结晶学与矿物学 第二章 晶体生长模型
- 格式:ppt
- 大小:607.50 KB
- 文档页数:19
结晶学&矿物学通论第一章、晶体与晶体的基本性质1、结晶学:又作晶体学,以晶体为研究对象。
我们主要研究晶体显微和宏观空间的对称规律、研究晶体的共同规律不涉及具体的晶体种类。
特点:空间性抽象性逻辑性共性。
2、矿物学:矿物晶体为研究对象,主要研究各具体矿物晶体的成分、物理性质、成因特点等。
特点:经验性、感性、具体性、归纳分类性、个性3、晶体具有远程规律但没有重复周期这是什么意思呢?在晶体中一种质点周围的另一种质点的排列相同,即每个质点都被分布于三角定点的三个圆圈所围绕,而每个圆圈均居于以两个质点为端点的直线中央的质点的局部分布规律性叫做进程有序或短程有序。
质点排布方式在整个晶体中贯穿始终的规律成为长程有序或远程有序。
4、准晶体与晶体、非晶体的关系?晶体:内部质点在三维空间呈周期性平移重复排列而形成的格子构造的固体,既具有近程有序又具有远程有序。
非晶体:质点虽然可以是短程有序的,但不存在远程规律,与液体的结构相似,如玻璃。
准晶体:不是介于晶体与非晶体之间的过渡态、特殊太。
原子呈无序排列。
非晶体与晶体不同的是它没有固定的熔点,而且有的是各向同性5、导出空间格子的方法:首先在晶体结构中找出相当点,再将相当点按照一定的规律连接起来就形成了空间格子,相当点(两个条件:1、性质相同,2、周围环境相同。
)6、空间格子与具体的晶体结构是什么关系?可以认为具体的晶体结构是多套空间格子组成的。
空间格子仅仅是一个体现晶体结构中的周期重复规律的几何图形,比具体晶体结构要简单的多。
7、空间格子的要素:★结点: 空间格子中的点,代表具体晶体结构中的相当点.★行列: 结点在直线上的排列.(引出: 结点间距)★面网: 结点在平面上的分布.(引出: 面网间距、面网密度,它们之间的关系)8、面网间距依次减小,面网密度也是依次减小的.所以: 面网密度与面网间距成正比.★平行六面体(晶胞): 结点在三维空间形成的最小单位(引出: 晶胞参数:a, b, c; α,β,γ,也称为轴长与轴角)平行六面体的形状一共有7种,对应有7套晶胞参数的形式,也对应7个晶系。
晶体的生长模式晶体的生长过程一般认为有三个阶段:首先是溶液或气体达到过饱和状态或过冷却状态,然后整个体系中出现瞬时的微细结晶粒子,这就是形成了晶核,最后这些粒子按照一定的规律进一步生长,成为晶体。
科学家已经发现了晶体生长的多种模式,其中较为重要的是层生长模式和螺旋生长理论。
晶体生长理论简介自从1669年丹麦学者斯蒂诺(N.Steno)开始研究晶体生长理论以来,晶体生长理论经历了晶体平衡形态理论、界面生长理论、PBC理论和负离子配位多面体生长基元模型4个阶段,目前又出现了界面相理论模型等新的理论模型。
现代晶体生长技术、晶体生长理论以及晶体生长实践相互影响,使人们越来越接近于揭开晶体生长的神秘面纱。
下面简单介绍几种重要的晶体生长理论和模型。
.晶体平衡形态理论:主要包括布拉维法则(Law of Bravais)、Gibbs—Wulff 生长定律、BFDH法则(或称为Donnay-Harker原理)以及Frank运动学理论等。
晶体平衡形态理论从晶体内部结构、应用结晶学和热力学的基本原理来探讨晶体的生长,注重于晶体的宏观和热力学条件,没有考虑晶体的微观条件和环境相对于晶体生长的影响,是晶体的宏观生长理论。
.界面生长理论:主要有完整光滑界面模型、非完整光滑界面模型、粗糙界面模型、弥散界面模型、粗糙化相变理论等理论或模型。
界面生长理论重点讨论晶体与环境的界面形态在晶体生长过程中的作用,没有考虑晶体的微观结构,也没有考虑环境相对于晶体生长的影响。
.PBC(周期键链)理论:1952年,P.Hartman、W.G.Perdok提出,把晶体划分为三种界面:F面、K面和S面。
BC理论主要考虑了晶体的内部结构——周期性键链,而没有考虑环境相对于晶体生长的影响。
.负离子配位多面体模型:1994年由仲维卓、华素坤提出,将晶体的生长形态、晶体内部结构和晶体生长条件及缺陷作为统一体加以研究,考虑的晶体生长影响因素全面,能很好地解释极性晶体的生长习性。
《结晶学与矿物学》课程笔记第一章:晶体及结晶学一、引言1. 晶体的定义- 晶体是一种固体物质,其内部原子、离子或分子在三维空间内按照一定的规律周期性重复排列,形成具有长程有序结构的物质。
- 晶体的特点是在宏观上表现出明确的几何外形和物理性质的各向异性。
2. 结晶学的定义- 结晶学是研究晶体的形态、结构、性质、生长和应用的科学。
- 它是固体物理学、化学和材料科学的一个重要分支。
3. 晶体与非晶体的区别- 晶体:具有规则的内部结构和外部几何形态,物理性质各向异性。
- 非晶体(如玻璃):内部结构无规则,没有长程有序,物理性质各向同性。
二、晶体的基本特征1. 几何外形- 晶体通常具有规则的几何外形,如立方体、六方柱、四方锥等。
- 几何外形是由晶体的内部结构决定的。
2. 晶面、晶棱和晶角- 晶面:晶体上平滑的平面,由晶体内部的原子平面构成。
- 晶棱:晶面的交线,由晶体内部的原子线构成。
- 晶角:晶棱之间的夹角,由晶体内部的原子角构成。
3. 晶面指数、晶棱指数和晶角指数- 晶面指数:用来表示晶面在晶体中的位置和方向的符号。
- 晶棱指数:用来表示晶棱在晶体中的位置和方向的符号。
- 晶角指数:用来表示晶角的大小和方向的符号。
4. 物理性质各向异性- 晶体的物理性质(如电导率、热导率、折射率等)随方向的不同而变化。
- 这是因为晶体内部原子的排列在不同方向上有所不同。
三、晶体的分类1. 天然晶体与人工晶体- 天然晶体:在自然界中形成的晶体,如矿物、岩石等。
- 人工晶体:通过人工方法在实验室或工业生产中制备的晶体。
2. 单晶体与多晶体- 单晶体:整个晶体内部原子排列规则一致,具有单一的晶格结构。
- 多晶体:由许多小晶体(晶粒)组成的晶体,晶粒之间排列无序。
3. 完整晶体与缺陷晶体- 完整晶体:内部结构完美,没有缺陷的晶体。
- 缺陷晶体:内部存在点缺陷、线缺陷、面缺陷等结构缺陷的晶体。
四、晶体的生长1. 晶体生长的基本过程- 成核:晶体生长的起始阶段,形成晶体的核。
结晶学与矿物学结晶学与矿物学绪论一、矿物和矿物学1 矿物的概念矿物是自然界中的化学元素,在一定的物理、化学条件下形成的天然物体。
这种天然物体大多是结晶的单质和化合物。
人们通常所说的矿物主要指的是地壳中作为构成岩石、矿物和粘土组成单位的那些天然物体。
地壳中的矿物是通过各种地质作用形成的。
它们除少数呈液态(如水银、水)和气态(如CO2和H2S等)外,绝大多数呈固态。
固态矿物大多数具有比较固定的化学成分和内部结构。
在适宜的条件下生长时,均能自发的形成规则几何多面体的外形。
而在常温常压下的液态和气态矿物,因不具晶体结构,故没有一定的外形。
任何一种矿物都不是一成不变的。
当其所处的地质条件改变到一定程度时,原有矿物就要发生变化,并改组成为在新条件下稳定的另一种矿物。
因此,从这个意义上来说:矿物又可被看做地壳在演化过程中元素运动和存在的一种形式。
2 矿物的经济意义矿物和矿物原料是发展国民经济建设事业的物质基础。
对于矿物的利用,历来都之包括两个方面:一是利用它的化学成分;一是利用他的某些物理或化学性质。
随着现代科学技术的日益发展和人们的某些特殊需要,可以毫不夸张的预言,在未来将没有一种矿物是没有用处的。
为了加速实现我国“小康社会”,矿物工作者应急国家之所急,在扩大矿物原料基地的同时,更加积极地为寻找更多新的矿产基地和发掘矿物在各种工程技术领域内的新用途,作出应用的贡献。
3 矿物学在地质科学中的地位及与其它科学的关系矿物学是地质学的一门分科,是研究地球物质成分的学科之一。
它研究的主要对象是天然矿物。
其研究内容除包括矿物的成分、结构、形态、性质、成因、产状和用途外,还要研究矿物在时间和空间的分布规律及其形成和变化的历史,以此为地质学的其它分支学科在理论及应用上提供必要的基础与依据。
因此,矿物学是地质学的一门重要的基础学科。
20世纪70年代人们把信息、材料和能源誉为当代文明的三大支柱。
80年代以高技术群为代表的新技术革命,又把新材料、信息技术和生物技术并列为新技术革命的重要标志。