02晶体生长结晶学与矿物学讲解
- 格式:pptx
- 大小:3.56 MB
- 文档页数:41
结晶学及矿物学课程主要内容串讲----2a58853e-6eba-11ec-9d47-7cb59b590d7d结晶学及矿物学课程主要内容串讲结晶学一、晶体及晶体的本质1.了解晶体的基本性质和概念(如对称性、各向异性和其他性质)2、空间格子、相当点的概念及具体应用分析、相当点的选取、空间格子要素3、晶胞的概念4.布拉维晶体生长定律二、晶体的测量及投影应用面角守恒定律,晶面投影,单纯形投影对称要素(对称轴、对称面、对称中心)的投影了解投影中以基圆、直径和大圆弧表示的对称元素,掌握模型中对称元素和晶体平面的极赤平投影方法。
三、晶体的对称分类体系1.晶体对称性和晶体对称定律2、对称要素及其组合规律:晶体的定向规则对称国际符号写作要领3、对称分类体系及其特点:230种空间群、32点群、3个晶族、7个晶系对称型的全面符号、国际符号及其判读各晶系晶体常数特点及其判别四、单形与聚形的概念、聚形分析1.类型、几何单态和结晶单态2、各晶系常见的单形、单形符号、特殊晶面与结晶轴之间的关系等3、聚形的概念、单形相聚的原则、各晶系聚形分析4、同种几何单形在不同对称型中出现的情况五、晶体的规则连续生长:双晶、双晶元素、双晶类型和双晶定律六、晶体的内部对称要素种类及表示方法、如3132414243等。
公共空间群国际符号的意义七、最紧密堆积方式、配位数及配位多面体鲍林定律1、2和3的具体应用分析和典型结构分析八、类质同像的概念、表示方法、及其影响条件、同质多像与多型的概念晶变或型变、有序-无序的概念9、五定律:表面角守恒定律、晶体对称性和对称性定律、整数定律、晶体能带定律布拉维晶面发育定律(布拉维法则)八种符号:点群(对称型)符号、点群国际符号、空间群国际符号、点阵型符号、晶体表面符号、单纯形符号、晶体边缘或晶体带符号、多类型符号10。
一些重要图表的应用1矿物学矿物通论1.阐明矿物的概念和化学成分,了解矿物中“水”的类型,矿物晶体化学式的书写原理和内容义,学会矿物晶体化学式的计算方法。
结晶学及矿物学讲稿第一章绪论第一节矿物及矿物学概述一.矿物及矿物学矿物:矿物是由天然产出且具有特定的(但一般是非固定的)化学成分和内部结晶构造的均匀固体。
通常由无机作用所形成。
例:石英、金刚石。
这一概念强调了以下几点:①它是天然产物,包括了宇宙矿物(月岩矿物、陨石矿物)。
②必为固体,例:长石、云母,自然汞(液态)除外。
③有特定的成分和结构,例:石英,SiO2。
④一般由无机作用所形成,例:长石、云母;部分为有机起源,例:石墨、方解石。
注意:煤和石油不是矿物。
矿物学:矿物学是以矿物为研究对象的一门地质基础学科。
它是研究地球物质成分的学科之一。
二.结晶学及矿物学的研究内容1.结晶学及其研究内容结晶学是研究晶体的一门科学,研究晶体的生长、形貌、内部结构及其物理性质等。
主要研究内容:①晶体生长学:研究晶体发生、成长的机理和晶体的人工合成。
②几何结晶学:研究晶体外形的几何规律。
③晶体结构和化学:研究晶体成分、结构及其关系。
④晶体物理:研究晶体物性及其产生机理。
2.矿物学研究内容①研究矿物的化学组成,例:金刚石。
②研究矿物的内部结构,例:金刚石。
③研究矿物的外表形态,例:金刚石。
④研究矿物的物理和化学性质,例:金刚石。
⑤研究矿物在地质作用过程中的形成及变化。
⑥研究矿物的应用。
3.矿物学的分支学科及其与其它学科的关系矿物学的分支学科:①成因矿物学、找矿矿物学②晶体化学③矿物物理学④应用矿物学矿物学与其它学科的关系矿物学是岩石学、矿床学的基础,是宇宙中元素存在和运动的一种基本形式(地球化学)。
此外,矿物学与地史古生物、构造地质学等均有一定的联系。
主要参考书:潘兆撸等《结晶学及矿物学》(上、下)1993。
罗古风《结晶学到论》1985。
陈武、季寿元《矿物学到论》1985。
第二节晶体、非晶质体及准晶体一. 晶体、非晶质体及准晶体的概念晶体:晶体是内部原子或离子在三维空间成周期性平移重复排列的固体。
或是具有格子构造的固体。
矿物学中的晶体生长与矿物变质学矿物学是地球物理学和地质学的重要领域,它广泛地研究各种矿物的成分、结构和性质,是探究自然界中物质的构成和变化的一门重要科学。
其中,晶体生长与矿物变质学是矿物学中的两个重要分支,本文将探讨这两个分支的基本概念、应用及研究前景等方面的内容。
一、晶体生长晶体是由一定类型、大小和形状的晶粒组成的,它是矿物学研究的核心对象。
晶体生长在矿物学中具有非常重要的地位,因为它关系到矿物的一些重要性质,如晶体结构、物理和化学性质等。
晶体生长是指一个物种或多个物种之间的自发聚集,形成一个有序的结晶体。
晶体生长是矿物学中的一项重要领域,它主要分为自然晶体生长和人工晶体生长两种。
自然晶体生长是指在地球自然环境下进行的晶体生长,包括岩石、矿物和有机晶体等。
自然晶体生长的机制和方式非常复杂,需要通过地质学、矿物学、化学等多学科知识交叉研究。
人工晶体生长是指在实验室中制造出来的人工晶体,通过控制实验条件、添加反应物等手段来实现。
人工晶体生长可以广泛应用于电子、光电子、冶金、材料科学等领域,并且是制造电子材料、半导体器件等高科技产品的重要基础。
二、矿物变质学矿物变质学是研究地壳变质作用及其产生的产物和成矿机制的学科。
矿物变质作用是指在地质作用下地壳中的岩石在压力、温度、化学条件等方面发生变化的过程。
这些变化通常会对岩石中的矿物、结构和性质产生显著的影响,最终形成新的岩石类型和矿产物。
矿物变质学是研究地球深处的变质作用和岩石变化产物的成分和性质。
它主要涉及到变质产物矿物、岩石类型、成分、结构、化学组成等方面的知识和信息。
研究人员可以通过对变质环境中的岩石、矿物等进行实验室模拟和分析鉴定,揭示某种变质作用的形成机制和演化规律。
矿物变质学是一个跨学科的研究领域,其主要包括矿物学、岩石学、地球化学、地质学等学科。
在矿物变质学研究中,一些先进的技术(如SEM、XRD、EPMA等)也被广泛应用于分析岩石、矿物和矿产。
《结晶学与矿物学》课程笔记第一章:晶体及结晶学一、引言1. 晶体的定义- 晶体是一种固体物质,其内部原子、离子或分子在三维空间内按照一定的规律周期性重复排列,形成具有长程有序结构的物质。
- 晶体的特点是在宏观上表现出明确的几何外形和物理性质的各向异性。
2. 结晶学的定义- 结晶学是研究晶体的形态、结构、性质、生长和应用的科学。
- 它是固体物理学、化学和材料科学的一个重要分支。
3. 晶体与非晶体的区别- 晶体:具有规则的内部结构和外部几何形态,物理性质各向异性。
- 非晶体(如玻璃):内部结构无规则,没有长程有序,物理性质各向同性。
二、晶体的基本特征1. 几何外形- 晶体通常具有规则的几何外形,如立方体、六方柱、四方锥等。
- 几何外形是由晶体的内部结构决定的。
2. 晶面、晶棱和晶角- 晶面:晶体上平滑的平面,由晶体内部的原子平面构成。
- 晶棱:晶面的交线,由晶体内部的原子线构成。
- 晶角:晶棱之间的夹角,由晶体内部的原子角构成。
3. 晶面指数、晶棱指数和晶角指数- 晶面指数:用来表示晶面在晶体中的位置和方向的符号。
- 晶棱指数:用来表示晶棱在晶体中的位置和方向的符号。
- 晶角指数:用来表示晶角的大小和方向的符号。
4. 物理性质各向异性- 晶体的物理性质(如电导率、热导率、折射率等)随方向的不同而变化。
- 这是因为晶体内部原子的排列在不同方向上有所不同。
三、晶体的分类1. 天然晶体与人工晶体- 天然晶体:在自然界中形成的晶体,如矿物、岩石等。
- 人工晶体:通过人工方法在实验室或工业生产中制备的晶体。
2. 单晶体与多晶体- 单晶体:整个晶体内部原子排列规则一致,具有单一的晶格结构。
- 多晶体:由许多小晶体(晶粒)组成的晶体,晶粒之间排列无序。
3. 完整晶体与缺陷晶体- 完整晶体:内部结构完美,没有缺陷的晶体。
- 缺陷晶体:内部存在点缺陷、线缺陷、面缺陷等结构缺陷的晶体。
四、晶体的生长1. 晶体生长的基本过程- 成核:晶体生长的起始阶段,形成晶体的核。
第一篇几何结晶学结晶学与矿物学基本知识基础1. 矿物是自然作用中形成的天然固态单质或化合物,具有相对固定的化学成分,晶质矿物还具有确定的内部结构,稳定于一定的物理化学条件,是组成岩石和矿石的基本单元。
2. 晶体的定义:晶体是具格子构造的固体。
3. 结晶学是研究晶体的发生、生长、外部形态、内部结构及物理性质的科学。
4. 空间格子:用以表示晶体内部质点排列的规律性。
是从实际晶体构造中抽象出来的一种由相当点排列而成的几何图形。
5. 空间格子有以下几个要素:结点、行列、面网、平行六边形。
面网密度上单位面积内的结点数目称为网面密度。
互相平行的相邻两面网之间的垂直距离称为面网间距。
面网密度大的,面网间距大。
6. 科塞尔原理:晶面生长的过程应该是先长完一条行列,然后再长相邻的行列;长满一层面网然后开始长第二层面网。
晶面(晶体的最外层的面网)是平行地向外推移的。
这就是科塞尔原理。
7. 布拉维法则:生长速度大的晶面在晶体生长过程中逐渐缩小,甚至消失;而生长速度小的晶面在生长过程中扩大了,最后在保留在晶体上。
8. 成分和构造相同的所有晶体,其对应晶面间的夹角恒等,这一规律称为面角恒等定律。
8. 晶体的基本性质:自限性、均一性、异向性、对称性、最小内能与稳定性。
均一性:因为晶体是具格子构造的固体,同一晶体的各个部分质点的分布相同的,所以同一晶体的各部分的性质是一样的,这就是晶体的均一性。
异向性:同一格子中,不同的方向上质点的排列一般是不相同的,晶体的性质也随方向的不同而有所差异,这就是晶体的异向性。
9. 晶体具有对称性,这表现在晶体外形上是相等的晶面、晶棱和角顶有规律的重复出现。
10. 晶体的对称有以下特点:1)所有晶体都是对称的2)晶体的对称受格子构造的严格控制,即晶体对称的有限性3)晶体的对称不仅表现在外部形态上,而且表现在性质上。
11. 晶体对称不同于其他物体的对称:在于晶体是具有格子构造的固体,它的对称具有表里一致性,即晶体的对称不仅表现在外部形态上(宏观的),而且其内部构造(微观的)也是对称的。
结晶学第一讲:绪论及晶体的形成结晶学:是以晶体为研究对象,以晶体的生成和变化、晶体外部形态的几何性质、晶体的内部结构、化学组成和物理性质及其相互关系为研究内容的一门自然学科。
1) 晶体、格子构造、空间格子、相当点;它们之间的关系。
晶体:定义:晶体是具有格子构造内部,质点在三维空间作平移周期重复(本质)的固体。
准晶体:排列是有规律的重复,但不具有周期性和格子构造。
空间格子是表示这种重复规律的几何图形。
首先在晶体结构中找出相当点,再将相当点按照一定的规律连接起来就形成了空间格子。
相当点(两个条件:1、性质相同,2、周围环境相同。
)平行六面体是三维空间内空间格子可以划出一个最小重复单位,由六个两两平行而且相等的面织成。
2) 结点、行列、面网、平行六面体; 结点间距、面网间距与面网密度的关系. 结点是空间格子中的点,它们代表晶体结构中的相当点。
它们只有几何意义,为几何点。
行列:由结点在直线上的排列构成。
行列中相邻结点间的距离称为该行列的结点间距。
结点在平面上的分布即构成面网。
面网上单位面积内结点的密度称为网面密度,与面网间距成正比。
实际晶体结构中所划分出的这样的相应的单位,称为晶胞(晶胞参数:a, b, c; α,β,γ ,也称为轴长与轴角)。
晶胞的形状与大小,则取决于它的三个披此相交的棱的长度。
3)晶体的基本性质:自限性、均一性、异向性、对称性、最小内能、稳定性,并解释为什么。
均一性与异向性有矛盾吗:没有。
均一性是晶体格子整体的性质,异向性是格子构造中不同行列各结点排列的性质。
4) 晶体的生长途径及生长理论(层生长理论、螺旋生长理论)。
生长途径:1由液相转变为固相(1)从熔体中结晶(2)从溶液中结晶2由气相转变为固相3由固相再结晶为固相(1)同质多象转变(2)原矿物晶粒逐渐变大(3)固溶体分解(4)变晶(5)由固态非晶质结晶生长理论:层生长理论在理想情况下在晶核基础上生长时,应先生长一条行列,然后生长相邻的行列,在长满一层面网后再开始生长第二层面网,这样晶面一层一层地逐渐向外平行推移,最外层的面网便发育成晶体的晶面。
结晶学及矿物学结晶学和矿物学是两个密切相关的学科,它们探究着矿物领域中的基础理论和应用技术。
结晶学研究晶体的基本结构和性质,以及它们的生长和变化过程;矿物学则研究各种矿物的物理、化学特性,以及它们的产生和分布规律。
下面,我们就详细探讨一下这两个学科的相关内容。
一、结晶学结晶学主要研究晶体结构和性质,包括晶体对称性、晶体结构和晶体生长等内容。
晶体学家通常使用X射线衍射来分析晶体的结构,通过这种方法可以确定晶体中原子和离子的排列方式,从而确定晶体的物理和化学性质。
此外,结晶学还涉及到晶体中缺陷和杂质对晶体结构和性质的影响。
这些问题与材料科学密切相关,因为材料的性能往往取决于它们的晶体结构。
晶体生长是结晶学中的一个重要问题。
晶体生长过程中,一定的物理和化学条件会导致离子或分子逐渐聚集,形成规则的晶体结构。
晶体生长的速率、形态等因素都是结晶学研究的内容。
晶体生长在实际应用中有着很广泛的用途,比如制备单晶硅用于半导体材料和太阳能电池等,还可以用于制备水晶玻璃、陶瓷等物品。
二、矿物学矿物学也是一个极其重要的学科,在资源开发和环境保护中扮演着重要的角色。
矿物学的主要研究对象是地球上各种矿物质,包括它们的成分、物理、化学特性、产生和分布规律等。
在矿物学中,常使用显微镜、光谱仪、X射线衍射等多种手段研究矿物。
这些技术可以帮助科学家确定矿物的组成、结构和性质,从而指导有关地质勘探、矿物开采和加工的工作。
矿物分析是矿物学中的重要内容,它可以从结构上分析矿物的成分和特性。
比如说一些有价值的金属元素就广泛存在于不同种类的矿物中,通过矿物学分析可以找到这些金属的寻找和开采方案。
此外,矿物学还可以通过分析矿物中的稀土等元素,确定地球内部构造和演化的历程。
总之,结晶学和矿物学是两个重要的学科,涉及到地质勘探、矿物资源开发、材料科学等多个领域。
随着科学技术的不断进步,这两个学科的研究内容也在不断扩展和深化,为人类社会的进步和发展贡献着自己的力量。
结晶学与矿物学结晶学与矿物学绪论一、矿物和矿物学1 矿物的概念矿物是自然界中的化学元素,在一定的物理、化学条件下形成的天然物体。
这种天然物体大多是结晶的单质和化合物。
人们通常所说的矿物主要指的是地壳中作为构成岩石、矿物和粘土组成单位的那些天然物体。
地壳中的矿物是通过各种地质作用形成的。
它们除少数呈液态(如水银、水)和气态(如CO2和H2S等)外,绝大多数呈固态。
固态矿物大多数具有比较固定的化学成分和内部结构。
在适宜的条件下生长时,均能自发的形成规则几何多面体的外形。
而在常温常压下的液态和气态矿物,因不具晶体结构,故没有一定的外形。
任何一种矿物都不是一成不变的。
当其所处的地质条件改变到一定程度时,原有矿物就要发生变化,并改组成为在新条件下稳定的另一种矿物。
因此,从这个意义上来说:矿物又可被看做地壳在演化过程中元素运动和存在的一种形式。
2 矿物的经济意义矿物和矿物原料是发展国民经济建设事业的物质基础。
对于矿物的利用,历来都之包括两个方面:一是利用它的化学成分;一是利用他的某些物理或化学性质。
随着现代科学技术的日益发展和人们的某些特殊需要,可以毫不夸张的预言,在未来将没有一种矿物是没有用处的。
为了加速实现我国“小康社会”,矿物工作者应急国家之所急,在扩大矿物原料基地的同时,更加积极地为寻找更多新的矿产基地和发掘矿物在各种工程技术领域内的新用途,作出应用的贡献。
3 矿物学在地质科学中的地位及与其它科学的关系矿物学是地质学的一门分科,是研究地球物质成分的学科之一。
它研究的主要对象是天然矿物。
其研究内容除包括矿物的成分、结构、形态、性质、成因、产状和用途外,还要研究矿物在时间和空间的分布规律及其形成和变化的历史,以此为地质学的其它分支学科在理论及应用上提供必要的基础与依据。
因此,矿物学是地质学的一门重要的基础学科。
20世纪70年代人们把信息、材料和能源誉为当代文明的三大支柱。
80年代以高技术群为代表的新技术革命,又把新材料、信息技术和生物技术并列为新技术革命的重要标志。