动量、动量定理习题课
- 格式:ppt
- 大小:815.50 KB
- 文档页数:28
高二物理高效课堂资料山东省昌乐一中2017级高二物理翻转课堂课时学案班级小组姓名______ 使用时间2019年月日编号课题动量和动量定理习题课编制人季相忠审核人自学质疑学案目标导学学习目标1、进一步明确动量定理的物理意义,学会用动量定理解决实际问题的方法2.动量定理的矢量表达、受力分析以及物理量与过程的统一3.动量定理的应用步骤、方法重点难点动理定理的内容、表达式:Ft=mv′-mv 各物理量的含义,以及动量定理的熟练应用问题记录学案内容请同学们将预习中的疑难问题写出来。
一、动量定理巧用遇到涉及力、时间和速度变化的问题时.运用动量定理解答往往比运用牛顿运动定律及运动学规律求解简便。
应用动量定理解题的思路和一般步骤为:(l)明确研究对象和物理过程; (2)分析研究对象在运动过程中的受力情况;(3)选取正方向,确定物体在运动过程中始末两状态的动量;(4)依据动量定理列方程、求解。
1、简解多过程问题。
例1、一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经过t3=6s停下来。
试求物体在水平面上所受的摩擦力。
第 1 页学案内容学生纠错2、求解平均力问题例2、质量是60kg的建筑工人,不慎从高空跌下,由于弹性安全带的保护作用,最后使人悬挂在空中.已知弹性安全带缓冲时间为 1.2s,安全带伸直后长5m,求安全带所受的平均冲量.( g= 10m/s2)解题习惯养成:(1)该情景涉及哪两个过程?(2)针对两个运动过程,选择合适的物理定律对每个过程进行分析。
3、求解曲线运动问题例3、如图所示,以V o =10m/s的初速度,与水平方向成300角抛出一个质量m=2kg的小球.忽略空气阻力的作用,g取10m/s2.求抛出后第2s末小球速度的大小.解题习惯养成:(1)该情景涉及之前学过的什么运动?(2)针对该运动过程,尝试用动量定理来分析。
动量。
动量定理练习题
动量定理练题
1.一恒力F与水平方向夹角为θ,作用在质量为m的物体上,作用时间为t,则力F的冲量为Fcosθt。
2.质量为m的质点以速度υ绕半径R的圆周轨道做匀速圆周运动,在半个周期内动量的改变量大小为2mυ。
3.质量为m的物块沿倾角为θ的斜面由底端向上滑去,经过时间t1速度为零后又下滑,经过时间t2回到斜面底端,在整个运动过程中,重力对物块的总冲量为mgsinθ(t1+t2)。
4.水平抛出的物体,不计空气阻力,则在相等时间内,动量的变化相同。
5.一粒钢珠从静止状态开始自由下落,然后陷入泥潭中。
若把它在空中自由下落的过程称为Ⅰ,进入泥潭直到停止的过
程称为Ⅱ,则过程Ⅱ中阻力的冲量大小等于过程Ⅰ与过程Ⅱ重力冲量的大小。
6.甲、乙两物体质量相等。
并排静止在光滑水平面上。
现用一水平外力F推动甲物体。
同时在F的相同方向给物体乙一个瞬时冲量I,使两物体开始运动。
当两物体重新相遇时,甲的动量为2I。
7.质量为1kg的物体从离地面5m高处自由下落。
与地面碰撞后,上升的最大高度为3.2m,设球与地面作用时间为0.2s,则小球对地面的平均冲力为100N。
8.把一个乒乓球竖直向上抛出,若空气阻力大小不变,则乒乓球上升到最高点和从最高点返回到抛出点的过程相比较,重力在上升过程的冲量大。
动量定理练习题及答案
二、改错题
动量定理
动量定理是描述力对物体运动状态影响的物理定理。
它表明,物体所受的合外力产生的冲量等于物体动量的变化率。
换句话说,当物体受到一定的力时,它的动量会发生相应的变化。
动量定理的数学表达式为:FΔt = Δp,其中F为物体所受
的合外力,Δt为力作用时间,Δp为物体动量的变化量。
这个
定理适用于任何物体在任何情况下的运动,无论是匀速直线运动、匀变速直线运动还是曲线运动。
动量定理的应用十分广泛。
例如,在车祸中,汽车和乘客的动量会发生急剧的变化,这就是为什么汽车安全带和气囊能够保护乘客的原因。
在运动员跳高时,跳到沙坑里或跳到海绵上可以减小运动员的动量变化,从而减少受伤的可能性。
动量定理还可以用来解释其他现象,例如为什么玻璃杯掉在软垫上不易碎,而掉在水泥地面上易碎。
这是因为落到水泥地上时,玻璃杯受到的冲量大,动量变化快,而掉在软垫上时,受到的冲量小,动量变化慢,因此不易碎。
总之,动量定理是物理学中一个非常重要的定理,它帮助我们理解力对物体运动状态的影响,也为我们提供了解释和预测各种现象的工具。
考虑铁锤的重量,我们可以计算出铁锤打钉子的平均作用力。
在这个问题中,我们需要知道铁锤的重量以及它打钉子时施加的力量。
如果我们假设铁锤的重量为1千克,那么它施加在钉子上的力量就应该是1千克。
因此,铁锤打钉子的平均作用力应该是1千克。
但是,需要注意的是,这个结果只是一个近似值,因为实际上铁锤的重量和施加的力量都可能有所不同,这取决于具体情况。
因此,在实际应用中,我们需要根据具体情况进行调整。
第三章 动量定理及动量守恒定律(习题)3.5.1质量为2kg 的质点的运动学方程为 j ˆ)1t 3t 3(i ˆ)1t 6(r 22+++-=(t 为时间,单位为s ;长度单位为m).求证质点受恒力而运动,并求力的方向大小。
解,j ˆ)3t 6(i ˆt 12v ++= j ˆ6i ˆ12a +=jˆ12i ˆ24a m F +==(恒量)12257.262412tg )N (83.261224F ==θ=+=-3.5.2质量为m 的质点在oxy 平面内运动,质点的运动学方程为ωω+ω=b,a, ,j ˆt sin b i ˆt cos a r为正常数,证明作用于质点的合力总指向原点。
解, ,j ˆt cos b i ˆt sin a v ωω+ωω-= r,j ˆt sin b i ˆt cos a a 22 ω-=ωω-ωω-= r m a m F ω-==3.5.3在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较底的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动。
解答,以谷筛为参照系,发生相对运动的条件是,g a ,mg f a m 000μ≥'μ=≥'a ' 最小值为)s /m (92.38.94.0g a 20=⨯=μ='以地面为参照系:解答,静摩擦力使谷粒产生最大加速度为,mg ma 0max μ= ,g a 0max μ=发生相对运动的条件是筛的加速度g a a0max μ=≥',a '最小值为)s /m (92.38.94.0g a20=⨯=μ='3.5.4桌面上叠放着两块木板,质量各为,m ,m 21如图所示。
2m 和桌面间的摩擦系数为2μ,1m 和2m 间的静摩擦系数为1μ。
第七章动量守恒定律第1讲动量和动量定理基础对点练题组一动量和冲量的理解与计算1.冬奥会速滑比赛中,甲、乙两运动员的质量分别为m1和m2,若他们的动能相等,则甲、乙动量大小之比是( )A.1∶1B.m1∶m2C.√m1∶√m2D.√m2∶√m12.(多选)颠球是足球的基本功之一,足球爱好者小华在练习颠球时,某次足球由静止自由下落0.8 m,被重新颠起,离开脚部后竖直上升的最大高度为0.45 m。
已知足球与脚部的作用时间为0.1 s,足球的质量为0.4 kg,重力加速度g取10 m/s2,不计空气阻力,下列说法正确的是( )A.足球从下落到再次上升到最大高度,全程用了0.7 sB.足球下落到与脚部刚接触时的动量大小为1.6 kg·m/sC.足球与脚部作用过程中动量变化量大小为0.4 kg·m/sD.足球从最高点下落到重新回到最高点的过程中重力的冲量大小为3.2 N·s题组二动量定理的理解与应用3.(多选)(广东河源模拟)如图所示,在轮船的船舷和码头的岸边一般都固定有橡胶轮胎,轮船驶向码头停靠时,会与码头发生碰撞。
对这些轮胎的作用,下列说法正确的是( )A.增大轮船与码头碰撞过程中所受的冲量B.减小轮船与码头碰撞过程中动量的变化量C.延长轮船与码头碰撞过程中的作用时间D.减小轮船与码头碰撞过程中受到的作用力4.(广东广州模拟)一个质量为0.2 kg的垒球,以20 m/s的水平速度飞向球棒,被球棒打击后反向水平飞回,速度大小变为40 m/s,如图所示,设球棒与垒球的作用时间为0.01 s,下列说法正确的是( )A.球棒对垒球不做功B.球棒对垒球做负功C.球棒对垒球的平均作用力大小为400 ND.球棒对垒球的平均作用力大小为1 200 N5.(多选)一质量为1 kg的物块在合力F的作用下从静止开始沿直线运动,其F-t图像如图所示。
则( )A.t=1 s时物块的速度大小为2 m/sB.0~2 s内合力的冲量大小为2 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.0~4 s内合力的冲量大小为2 kg·m/s题组三应用动量定理解决“流体模型”问题6.(四川成都联考)高压清洗广泛应用于汽车清洁、地面清洁等。
(建议用时:35分钟)[基础巩固练]1.如图所示,一个物体在与水平方向成θ角的拉力F的作用下匀速前进了时间t,则()A.合外力对物体的冲量大小为Ft cos θB.拉力对物体的冲量大小为FtC.摩擦力对物体的冲量大小为Ft sin θD.重力对物体的冲量大小为零解析:选B.物体做匀速运动,由动量定理知合外力对物体的冲量为零,故A 错误;运动时间为t,则拉力的冲量为:I1=Ft,故B正确;由于做匀速运动,阻力大小与F的水平分力相等,摩擦力大小为f=F cos θ,摩擦力对物体的冲量的大小为I2=ft=Ft cos θ,故C错误;运动时间为t,重力对物体的冲量大小为I3=mgt,故D错误.2.(多选)在平直公路上,汽车由静止开始做匀加速运动,当动能达到某值时,立即关闭发动机后滑行至停止,其v-t图像如图所示.汽车牵引力为F,运动过程中所受的摩擦阻力恒为f,全过程中牵引力所做的功为W1,冲量大小为I1,克服摩擦阻力所做的功为W2,摩擦阻力的冲量大小为I2.则下列关系中正确的是()A.F∶f=3∶1 B.F∶f=4∶1C.W1∶W2=1∶1 D.I1∶I2=3∶2解析:选AC.由题图可知,汽车先做匀加速直线运动,1 s末速度为v,由动能定理可知(F-f)L1=122m v减速过程中,只有阻力做功fL2=0-122m v可得(F-f)L1=fL2由图像可知L1∶L2=1∶2解得F∶f=3∶1,故A正确,B错误;对全过程由动能定理可得W1-W2=0-0,因此可得W1∶W2=1∶1,C正确;对全过程由动量定理得I1-I2=0,可得I1∶I2=1∶1,D错误.3.如图所示,质量为m的物体在水平外力F的作用下,沿水平面做匀速运动,速度大小为v,当物体运动到A点时撤去外力F.物体由A点继续向前滑行过程中经过B点,则物体由A点到B点的过程中,下列说法中正确的是()A.速度v越大,摩擦力对物体的冲量越小;摩擦力做功与速度v的大小无关B.速度v越大,摩擦力对物体的冲量越大;摩擦力做功与速度v的大小无关C.速度v越大,摩擦力对物体的冲量越小;摩擦力做功越少D.速度v越大,摩擦力对物体的冲量越小;摩擦力做功越多解析:选A.由题意可知,物体匀速运动到A点,说明物体受到的摩擦力等于推力,故推力大小不变;由A到B运动的位移相等,故摩擦力做功与速度大小无关;若速度越大,从A到B的时间越短,则由I=ft可知冲量越小,故A正确.4.(2022·浙江诸暨中学期中)我国自行设计、建造的国产新型航空母舰已完成多次海试,并取得成功.航母上的舰载机采用滑跃式起飞,故甲板是由水平甲板和上翘甲板两部分构成,如图甲所示.为了便于研究舰载机的起飞过程,假设上翘甲板BC是与水平甲板AB相切的一段圆弧,示意图如图乙,AB长L1=150 m,BC水平投影L2=63 m,图中C点切线方向与水平方向的夹角θ=12°(sin 12°=0.21).若舰载机从A点由静止开始做匀加速直线运动,经t=6 s到达B点进入甲板BC.已知飞行员的质量m=60 kg,g取10 m/s2,求:(1)舰载机水平运动的过程中,飞机对飞行员所做功W;(2)舰载机刚进入BC时,飞行员对飞机的作用力;(3)舰载机水平运动的过程中,飞机对飞行员的冲量I的大小.解析:(1)舰载机做初速度为零的匀加速直线运动,设其刚进入上翘甲板时的速度为v,则舰载机在AB上滑行过程有L1=v2t由动能定理得W=12m v2-0代入数据解得W=7.5×104 J.(2)设上翘甲板对应的圆弧半径为R,由几何知识得L2=R sin θ以飞行员为研究对象,在B点由牛顿第二定律得F N-mg=m v2 R代入数据解得F N=1.1×103 N根据牛顿第三定律可知,飞行员对飞机的压力大小为1.1×103 N,方向竖直向下.(3)根据动量定理有I=Δp=m v-0=3 000 N·s.答案:(1)7.5×104 J(2)1.1×103 N,方向竖直向下(3)3 000 N·s[综合提升练]5.(2022·重庆西南大学附中期末)“鸡蛋撞地球”挑战活动要求学生制作鸡蛋“保护器”装置,使鸡蛋在保护装置中从10 m高处静止下落撞到地面而不破裂.某同学制作了如图所示的鸡蛋“保护器”装置,从10 m高处静止下落到地面后瞬间速度减小为零,鸡蛋在保护器装置中继续向下运动0.3 m、用时0.1 s静止而完好无损.已知鸡蛋在装置中运动过程受到恒定的作用力,且该装置含鸡蛋的总质量为0.12 kg,其中鸡蛋质量为m0=0.05 kg,不计下落过程装置质量的变化,重力加速度g取10 m/s2.求:(1)装置落地前瞬间的速度;(2)在下降10 m过程,装置含鸡蛋所受阻力做的功;(3)鸡蛋在向下运动0.3 m过程,装置对鸡蛋的冲量.解析:(1)根据题意可知装置落地前瞬间与鸡蛋的速度相同且为v,对鸡蛋继续向下运动0.3 m的过程,根据运动学公式x=0+v2t,代入数据解得v=6 m/s.(2)以装置含鸡蛋为研究对象且质量为M,根据动能定理有Mgh-W f=12M v2-0代入数据解得W f=9.84 J.(3)以鸡蛋为研究对象,向上为正方向根据动量定理I-mgt=0-m(-v)代入数据解得I=0.35 N·s.答案:(1)6 m/s(2)9.84 J(3)0.35 N·s6.竞技跳水是奥运会正式竞赛项目之一,分跳板跳水和跳台跳水.某质量为M的运动员在进行10 m跳台跳水训练时,以速度v0竖直向上起跳,经过一段时间后入水.为方便计算,假设水池深5 m,运动员在水中做匀减速运动,且运动员到达池底时速度恰好减为零,v0=5 m/s,M=60 kg,g取10 m/s2,空气阻力不计.求:(1)运动员入水时的速度大小v;(2)运动员从离开跳台至到达池底整个过程的时间t;(3)运动员在水中受到水的平均作用力大小F.解析:(1)运动员向上起跳到入水过程中,根据动能定理可得Mgh=12M v2-12M v20解得运动员入水时的速度大小v =15 m/s.(2)规定竖直向上为正方向,根据动量定理可得-Mgt 1=-M v -M v 0解得t 1=2 s设运动员从入水到池底过程的时间为t 2,根据平均速度公式则有h =0+v 2t 2解得t 2=23 s运动员从离开跳台至到达池底整个过程的时间t =t 1+t 2=83 s ≈2.67 s.(3)对运动员从起跳到到达池底的全过程,根据动能定理可得Mg (h +d )-Fd =0-12M v 20解得运动员在水中受到水的平均作用力大小F =1 950 N.答案:(1)15 m/s (2)2.67 s (3)1 950 N。
习题课:动量定理的应用课后篇巩固提升必备知识基础练1.(多选)水平抛出在空中飞行的物体,不考虑空气阻力,则()A.在相等的时间间隔内动量的变化相同B.在任何相等时间内,动量变化的方向都是竖直向下C.在任何相等时间内,动量对时间的变化率恒定D.在刚抛出物体的瞬间,动量对时间的变化率为零,由动量定理得Δp=mg·Δt,因为在相等的时间内动量的变化量Δp相同,即大小相等,方向都是竖直向下的,从而动量的变化率恒定,故选项A、B、C正确,D错误。
2.(2020湖南边城高级中学高二开学考试)研究得出打喷嚏时气流喷出的速度可达40 m/s,假设打一次喷嚏大约喷出5×10-5 m3的空气,用时约0.02 s。
已知空气的密度为1.3 kg/m3,估算打一次喷嚏人受到的平均反冲力为()A.0.13 NB.0.68 NC.2.6 ND.13 Nm=ρV=1.3×5×10-5 kg=6.5×10-5 kg,设打一次喷嚏喷出的空气受到的平均作用力为F,根据动量定理得FΔt=mv,解得F=mvΔt =6.5×10-5×400.02N=0.13 N,根据牛顿第三定律可得人受到的平均反冲力为F'=F=0.13 N,故A正确,B、C、D错误。
3.物体A和B用轻绳相连挂在轻弹簧下静止不动,如图甲所示。
A的质量为m,B的质量为M,将连接A、B的绳烧断后,物体A上升经某一位置时的速度大小为v,这时物体B的下落速度大小为u,如图乙所示,在这段时间里,弹簧弹力对物体A的冲量等于()A.mvB.mv-MuC.mv+MuD.mv+muB的速度为u,对B物体,由动量定理得,Mgt=Mu,对A物体,有I F-mgt=mv,得I F =mgt+mv=mu+mv 。
选项D 正确。
4.(2020山东诸城高二期中)在粗糙的水平面上静止一个质量为1.5 kg 的物体,从t=0时刻受到水平向右拉力F 的作用,从静止开始做直线运动,拉力F 随时间的变化如图所示,物体与地面的动摩擦因数为0.4,重力加速度g 取10 m/s 2,最大静摩擦力等于滑动摩擦力。
教学辅导教案学生姓名 年 级 高二 学 科 物理上课时间 教师姓名课 题冲量和动量问题一:冲量的理解1.质量m 运动员从下蹲状态向上起跳,经△t 时间身体伸直并刚好离开地面,速度为v ,此过程中( )A.地面对他的冲量为mv+mg △t ,地面对他做的功为221mv B.地面对他的冲量为mv+mg △t ,地面对他做的功为零 C.地面对他的冲量为mv ,地面对他做的功为221mv D.地面对他的冲量为mv-mg △t ,地面对他做的功为零 问题二:动量的理解2.(多选)关于动量的概念,下列说法正确的是( )A .动量大的物体惯性一定大B .动量大的物体运动一定快C .动量相同的物体运动方向一定相同D .动量相同的物体速度小的惯性大问题三:动量定理的应用3.试用动量定理解释:(1)某同学用两根完全相同的棉线,将其中一根的上端固定在天花板上,下端栓一小球,球下系另一根棉线,用力拉下放的棉线时发现,若缓慢用力拉,上段棉线断,若快速用力拉,下段棉线断.(2)鸡蛋同一高度自由下落,第一次落在地板上,鸡蛋被打破;第二次落在泡沫塑料垫上,是否被打破,为什么?问题四:探究碰撞过程中的不变量4.“探究碰撞中的不变量”的实验中,入射小球m 1=15g ,原来静止的被碰小球m 2=10g ,由实验测得它们在碰撞前后的x-t 图象如图所示,由图可知,入射小球碰撞前的m 1v 1是 kg ·m/s ,入射小球碰撞后的m 1v 1’是 kg ·m/s ,被碰小球碰撞后的m 2v 2’是 kg ·m/s ,由此得出结论 。
第一部分 冲量知识点1 冲量概念的引入在碰撞过程中,物体相互作用的时间极短,但作用力却很大,而且力在这段短暂的时间内变化十分剧烈,因此很难对力和物体的加速度进行准确的测量;况且对这类问题有时也并不需要了解每一个时刻的力和加速度,只需了解力在作用时间内的积累作用和它所产生的效果。