第七章 序列相关性
- 格式:ppt
- 大小:1.27 MB
- 文档页数:80
序列相关性名词解释
序列相关又称自相关,是指总体回归模型的随机误差项之间存在相关关系。
序列相关性在计量经济学中指对于不同的样本值,随机干扰之间不再是完全相互独立的,而是存在某种相关性。
序列相关即不同观测点上的误差项彼此相关。
序列相关产生的原因有很多,一般认为主要有一下几种,经济变量惯性的作用引起随机误差项自相关,经济行为的滞后性引起随机误差项自相关,一些随机偶然因素的干扰引起随机误差项自相关,模型设定误差引起随机误差项自相关,观测数据处理引起随机误差项序列相关。
一般经验告诉我们,对于采用时间序列数据作样本的计量经济学问题,由于在不同样本点上解释变量以外的其他因素在时间上的连续性,带来它们对被解释变量的影响的连续性,所以往往存在序列相关性。
序列相关性的理论研究与实证检验1 序列相关性多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。
如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。
序列相关性,在计量经济学中指对于不同的样本值,随机干扰之间不再是完全相互独立的,而是存在某种相关性。
又称自相关,是指总体回归模型的随机误差项之间存在相关关系。
对于线性回归模型:i 01122i i k ik i Y X X X u ββββ=+++++ 1,2,,i n =在其他假设仍然成立的条件下,随机干扰项序列相关意味着(,)()0i j i j Cov u u E u u =≠或者2211222211()()()()n n n n E u u Var u E u u I E u u σσσσσσσσ⎛⎫⎛⎫ ⎪ ⎪'====Ω≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭如果仅存在1()0i i E u u +≠1,2,,n 1i =-则称存在一阶序列相关或者自相关,这是最常见的一种序列相关问题。
自相关往往可以写成如下形式:1i i i u u ρε-=+其中ρ自协方差系数或者一阶自相关系数,i ε是满足以下OLS 的随机干扰项:()0i E ε=,2()i Var εσ=,(,)0i i s Cov εε-=(0)s ≠序列相关性经常出现在以时间数列为样本的模型中,故在处理时间序列问题时注意序列相关性的检验。
2 序列相关性产生的原因实际问题中,序列相关性产生的原因主要来自于下面三个方面:1、 经济变量固有的惯性大多数经济时间数据都有一个明显的特点:惯性,表现在时间序列不同时间的前后关联上。
2、 模型设定的偏误所谓模型设定偏误是指所设定的模型“不正确”。
主要表现在模型中丢掉了重要的解释变量或模型函数形式有偏误。
例如,本来应该估计的模型为:0112233t t t t t X X X Y u ββββ++++=但在模型设定中做了下述回归:01122t t t t Y X X v βββ+++=因此,33t t t v X u β=+,如果确实影响Y ,则出现序列相关,于是在3X 确实影响了Y 的情况下,这种模型设定的偏误往往是导致随机干扰项中的一个重要的系统性影响因素,使其呈现序列相关性。
第一章导论计量经济学定义:计量经济学(Econometrics)是一门应用数学、统计学和经济理论来分析、估计和检验经济现象与理论的科学。
通过使用统计数据和经济模型,计量经济学试图量化经济关系,以更好地理解经济变量之间的相互作用。
研究的问题(相关关系):计量经济学的目的是研究经济变量之间的关系,例如:1. 消费与收入的关系。
2. 教育与工资的关系。
3. 利率与投资的关系。
第二章 OLS (普通最小二乘法):OLS 是一种用于估计线性回归模型中未知参数的方法。
它通过最小化误差平方和来找到回归线。
在一元线性回归中,我们通常使用普通最小二乘法(OLS)来估计模型参数。
对于模型 Y = α + βX + ε,我们可以使用以下公式来计算α和β:β= Σ( (X - mean(X)) (Y - mean(Y)) ) / Σ( (X - mean(X))^2 ) α̂ = mean(Y) - β̂ * mean(X)这里,mea n(X) 是 X 变量的平均值(即ΣX/n),mean(Y) 是 Y 变量的平均值(即ΣY/n)。
在这些公式中,mean 表示求平均值。
Σ 表示对所有数据点求和,n 是样本大小。
这里α_hat 是截距的估计值,β_hat 是斜率的估计值。
结论及推论:1. 在高斯马尔可夫假设下,OLS 估计量是最佳线性无偏估计量(BLUE)。
2. 当误差项的方差是常数时,OLS 估计量是有效的。
3. 如果模型是正确规范的,并且误差项是独立且同分布的,那么 OLS 估计量是一致的。
4. 如果误差项与解释变量相关,或者存在遗漏变量,那么 OLS 估计量可能是有偏的。
5. OLS 提供了估计的标准误差、t 统计量和其他统计量,这些可以用于进行假设检验和构建置信区间。
第三章一元回归:(1)总函、样函:总函数和样本函数是线性回归模型的两种表现形式。
总函数(总体函数)表示整体样本的关系,一般形式为Y = β0 + β1X + ε。