线性微分方程解的结构
- 格式:ppt
- 大小:714.00 KB
- 文档页数:35
三阶常系数齐次线性微分方程通解结构三阶常系数齐次线性微分方程是指形如$ay+by+cy+dy=0$的三阶常系数齐次线性微分方程,其中a,b,c,d均为常数。
因此,三阶常系数齐次线性微分方程又称为三阶常系数线性普通微分方程,是初等微积分学中较为重要的一类微分方程。
二、定理假设 y = y(x)为$ay+by+cy+dy=0$的通解,则满足下列条件:(1)若 $b^2-3ac>0$,则存在常数$C_1、C_2、C_3$,使得通解可以表示为$$y=C_1e^{lambda_1x}+C_2e^{lambda_2x}+C_3e^{lambda_3x}$$ 其中$lambda_1、lambda_2、lambda_3$分别为$$lambda_1= frac{-b-sqrt{b^2-3ac}}{3a},lambda_2=frac{-b+frac{sqrt{3}}{2}isqrt{4ac-b^2}}{3a},lambda_3=frac{-b-frac{sqrt{3}}{2}isqrt{4ac-b^2}}{3a}$$(2)若$b^2-3ac=0$,则存在常数$C_1、C_2、C_3$,使得通解可以表示为$$y=C_1x^3+C_2x^2+C_3x+C_4$$(3)若$b^2-3ac<0$,则存在常数$C_1、C_2、C_3$,使得通解可以表示为$$y=C_1cos(lambda_1x)+C_2sin(lambda_1x)+C_3cos(lambda_2x)+C_4sin(lambda_2x)$$其中$lambda_1、lambda_2$分别为$$lambda_1=-frac{b}{3a}+frac{sqrt{3}}{3a}sqrt{3ac-b^2},lambda_2=-frac{b}{3a}-frac{sqrt{3}}{3a}sqrt{3ac-b^2}$$三、公式从上述定理中可以看出,三阶常系数齐次线性微分方程的通解可以分为三类:(1)$b^2-3ac>0$的情况:$$y=C_1e^{lambda_1x}+C_2e^{lambda_2x}+C_3e^{lambda_3x}$$ (2)$b^2-3ac=0$的情况:$$y=C_1x^3+C_2x^2+C_3x+C_4$$(3)$b^2-3ac<0$的情况:$$y=C_1cos(lambda_1x)+C_2sin(lambda_1x)+C_3cos(lambda_2x)+C _4sin(lambda_2x)$$四、推导(1)$b^2-3ac>0$的情况:两边同时乘以$e^{-lambda_1x},e^{-lambda_2x},e^{-lambda_3x}$,得到$$e^{-lambda_1x}(alambda_1^3y+blambda_1^2y+clambda_1y+dy)=e ^{-lambda_2x}(alambda_2^3y+blambda_2^2y+clambda_2y+dy)=e^{-lambda_3x}(alambda_3^3y+blambda_3^2y+clambda_3y+dy)=0$$ 即$$(alambda_1^3+blambda_1^2+clambda_1+d)e^{-lambda_1x}y+(bla mbda_1^2+2clambda_1+d)e^{-lambda_1x}y+(clambda_1+d)e^{-lamb da_1x}y+(d)e^{-lambda_1x}y=0$$令$e^{-lambda_1x}y=Y$,$e^{-lambda_1x}y=Y’$,$e^{-lambda_1x}y=Y’’$,$e^{-lambda_1x}y=Y’’’$得到一阶齐次线性微分方程的一般解为$y=e^{lambda_1x}(C_1+C_2x+C_3x^2+C_4x^3)$可知,设$C_1=C_2=C_3=0$,有特解$y_p=C_4e^{lambda_1x}x^3$ 所以,原方程的通解为$$y=C_1e^{lambda_1x}+C_2e^{lambda_2x}+C_3e^{lambda_3x}+C_4e ^{lambda_1x}x^3$$(2)$b^2-3ac=0$的情况:类似上述推导,原方程的通解为$$y=C_1x^3+C_2x^2+C_3x+C_4$$(3)$b^2-3ac<0$的情况:类似上述推导,原方程的通解为$$y=C_1cos(lambda_1x)+C_2sin(lambda_1x)+C_3cos(lambda_2x)+C _4sin(lambda_2x)$$五、例题例 1:求解$y3y+3yy=0$的通解。
微分方程通解------------------------------------------------------------------------------一、线性微分方程解的结构1、二阶线性微分方程的一般形式:\frac{d^{2}y}{dx^{2}}+P(x)\frac{dy}{dx}+Q(x)y=f(x)(特点是左端每一项关于未知函数y及y'、y''都是一次的,若f(x)=0,则称方程是齐次的,否则,当f(x)≠0时,方程叫非齐次的。
)2、定理1:如果函数y1(x)和y2(x)是方程y''+P(x)y'+Q(x)y=0的两个解,那么y=C_{1}y_{1}(x)+C_{2}y_{2}(x)也是这个方程的解3、定理2:如果函数y1(x)和y2(x)是方程y''+P(x)y'+Q(x)y=0的两个线性无关的特解,那么y=C_{1}y_{1}(x)+C_{2}y_{2}(x)是这个方程的通解。
(线性相关的定义:设y1(x)、y2(x)...yn(x)为定义在趋于I上的n 个函数,如果存在n个不全为0的常数k1,k2...kn,使得x∈I时有恒等式k_{1}y_{1}+k_{2}y_{2}+...k_{n}y_{n}≡0 成立,则称这n个函数在区间I上线性相关,否则称线性无关。
)4、定理3:设y^{*}(x)是二阶非齐次线性方程y''+P(x)y'+Q(x)y=f(x)的一个特解,Y(x)是与这个方程对应的齐次方程y''+P(x)y'+Q(x)y=0的通解,则y=Y(x)+y^{*}(x)是二阶非齐次线性微分方程的通解。
5、定理4:设非齐次线性方程的右端f(x)是几个函数之和,如y''+P(x)y'+Q(x)y=f_{1}(x)+f_{2}(x),而y_{1}^{*}(x)和y_{2}^{*}(x)分别是方程y''+P(x)y'+Q(x)y=f_{1}(x)和方程y''+P(x)y'+Q(x)y=f_{2}(x)的特解,那么y_{1}^{*}(x)+y_{2}^{*}(x)是方程y''+P(x)y'+Q(x)y=f_{1}(x)+f_{2}(x)的特解。
线性微分方程解的性质一、线性微分方程的解的结构1.1二阶齐次线性方程y ′ ′ + P ( x ) y ′ + Q ( x ) y = 0 (1)y''+P(x)y'+Q(x)y=0 \tag{1} y′′+P(x)y′+Q(x)y=0(1)定理1:如果函数 y 1 ( x ) y_1(x) y1(x)与 y 2 ( x ) y_2(x)y2(x)是方程(1)的两个解,那么y = C 1 y 1 ( x ) + C 2 y 2 ( x ) (2) y=C_1y_1(x)+C_2y_2(x) \tag{2} y=C1y1(x)+C2y2(x)(2)也是方程(1)的解,其中 C 1 , C 2 C_1,C_2 C1,C2是任意常数。
解(2)从形式上看含有C1C_1C1和C2C_2C2两个任意常数,但它不一定是方程(1)的通解。
那么在什么情况下(2)式才是方程(1)的通解呢?要解决这个问题,还得引入新概念,即函数组的线性相关与线性无关。
设 y 1 ( x ) , y 2 ( x ) , ⋅⋅⋅ , y n ( x )y_1(x),y_2(x),···,y_n(x) y1(x),y2(x),⋅⋅⋅,yn(x)为定义在区间 I I I上的n个函数,如果存在n个不全为零的常数 k 1 , k 2 , ⋅⋅⋅ , k n k_1,k_2,···,k_n k1,k2,⋅⋅⋅,kn,使得当x ∈ I x\in I x∈I时有恒等式k 1 y 1 + k 2 y 2 + ⋅⋅⋅ + k n y n = 0k_1y_1+k_2y_2+···+k_ny_n=0 k1y1+k2y2+⋅⋅⋅+knyn=0成立,那么称这n个函数在区间I上线性相关;否则线性无关。
应用上述概念可知,对于两个函数的情形,它们线性相关与否,只要看它们的比是否为常数;如果比为常数,那么它们就线性相关;否则就线性无关。
微分方程解的结构总结一、常微分方程的解的结构常微分方程是指只涉及一个未知函数及其导数的微分方程。
在常微分方程的解的结构方面,我们有以下几个重要结论:1. 叠加原理:如果一个常微分方程有两个解,那么它们的线性组合也是该方程的解。
这意味着我们可以通过已知的解构造出新的解。
2. 初始条件的影响:常微分方程通常需要给定初始条件才能确定特定的解。
不同的初始条件会得到不同的解,这反映了解的结构的多样性。
3. 解的存在唯一性:对于某些常微分方程,解的存在唯一性是成立的,也就是说只有一个解满足给定的初始条件。
这种情况下,解的结构相对简单明确。
二、线性微分方程的解的结构线性微分方程是指未知函数及其导数的线性组合等于已知函数的微分方程。
线性微分方程的解的结构更加复杂,我们有以下重要结论:1. 叠加原理:对于线性微分方程,它的解也满足叠加原理。
如果一个线性微分方程有两个解,那么它们的线性组合也是该方程的解。
2. 齐次线性微分方程的解的线性空间性质:齐次线性微分方程是指其右端项为零的线性微分方程。
对于齐次线性微分方程,它的解构成一个线性空间。
这意味着我们可以通过已知的解构造出线性空间中的其他解。
3. 非齐次线性微分方程的解的结构:非齐次线性微分方程是指其右端项不为零的线性微分方程。
对于非齐次线性微分方程,它的解由齐次方程的通解和非齐次方程的一个特解之和构成。
这可以通过叠加原理和线性空间性质得出。
三、特殊微分方程的解的结构除了常微分方程和线性微分方程外,还有一些特殊的微分方程,它们的解的结构也有一些特殊性质:1. 可分离变量的微分方程:可分离变量的微分方程可以通过分离变量的方法求解。
解的结构相对简单,可以通过分离变量再积分得到。
2. 齐次微分方程:齐次微分方程的右端项可以通过变量替换转化为常数项,从而得到其解的结构。
3. 一阶线性微分方程:一阶线性微分方程可以通过积分因子法求解。
解的结构可以通过积分因子的选择和积分的方法得到。