1)y =10x ;(2)y =lg x ;(4)y =4x 3;(5)y =⎝ ⎛⎭⎪⎫sin x 2+cos x 22-1. [思路导引] 把解析式化简成能应用公式的形式.[解] (1)y ′=(10x )′=10x ln10.(2)y ′=(lg x )′=1x ln10.(5)∵y =⎝⎛⎭⎪⎫sin x 2+cos x 22-1 =sin 2x 2+2sin x 2cos x 2+cos 2x 2-1=sin x ,∴y ′=(sin x )′=cos x .(1)若给出的函数解析式符合基本初等函数的导数公式,则直接利用公式求导.(2)若给出的函数解析式不符合导数公式,则通过恒等变换对解析式进行化简或变形后求导,如根式要化成指数幂的形式求导.[跟踪训练]求下列函数的导数:(1)y =⎝ ⎛⎭⎪⎫1e x ; (2)y =⎝ ⎛⎭⎪⎫110x ; (3)y =lg5;(4)y =3lg 3x ;(5)y =2cos 2x 2-1.[解] (1)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1e x ′=⎝ ⎛⎭⎪⎫1e x ln 1e =-1e x =-e -x . (2)y ′=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫110x ′=⎝ ⎛⎭⎪⎫110x ln 110=-ln1010x =-10-x ln10. (3)∵y =lg5是常数函数,∴y ′=(lg5)′=0.(4)∵y =3lg 3x =lg x ,∴y ′=(lg x )′=1x ln10.(5)∵y =2cos 2x 2-1=cos x ,∴y ′=(cos x )′=-sin x .题型二 利用导数的运算法则求导数(链接教材P 84例2)求下列函数的导数:(1)y =x 3·e x ;(2)y =x -sin x 2cos x 2;(3)y =x 2+log 3x ;(4)y =e x +1e x -1.[思路导引] 尽量把解析式转化为能用和差的求导法则,减少求导法则的应用的烦索性.[解] (1)y ′=(x 3)′e x +x 3(e x )′=3x 2e x +x 3e x =x 2(3+x )e x .(2)∵y =x -12sin x ,∴y ′=x ′-12(sin x )′=1-12cos x .(3)y ′=(x 2+log 3x )′=(x 2)′+(log 3x )′=2x +1x ln3. (4)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x(e x -1)2=-2e x(e x -1)2.(1)分析求导式符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定求导法则,基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数法则求导的原则是尽可能化为和、差,利用和、差的求导法则求导,尽量少用积、商的求导法则求导.[跟踪训练]求下列函数的导数:(1)y =cos x x ;(2)y =x sin x +x ;(3)y =1+x 1-x +1-x 1+x ; (4)y =lg x -1x 2.[解] (1)y ′=⎝ ⎛⎭⎪⎫cos x x ′=(cos x )′·x -cos x ·(x )′x 2=-x ·sin x -cos x x 2=-x sin x +cos x x 2. (2)y ′=(x sin x )′+(x )′=sin x +x cos x +12x .(3)∵y =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x-2, ∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.(4)y ′=⎝ ⎛⎭⎪⎫lg x -1x 2′=(lg x )′-⎝ ⎛⎭⎪⎫1x 2′=1x ln10+2x 3. 题型三 利用导数公式研究曲线的切线问题点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.[思路导引] 分析知,与曲线相切且与y =x 平行的直线与曲线的切点到直线y =x 的距离最小.[解]如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x ,∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得最小距离为22.(1)本例中的问题涉及切点、切点处的导数、切线方程三个主要元素.其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点.[跟踪训练]求过曲线y =cos x 上点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点处的切线垂直的直线方程.[解] ∵y =cos x ,∴y ′=(cos x )′=-sin x ,1.本节课的重点是基本初等函数的导数公式及导数运算法则,难点是灵活运用导数公式和运算法则解决相关问题.2.本节课要重点掌握的规律方法 (1)利用导数公式求导数. (2)利用导数运算法则求导数. (3)利用导数运算研究曲线的切线问题.3.本节课的易错点是导数公式(a x )′=a x ln a 和(log a x )′=1x ln a 以及运算法则[f (x )·g (x )]′与⎣⎢⎡⎦⎥⎤f (x )g (x )′的区别.1.已知f (x )=1x ,则f ′(3)=( ) A .-13 B .-19 C.19D.13[解析] ∵f (x )=1x ,∴f ′(x )=-1x 2,∴f ′(3)=-132=-19,故选B.[答案] B2.函数y =3x 2的导数为( ) A .y ′=3x2B .y ′=32xC .y ′=23x3D .y ′=233x[解析][答案] D3.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1e C .-e D .e[解析][答案] D4.已知f (x )=e x ln x ,则f ′(x )=( ) A.e x x B .e x+1xC.e x (x ln x +1)xD.1x +ln x[解析] f ′(x )=(e x)′·ln x +e x·(ln x )′=e x·ln x +e x·1x =e x (x ln x +1)x,所以选C.[答案] C5.已知使函数y =x 3+ax 2-43a 的导数为0的x 值也使y 值为0,则常数a 的值为( )A .0或±3B .0C .±3D .非以上答案[解析] y ′=3x 2+2ax ,令y ′=0,即3x 2+2ax =0,∴x =0或x =-2a 3.分别代入y =x 3+ax 2-43a ,得0=-43a ,即a =0;-8a 327+4a 39-43a =0,即a =±3,∴a =0或a =±3.[答案] A6.曲线y =ln x 在点M (e,1)处的切线的斜率是__________,切线的方程为__________________.[解析] y ′=1x ,则k =y ′|x =e =1e ,切线方程y -1=1e (x -e),即x -e y =0.[答案] 1e x -e y =0。
导数在研究函数中的应用—单调性一、教材分析本节课,是苏教版选修2-2第一章第3节课。
它承接导数的定义和运算,开启了导数在函数中应用的研究,是导数应用的基础知识,地位重要.二、学情分析学生前面已经学习了导数的定义和简单函数四则运算的导数公式,尤其是已经有了“割线逼近切线”这种数学思想,这为本节课提供了充分的思想方法准备.并且,在本节课开头设置的三个问题中,有的问题可以用单调性定义解决,有些通过观察可以直接判断,而有些则并不能一眼看出单调性,这就触动学生要寻找新的解题方法,探索新的思路。
通过数学问题的导引,带领学生走进课堂.在实际教学中,考虑到学生比较容易局限于观察图象,得出结论,缺乏严谨的推理。
事实上,图象只能提供直观感受,并不能作为说理依据。
教师就要引导学生共同思考:怎样从已有的单调性的定义中,找出合理、可行、有效的方法。
师生共同观察、思考、猜想、证明,最终得出结论,比较圆满地完成一个数学知识的学习过程,体验数学发现的乐趣,拓宽师生的数学视野.三、教学目标1 .探索并了解函数的单调性和函数导数的关系;2.比较初等方法与导数方法在研究函数性质过程中的异同,体现导数方法在研究函数性质中的一般性和有效性.四、教学重点、难点我认为本节课的重点是从单调性的定义出发,逐步建立单调性与导数之间的关系。
其间,既有代数变形,又有图形直观;既有大胆的猜想,又有严密推理。
教师和学生在这些思想方法之间灵活穿梭、切换,既有激烈地思想交锋,又有严密地逻辑推理,让看似平静的课堂充满了智慧的碰撞。
五、教学方法与教学手段教师从课本章头图引入课题,自然地把导数和单调性结合起来。
教师通过设置问题串,从“会”到“不会”,激发学生学习兴趣,展开探究。
教师利用多媒体PPT和几何画板,动态演示,确定研究方向,最终得出结论。
六、教学过程教师为了能够真正体现“要提高学生独立获取数学知识,并用数学语言表达问题的能力”这个新课程理念,设计了10个环节。
3.1 导数的定义基础训练(1):1. 在求平均变化率中,自变量的增量x ∆( )A.0>∆x B.0<∆x C.0=∆x D.0≠∆x 2. 一质点的运动方程是,则在一段时间[]t ∆+1,1内相应得平均速度为:( ) A.63+∆t B.63+∆-t C.63-∆t D.63-∆-t3.在曲线y =x 2+1的图象上取一点(1,2)及邻近一点(1+Δx ,2+Δy ),则yx ∆∆为( )A.Δx +x ∆1+2 B.Δx -x ∆1-2 C.Δx +2 D.2+Δx -x∆1 4.一物体位移s 和时间t 的关系是s=2t-32t ,则物体的初速度是5.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 巩固训练(1):1.若质点M 按规律3s t =运动,则3t =秒时的瞬时速度为( )A .2 B .9 C .27 D .812.任一做直线运动的物体,其位移s 与时间t 的关系是23t t s -=,则物体的初速度是( ) A 0 B 3 C -2 D t 23-3.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( )A ()x x f ∆+0B ()x x f ∆+0C ()x x f ∆⋅0D ()()00x f x x f -∆+ 4.物体的运动方程是=s t t 1642+-,在某一时刻的速度为零,则相应时刻为( ) A .=t 1 B .=t 2 C .=t 3 D . =t 45.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在1秒末的瞬时速度是( ) A .3米/秒 B .2米/秒 C .1米/秒 D .4米/秒6.在曲线223x y =的图象上取一点(1,23)及附近一点⎪⎭⎫⎝⎛∆+∆+y x 23,1,则x y ∆∆为( ) A x x ∆++∆1323 B x x ∆--∆1323 C 323+∆x D x x ∆-+∆1323 7.物体的运动规律是)(t s s =,物体在[]t t t ∆+,时间内的平均速度是( )A.t t s t s v ∆∆=∆∆=)( B.t t s t t s v ∆-∆+=)()(C.t t s v )(= D.当0→∆t 时,0)()(→∆-∆+=tt s t t s v8.将边长为8的正方形的边长增加∆a,则面积的增量∆S 为( )A .16∆a 2 B.64 C.2a +8 D.16∆a+∆a 29.已知一物体的运动方程是=s 7562+-t t ,则其在=t ________时刻的速度为7。
高等数学中的导数及其应用导数是高等数学中的重要概念,它是描述函数变化率的工具。
本篇文章将介绍导数的定义、性质以及它在数学和实际生活中的应用。
一、导数的定义和性质导数描述了函数在某一点上的变化率。
设函数y=f(x),若函数在点x处有定义并且存在极限lim(x→x₀) [f(x)-f(x₀)]/(x-x₀),则称该极限为函数f(x)在点x₀处的导数,记作f'(x₀),也可表示为dy/dx|x=x₀。
导数也可以通过求导公式来计算,例如多项式函数、指数函数、对数函数、三角函数等都有特定的求导法则。
函数的导数具有一些重要的性质。
首先,常数函数的导数为零。
其次,导数满足加法性、乘法性和链式法则。
加法性指的是导数的和等于各导数的和,乘法性指的是导数的乘积等于某一函数的导数与另一函数的值的乘积。
链式法则是导数运算中常用的规则,它描述了复合函数的导数与原函数的导数之间的关系。
二、导数的应用导数在数学和实际生活中具有广泛的应用。
下面我们将介绍其中的一些应用。
1. 函数的极值函数的导数可以用来确定函数的极值。
对于给定函数f(x),如果在某一点x₀处导数为零或者不存在,那么该点上可能存在极值。
通过分析函数的导数和二阶导数可以判断该极值是极大值还是极小值。
这在优化问题、经济学等领域中具有重要意义。
2. 曲线的切线和法线导数也可以用来求解曲线的切线和法线。
对于二维平面上的曲线,曲线在某一点处的切线斜率为该点处函数的导数。
在求出切线斜率后,可以通过给定点和切线斜率的方程,求解出切线方程。
法线则是与切线垂直的线,其斜率为切线斜率的负倒数。
3. 变化率和速度导数可以用来描述函数的变化率。
在实际生活中,我们经常需要计算某一物理量的变化率,例如速度。
假设物体的位置随时间变化,那么位置函数关于时间的导数即为速度函数。
通过求解速度函数,我们可以得知物体在某一时刻的速度情况。
4. 函数的凹凸性和拐点函数的导数还可以用来判断函数的凹凸性和拐点。
数学选修—导数及其应用 1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则
000
()()lim
h f x h f x h h
→+-- 的值为( )
A .'
0()f x B .'
02()f x C .'
02()f x - D .0
2.一个物体的运动方程为2
1t t s +-=其中s 的单位是
米,t 的单位是秒,那么物体在3秒末的瞬时速度是
A .7米/秒
B .6米/秒
C .5米/秒
D .8米/秒 3.函数3
y x x =+的递增区间是( )
A .),0(+∞
B .)1,(-∞
C .),(+∞-∞
D .),1(+∞
4.3
2
()32f x ax x =++,若'
(1)4f -=,则a 的值等于
A .319
B .3
16
C .
313 D .3
10 5.函数)(x f y =在一点的导数值为0是函数)
(x f y =在这点取极值的( )
A .充分条件
B .必要条件
C .充要条件
D .必要非充分条件
6.函数344
+-=x x y 在区间[]2,3-上的最小值为
( )
A .72
B .36
C .12
D .0 二、填空题 1.若
3'0(),()3f x x f x ==,则0x 的值为
_________________;
2.曲线x x y 43
-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin x
y x
=
的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数552
3
--+=x x x y 的单调递增区间是___________________________。
三、解答题
1.求垂直于直线2610x y -+=并且与曲线
3235y x x =+-相切的直线方程。
2.求函数()()()y x a x b x c =---的导数。
3.求函数543
()551f x x x x =+++在区间[]4,1-上的最大值与最小值。
4.已知函数2
3bx ax y +=,当1x =时,有极大值3; (1)求,a b 的值;(2)求函数y 的极小值。
1.函数()323922y x x x x =---<<有( ) A .极大值5,极小值27- B .极大值5,极小值11- C .极大值5,无极小值 D .极小值27-,无极大值
2.若'
0()3f x =-,则000()(3)
lim
h f x h f x h h
→+--=
A .3-
B .6-
C .9-
D .12-
3.曲线3
()2f x x x =+-在0p 处的切线平行于直线
41y x =-,则0p 点的坐标为( )
A .(1,0)
B .(2,8)
C .(1,0)和(1,4)--
D .(2,8)和(1,4)-- 4.()f x 与()g x 是定义在R 上的两个可导函数,若
()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足
A .()f x =()g x
B .()f x -()g x 为常数函数
C .()f x =()0g x =
D .()f x +()g x 为常数函数 5.函数x
x y 1
42
+
=单调递增区间是( ) A .),0(+∞ B .)1,(-∞ C .),2
1(+∞ D .),1(+∞ 6.函数x
x
y ln =
的最大值为( ) A .1
-e B .e C .2
e D .3
10 1.函数2cos y x x =+在区间[0,]2
π
上的最大值
是 。
2.函数3
()45f x x x =++的图像在1x =处的切线在x 轴上的截距为________________。
3.函数3
2x x y -=的单调增区间为 ,单调减区间为___________________。
4.若3
2
()(0)f x ax bx cx d a =+++>在R 增函数,则
,,a b c 的关系式为是 。
5.函数3
2
2
(),f x x ax bx a =+++在1=x 时有极值10,那么b a ,的值分别为________。
三、解答题
1. 已知曲线12-=x y 与3
1x y +=在0x x =处的切
线互相垂直,求0x 的值。
3. 已知c bx ax x f ++=2
4
)(的图象经过点(0,1),且在1x =处的切线方程是2y x =-
(1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间。