张量分析第3次课1
- 格式:pdf
- 大小:244.52 KB
- 文档页数:8
张量第三章第三章⼏个基本的张量§3.1 度量张量⼀、度量张量j j i i g g δ= ji j i g g δ=协变基⽮量的逆变分量和逆变基⽮量的协变分量是单位张量。
若把每个基⽮量看成是异名基⽮量所构成的参照标架的⼀个特殊⽮量,则可以表⽰为:jij i g g g = j ijig g g =ij g 是i g 的协变分量,ij g 是i g 的逆变分量。
ij g 和ij g 称为度量张量。
ij g ——度量张量的协变分量或协变度量张量。
ij g ——度量张量的逆变分量或逆变度量张量。
证明:ijg ,ij g 是⼆阶张量:''''i j i i g g g =⼜ijj j i i j i ijj j i i j i j ij j j i i j j j ij i i jij i i i i i i g g g g g g g g g g g g '''''''''''''''''ββββββββββ==∴====同理,度量张量的混变分量是单位张量,即i ji j g δ=j i j i g δ=⼆、度量张量的性质和作⽤1、度量张量各分量等于同名基⽮量的点积。
ij k j ik j k ik j i g g g g g g g ==?=?δij j k ik j k ik j i g g g g g g g ==?=?δ2、度量张量是⼆阶对称张量。
ij j i g g g g ?=? jiij g g =i j j i g g g g ?=?ji ij g g =3、度量张量的协变分量和逆变分量相乘并按⼀对指标求和等于单位张量。
ji jk ik g g δ=jk ik hl jl ih l jl k ik j i j i g g g g g g g g g g ==?=?=δδ由上式,可由度量张量的协变分量求逆变分量或者反过来求。
2.9克里斯托弗尔符号 ij i g j gkk ig j gkrgr gkr ig j g r gkr ijr(2.9.08) (2.9.09)同样地, ijk g kr ijr在基矢量组 g 1 , g 2 , g 3 中把 i g j 按下式分解 igj(4)在直线坐标系中, ijk 0 , ij 0k(2.9.10)k ij ijp gp ij g pp(2.9.01) (2.9.02)p ij事实上,因为在斜角和直角坐标系中基矢量 i i 和 e i 均为常量,故 ijk 0 和 (5)克里斯托弗尔符号可用度量张量表示。
事实上,由于g ij , k gk 0。
ig j 这里分解系数 ijp 和 分别称为第一类和第二类克里斯托弗尔(Christoffel)符号。
在某些文献中, p 第一类和第二类克里斯托弗尔符号分别用 ij , p 和 表示。
ij gigj kgi gj g i k gj kij kji(2.9.11) (2.9.12) (2.9.13)对指标进行轮换,则有jk , i ijk ikj用 g k 和 g 分别点乘式(2.9.01)和式(2.9.02)两边,则得 ijp gpkg ki , j jki jik把式(2.9.12)和式(2.9.13)相加,再减去式(2.9.11),则得 (2.9.03) (2.9.04) 另外, ijk 1 2 g k ijp kp k ijk i g j g kk ij ig j ggkrjk , i g ki , j gji , k(2.9.14)现述克里斯托弗尔符号的性质如下。