初一数学能力测试题(8)几何 角
- 格式:doc
- 大小:78.00 KB
- 文档页数:4
章节测试题1.【题文】上午9点半时,时针与分针的夹角是多少度?【答案】105°【分析】时针与分针的夹角为3个大格,且加上时针多走的30分钟的角度即可求得结论.【解答】解:.方法总结:本题考查了钟面角:钟面被分成12大格,每大格为30°;分针每分钟转6°,时针每分钟转0.5°.2.【题文】下列图形中有哪些角?请用适当的方法把图中的角表示出来.【答案】∠1,∠2,∠3,∠α,∠BAD.【分析】先找到图中角的顶点,再找到角的两边,从而找到角,以各顶点为切入点,把角表示出来即可.【解答】图中所有的角为∠1,∠2,∠3,∠α,∠BAD.方法总结:此题考查了角的定义,也考查了角的表示,除用三个大写字母表示外,也可用数字或希腊字母来表示,但需在靠近顶点处加上弧线.3.【题文】(1)用10倍放大镜看30°的角,你观察到的角是_______.(2)用10倍放大镜看50°的角,60°的角,你观察到的角是______,______.由(1),(2),你能得到什么结论?请把你的结论让同学们进行验证,看是否正确.【答案】(1)30°(2)50° 60°角度不变.【分析】(1)根据角的大小与两边张开的程度有关,而与角的两边的长短无关,即可得出答案.(2)根据角的大小与两边张开的程度有关,而与角的两边的长短无关,即可得出答案.(3)根据角的大小与两边张开的程度有关,而与角的两边的长短无关,即可得出答案.【解答】解:(1)用10倍放大镜看30°的角,你观察到的角是 30°,故答案为:30°.(2)用10倍放大镜看50°的角,60°的角,你观察到的角是50°,60°,故答案为:50°,60°.(3)由(1),(2),得到的结论是在放大镜下角度不变,放大镜只有把图形放大,但不能把角度放大.4.【题文】某人晚上六点多钟离家外出,时针与分针的夹角是110°,回家时发现时间还未到七点,且时针与分针的夹角为110°,请你推算此人外出了多长时间?【答案】此人外出40分钟【分析】根据时针每分钟走0.5°,分针每分钟走6°,设6点x分外出,时针从6点整开始走过的角度为0.5x度,分针走过的角度为6x度,进而得出180+0.5x-6x=110,求出x;设6点y分返回,因为返回时发现时针和分针的夹角又是110°,所以有 6y-(180+0.5y)=110,求出y,y-x即为外出了多长时间.【解答】解:设6点x分外出,因为手表上的时针和分针的夹角是110°,所以180+0.5x-6x=110,解得x=,所以此人6点分外出;再设6点y分返回,因为返回时发现时针和分针的夹角又是110°,所以6y-(180+0.5y)=110,解得y=,所以此人6点分返回,-==40(分钟),答:即此人外出共用了40分钟.5.【题文】如图,一辆汽车在马路上行驶,∠AOB=40°,∠CO′D=140°,若这辆汽车向右拐,则需拐多大角度的弯?若这辆汽车向左拐,则需拐多少角度的弯?【答案】向右拐需要140°弯,向左拐需要40°弯【分析】以汽车正在行驶即图中箭头方向为正前方,则汽车向右拐时,拐过的角为∠AFE,汽车向左拐时,拐过的角为∠CFE.【解答】解:如图,汽车向右拐时,拐过的角为∠AFE=140°,即向右拐需要140°弯;汽车向左拐时,拐过的角为∠CFE=40°,即向左拐需要40°弯.6.【题文】计算下列各题:(1)77°42′+34°45′(2)108°54′-79°32′(3)175°16′39″-47°30′÷6+4°12′50″×3(4)33°15′16″×5-(90°3′-57°11′44″)【答案】(1)112°27′(2)29°22′(3)180°9′(4)133°25′4″【分析】当进行减法计算时,按先秒再分最后度的运算顺序,当不够时向前一位借1;当进行加法和乘法时,度、分、秒分别计算即可;当进行除法时,按先度再分最后秒,每级有余数时,余数移到下一级. 运算最后都要化简,使分和秒小于60.【解答】解:(1)77°42′+34°45′=111°87′=112°27′;(2)108°54′-79°32′=29°22′;(3)175°16′39″-47°30′÷6+4°12′50″×3=175°16′39″-7°55′+12°38′30″=187°55′9″-7°55′=180°9″;(4)33°15′16″×5-(90°3′-57°11′44″)=165°75′80″-32°51′16″=133°24′64″=133°25′4″.7.【题文】如图,以B为顶点的角有几个?把它们表示出来.以D为顶点且小于平角的角有几个?把它们表示出来.【答案】图中以B为顶点的角有∠ABD,∠ABC,∠DBC共3个;以D为顶点且小于平角的角有∠ADE,∠ADB,∠BDC,∠EDC共4个.【分析】考查角的定义,有公共端点的两条射线组成的图形,则以点B为顶点的角有3个,分别为∠ABD,∠ABC,∠DBC;以D为顶点且小于平角的角有∠ADE,∠ADB,∠BDC,∠EDC共4个.【解答】图中以B为顶点的角有∠ABD,∠ABC,∠DBC,共3个;以D为顶点且小于平角的角有∠ADE,∠ADB,∠BDC,∠EDC,共4个.8.【题文】平面测量时,通常以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角,在测绘、航海中经常用到.如图,OA表示北偏东20°方向的一条射线.仿照这条射线画出表示下列方向的射线:(1)北偏西50°;(2)南偏东10°;(3)西南方向(即南偏西45°).【答案】见解析【分析】根据方位角的定义和画法画出图形即可.【解答】解:如图所示.9.【题文】如图,OA是表示北偏东30°方向的一条射线,仿照这条射线画出表示下列方向的射线,(1) 南偏东25°;(2) 北偏西60°.【答案】见解析【分析】本题考查了方位角,根据方向角的表示方法画出图形即可.【解答】解:如图所示,OB表示南偏东25°,OC表示北偏西60°,10.【题文】如图,用字母A、B、C表示∠α、∠β.【答案】∠CAB或∠BAC表示∠α;∠CBA或∠ABC表示∠β.【分析】图中角的表示有多种,一个大写英文字母;三个大写英文字母;一个阿拉伯数字;一个希腊字母,择其适合者解答.【解答】解:∠CAB或∠BAC或∠A表示∠α;∠CBA或∠ABC表示∠β.11.【题文】小亮利用星期天搞社会调查活动,早晨8:00出发,中午12:30到家,问小亮出发时和到家时时针和分针的夹角各为多少度.【答案】出发时的时针和分针的夹角为120°,回到家时时针与分针的夹角为165°.【分析】钟表上的刻度是把一个圆平均分成了12等份,每一份是30°.8点整时,时针指到8上,分针指到12上,8:00时针和分针夹角是4份.找出中午12:30时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:早晨8:00,时针和分针夹角是4份,每份30°,故4×30°=120°.∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上12时30分钟时,时针与分针的夹角可以看成时针转过12时0.5°×30=15°,分针在数字6上.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴12时30分钟时分针与时针的夹角6×30°-15°=165°.故出发时的时针和分针的夹角为120°,回到家时时针与分针的夹角为165°.方法总结:在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.12.【题文】请将图中的角用不同方法表示出来,并填写下表:【答案】∠α∠ABC ∠ACB ∠ACF【分析】图中角的表示有多种,一个大写英文字母;三个大写英文字母;一个阿拉伯数字;一个希腊字母,择其适合者填表.【解答】解:由图可知,∠ABE=∠α,∠1=∠ABC,∠2=∠ACB,∠3=∠ACF.13.【题文】观察图形,回答下列问题.(1)写出以B点为顶点的角;(2)写出以ED为边的角.【答案】(1)∠ABD,∠ABC,∠DBC ;(2)∠AED,∠ADE,∠BED,∠CED,∠BDE,∠CDE【分析】(1)观察可得:以点B为顶点角共有3个;(2)观察可得:以DE为边的角共有6个;【解答】解:(1) 以点B为顶点角有:∠ABD,∠ABC,∠DBC(2) 以DE为边的角有:∠AED,∠ADE,∠BED,∠CED,∠BDE,∠CDE 14.【题文】在8点与9点之间,分针与时针重合的时刻是几点几分?【答案】8点分.【分析】这个问题可以看作是环形跑道问题,把一圈看作是60个单位长度,分针与时针相距20个单位长度,时针在前,分针在后,时针每分钟走个单位长,分针每分钟走一个单位长,两针同向而行,何时时针追上分针.【解答】解:时针每小时转动360÷12=30°,每分钟转动30÷60=0.5°,分针每分钟转动360÷60=6°;设经过x分钟分针与时针重合,则有:6x﹣0.5x=240,解得:x=分钟;即8点与9点之间,分针与时针重合的时刻是8点分.15.【题文】若时钟由2点30分走到2点55分,问时针、分针各转过多大的角度?【答案】分针,时针各转过150°、12.5°.【分析】(1)若时针由2点30分走到2点55分,共经过25分钟,时针一小时即60分钟转30°,一分钟转动0.5°,分针一小时转360°,一分钟转6°,据此作答.【解答】解:分针转过的角度:(360°÷60)×(55﹣30)=150°时针转过的角度:(360°÷60÷12)×(55﹣30)=12.5°,∴分针,时针各转过150°、12.5°.方法总结:时针一小时即60分钟转30°,一分钟转动0.5°,分针一小时转360°,一分钟转6°.记住这一结论,并结合钟表的图形解决这类问题就不会出错.16.【题文】如图所示,五条射线OA、OB、OC、OD、OE组成的图形中共有几个角?如果从O点引出n条射线,能有多少个角?你能找出规律吗?【答案】从一点引出n条射线,则共有个角.【分析】分别找出以OA为始边的角的个数,以OB为始边的角的个数,以OC为始边的角的个数,以OD为始边的角的个数,然后进行求和得出答案;根据前面找角的规律我们可以发现:引出n条射线,则角的个数为:1+2+3+4+…+(n-1)=个.【解答】解:引出5条射线时,以OA为始边的角有4个,以OB为始边的角有3个,以OC为始边的角有2个,以OD为始边的角有1个,故当有5条射线时共有角:4+3+2+1=10个;如果引出n条射线,有个角;17.【题文】将下列各角用度、分、秒表示出来.(1)32.41°;(2)75.5°;(3)()°.【答案】(1)32°24′36″(2)75°30′(3)5′【分析】根据角的度、分、秒是60进制的,所以用度、分、秒表示时,先将度的小数部分乘以60转化为分,若分有小数,继续将分的小数部分乘以60转化为秒.【解答】解:(1)∵0.41×60=24.6,0.6×60=36,∴32.41°=32°24′36″;(2)∵0.5×60=30,∴75.5°=75°30′;(3)∵×60=5,∴()°=5′.18.【题文】上午9点半时,时针与分针的夹角是多少度?【答案】105°【分析】时针与分针的夹角为3个大格,且加上时针多走的30分钟的角度即可求得结论.【解答】解:.19.【题文】下列图形中有哪些角?请用适当的方法把图中的角表示出来.【答案】∠1,∠2,∠3,∠α,∠BAD.【分析】先找到图中角的顶点,再找到角的两边,从而找到角,以各顶点为切入点,把角表示出来即可.【解答】解:图中所有的角为∠1,∠2,∠3,∠α,∠BAD.20.【题文】如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).【答案】(1)详见解析;(2)80°;(3)实际距离约23海里.【分析】(1)格局题意画出图形即可;(2)根据题目中所给的方位角的度数,结合图形即可求得∠BAC的度数;(3)量出BC的图距,即可求得实际距离.【解答】解:(1).(2)∠BAC=90°-80°+90°-20°=80°.(3)约2.3cm,即实际距离约23海里.。
人教版数学七年级上学期第四章单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·四川初一期中)有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是( )A .4B .3C .2D .12.(2019·西安交通大学附属中学初一月考)用如图所示的图形,旋转一周所形成的几何体是( )A .B .C .D .3.(2019·河北初二期中)一副三角板按如图方式摆放,已知∠1=5∠2,则∠1的度数是( )A .15°B .18°C .72°D .75°4.(2019·山西初三)如图,点O 是直线AB 上的一点,AOC 40∠=,OM 平分BOC ∠,则BOM ∠等于( )A .60B .65C .70D .755.(2019·贵州省织金县第六中学初一期中)将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市6.(2019·福建聚龙外国语学校初二月考)下列说法正确的是( )A.延长线段AB和延长线段BA的含义相同B.射线AB的长度为12cmC.经过两点可以画一条直线,并且只能画一条直线D.延长直线AB7.(2019·济宁高新区第五中学初一期末)下面说法错误的是( )A.两点确定一条直线B.射线AB也可以写作射线BAC.等角的余角相等D.同角的补角相等8.(2019·广东正德中学初一月考)下列说法正确的有()①长方体、正方体都是棱柱;②圆锥和圆柱的底面都是圆;③若直棱柱的底面边长相等,则它的各个侧面的面积相等;④棱锥底面的边数与侧棱数相等;⑤直棱柱的上、下底面是形状、大小相同的多边形,侧面都是长方形.A.2个B.3个C.4个D.5个9.(2018·河北省保定市第十七中学初一期末)已知线段AB=6cm,线段BC=8cm,则线段AC 的长度为( ) A.14cm B.2cm C.14cm或2cm D.不能确定10.(2019·山东初一期中)如图,在正方形网格中,∠1+∠2+∠3=( )A.90°B.120°C.135°D.150°二、填空题(每小题4分,共24分)11.(2019·河北初一期中)如图,直线AB和CD相交于点O,OE是∠DOB的平分线,若∠AOC=76°,则∠EOB=_______.12.(2019·重庆市第一一0中学校初一期中)三条直线两两相交,它们的交点个数是________个。
初一数学能力测试题(1)班级______姓名______一. 填空题1、将下列数分别填入相应的集合中:0、0.3、—2、21-、1.5、32、512-、+100 整数集合{ …} 非负数集合{ …}2、早晨的气温是-2℃,中午上升了10℃,半夜又下降了8℃,则半夜的气温是________0C3、—2与—3的和是_________;-4与-6的差是__________4、最小的正整数是________,绝对值最小的数是___________5、_______的相反数是0;_________的绝对值是它身;________平方是它本身6、一个数的平方等于1,则这个数是________7、如果—a =—3,则a=_________;如果|a —3|=0,则a =______8、计算-|-2|=__________;—(—2)2=__________9、绝对值大于2而小于5的所有数是__________________10、比较大小:—2_______—3 31____21-- 11、在数轴上点A 表示—2,点B 离点A 五个单位,则点B 表示___________12、|a|=2,|b|=3,且a>b ,则=ba ___________ 二.选择题1、下列说法正确的是( )A 、比负数大是正数B 、数轴上的点表示的数越大,就离开原点越远C 、若a>b ,则a 是正数,b 是负数D 、若a>0,则a 是正数,若a<0,则a 是负数2、下列说法:①正数的绝对值是正数;②两个数比较,绝对值大的反而小;③任何一个数的绝对值都不会是小于0的数;④任何一个整数的绝对值都是自然数 其中说法正确的有( )A 、1个B 、2个C 、3个D 、4个3、下列说法正确的是( )A 、在有理数加法或减法中,和不一定比加数大,被减数不一定比减数大B 、减去一个数等于加上这个数C 、两个数的差一定小于被减数D 、两个数的差一定小于被减数4、一个数的立方等于它本身,这个数是 ( )A 、0B 、1C 、-1,1D 、-1,1,05、下列各式中,不相等的是 ( )A 、(-3)2和-32B 、(-3)2和32C 、(-2)3和-23D 、|-2|3和|-23|6、(-1)200+(-1)201=( )A 、0B 、1C 、2D 、-27、下列说法正确的是( )A 、两数的积是正数,则这个两数都是正数B 、异号两数的积的符号是绝对值较大的那个因数的符号C 、互为相反数的两数积是负数D 、三个有理数的积是正数,则这个有理数中至少有一个正数8、下列说法正确的是( )A 、有理数的绝对值一定是正数B 、如果两个数的绝对值相等,那么这两个数相等C 、如果一个数是负数,那么这个数的绝对值是它的相反数D 、绝对值越大,这个数就越大9、下列说法中错误的是( )A 、零除以任何数都是零。
七年级数学上册第四章《几何图形初步》测试卷-人教版(含答案)班级姓名(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.(2022独家原创)你见过一种折叠灯笼吗?它看起来是平面的,可是提起来后却变成了美丽的灯笼,这个过程可近似地用哪个数学原理来解释( )A.点动成线B.线动成面C.面动成体D.面与面相交的地方是线2.(2021江苏镇江中考)如图所示,该几何体从上面看到的图形是( )A.正方形B.长方形C.三角形D.圆3.(2022甘肃白银期末)如图,观察图形,下列结论中不正确的是( )A.直线BA和直线AB是同一条直线B.图中有5条线段C.AB+BD>ADD.射线AC和射线AD是同一条射线4.如图所示,小于平角的角有( )A.9个B.8个C.7个D.6个5.(2022山东临沂沂水期末)如图,OA表示北偏东25°方向,OB表示南偏西50°方向,则∠AOB的度数是( )A.165°B.155°C.135°D.115°6.建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做蕴含的数学原理是( )A.过一点有无数条直线B.两点确定一条直线C.两点之间线段最短D.线段是直线的一部分7.如图,下列各式中错误的是( )A.∠AOB<∠AODB.∠BOC<∠AOBC.∠COD>∠AODD.∠AOD>∠AOC8.(2022北京怀柔期末)如图是某个几何体的展开图,该几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或310.时钟显示为8:20时,时针与分针所夹的角是( )A.130°B.120°C.110°D.100°二、填空题(每小题3分,共30分)11.(2022独家原创)篮球运动员将篮球抛出后在空中形成一道弧线,这说明的数学原理是.12.如图所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC长的倍.13.(2022山东济南历下期末)计算:30°12'=°.14.如图,从A地到B地有①,②,③三条线路,其中最短的线路是(填“①”“②”或“③”),理由是.15.(2022北京通州期末)如图,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线共有条.16.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.17.如图所示,图中有条直线, 条射线, 条线段.18.(2021湖北黄冈期末模拟)如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC= 度.19.如图,C,D是线段AB上两点,若BC=4cm,AD=7cm,且D是BC的中点,则AC的长等于cm.20.(2022安徽合肥蜀山期末)在同一平面内,∠AOC=∠BOD=50°,射线OB在∠AOC的内部,且∠AOB=20°,OE平分∠AOD,则∠COE的度数是.三、解答题(共40分)21.(5分)如图,已知不在同一直线上的四个点A、B、C、D.(1)画直线AD;(2)连接AB;(3)画射线CD;(4)延长线段BA至点E,使BE=2BA;(5)反向延长射线CD至点F,使DC=2CF.22.(2022北京东城期末)(5分)若一个角的补角是它的余角的6倍,求这个角的度数.23.(6分)如图,点O为直线AB上的一点,已知∠1=65°15',∠2=78°30',求∠1+∠2-∠3的大小.24.(2022广西玉林博白期末)(8分)如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.25.(8分)如图,已知线段AC=12cm,点B在线段AC上,满足BC=1AB.2(1)求AB的长;(2)若D是AB的中点,E是AC的中点,求DE的长.26.(8分)点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处,射线OC平分∠MOB.(1)如图(a),若∠AOM=30°,求∠CON的度数;(2)在图(a)中,若∠AOM=α,直接写出∠CON的度数(用含α的式子表示);(3)将图(a)中的直角三角板OMN绕顶点O顺时针旋转至图(b)的位置,一边OM在直线AB上方,另一边ON在直线AB下方.①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.图(a) 图(b)参考答案1.C 由平面图形变成立体图形的过程是面动成体.2.C 从上面看该几何体,所看到的图形是三角形.3.B 题图中有6条线段,故选B.4.C 符合条件的角中以A为顶点的角有1个,以B为顶点的角有2个,以C为顶点的角有1个,以D为顶点的角有1个,以E为顶点的角有2个,共有1+2+1+1+2=7个,故选C.5.B 由题意得∠AOB=25°+90°+40°=155°.6.B 用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,依据是两点确定一条直线.7.C 因为OC在∠AOD的内部,所以∠COD<∠AOD,故C错误,符合题意.8.B 从展开图可知,该几何体有五个面,两个三角形的面,三个长方形的面,因此该几何体是三棱柱.9.D 如图1,DE=3;如图2,DE=5.故选D.图1 图210.A 8:20时,时针与分针之间有4+2060=133个大格,故8:20时,时针与分针所夹的角是30°×133=130°,故选A.11.点动成线解析将篮球看成一个点,这种现象说明的数学原理是点动成线.12.3解析因为AC=AB+BC=8+4=12,所以AC=3BC.13.30.2解析因为1°=60',所以12'=0.2°,所以30°12'=30.2°. 14.①;两点之间,线段最短解析从A地到B地最短的线路是①,依据是两点之间,线段最短.15.3解析如图所示:所以满足条件的直线共有3条.16.(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC解析(1)因为O是直线AB上一点,OC是∠AOB的平分线,∠AOB=90°,所以∠AOC=∠BOC=12所以∠AOD+∠DOC=90°,即∠AOD与∠DOC互余.(2)∠AOD+∠BOD=180°,∠AOC+∠BOC=180°,即∠AOD与∠BOD互补,∠AOC与∠BOC互补.17.1;6;6解析题图中有1条直线,为直线AD;6条射线,分别为以A为端点的3条,以B为端点的1条,以D为端点的2条;6条线段,分别是AB、AC、AD、BC、CD、BD.18.180解析∠AOB+∠DOC=∠AOD+∠DOC+∠BOC+∠DOC=∠AOC+∠DOB=90°+90°=180°.19.5解析因为D是线段BC的中点,BC=4cm,BC=2cm,所以CD=12因为AD=7cm,所以AC=7-2=5(cm).20.15°或65°解析①当OD与OC在OA的同侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD+∠AOB=70°,因为OE平分∠AOD,∠AOD=35°,所以∠AOE=12所以∠COE=∠AOC-∠AOE=15°;②当OD与OC在OA的异侧时,如图,因为∠AOC=∠BOD=50°,∠AOB=20°,所以∠AOD=∠BOD-∠AOB=30°,因为OE平分∠AOD,所以∠AOE=1∠AOD=15°,2所以∠COE=∠AOC+∠AOE=65°.综上所述,∠COE的度数为15°或65°.21.解析如图所示.22.解析设这个角为x°,根据题意,得180-x=6(90-x),解得x=72.答:这个角是72°.23.解析∠1+∠2-∠3=65°15'+78°30'-(180°-65°15'-78°30')=143°45'-36°15'=107°30'.24.解析(1)北偏东70°.(2)因为∠AOB=40°+15°=55°,∠AOC=∠AOB,所以∠AOC=55°,∠BOC=110°.因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=180°-110°=70°.因为OE 平分∠COD, 所以∠COE=35°. 又因为∠AOC=55°, 所以∠AOE=90°.25.解析 (1)因为BC=12AB,AC=AB+BC=12 cm, 所以AB+12AB=12 cm, 所以AB=8 cm.(2)因为D 是AB 的中点,AB=8 cm, 所以AD=12AB=4 cm,因为E 是AC 的中点,AC=12 cm, 所以AE=12AC=6 cm, 所以DE=AE-AD=6-4=2(cm).26.解析 (1)由已知得∠BOM=180°-∠AOM=150°, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×150°=15°. (2)由已知得∠BOM=180°-∠AOM=180°-α, 因为∠MON 是直角,OC 平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×(180°-α)=12α. (3)设∠AOM=β,则∠BOM=180°-β. ①∠AOM=2∠CON,理由如下: 因为OC 平分∠BOM,所以∠MOC=12∠BOM=12(180°-β)=90°-12β, 因为∠MON=90°,所以∠CON=∠MON-∠MOC=90°-(90°−12β)=12β,所以∠AOM=2∠CON.②由①可知∠BON=∠MON-∠BOM=90°-(180°-β)=β-90°,∠AOC=∠AOM+∠MOC=β+90°-12β=90°+12β,因为∠AOC=3∠BON,所以90°+12β=3(β-90°),解得β=144°, 所以∠AOM=144°.。
第四章平面图形及其位置关系试题一、选择题(共13 小题,每题 4分,满分 52 分)1、如图,以 O 为端点的射线有()条.A、 3 B 、 4C、5 D 、 62、以下说法错误的选项是()A、不订交的两条直线叫做平行线 B 、直线外一点与直线上各点连结的全部线段中,垂线段最短C、平行于同一条直线的两条直线平行 D 、平面内,过一点有且只有一条直线与已知直线垂直3、一个钝角与一个锐角的差是()A、锐角 B 、钝角C、直角 D 、不可以确立4、以下说法正确的选项是()A、角的边越长,角越大B、在∠ ABC 一边的延伸线上取一点 DC、∠ B= ∠ ABC+ ∠ DBCD、以上都不对5、以下说法中正确的选项是()A、角是由两条射线构成的图形 B 、一条射线就是一个周角C、两条直线订交,只有一个交点D、假如线段 AB=BC ,那么 B 叫做线段 AB 的中点6、同一平面内互不重合的三条直线的交点的个数是()A、可能是0个,1个,2个B、可能是0个,2个,3个C、可能是0 个,1个,2个或 3个D、可能是 1 个可 3 个7、以下说法中,正确的有()①过两点有且只有一条直线;②连结两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=BC ,则点 B 是线段 AC 的中点.A、1 个B、2 个C、3 个D、4 个8、钟表上12 时 15 分钟时,时针与分针的夹角为()A、90°B、°C、°D、 60°9、按以下线段长度,能够确立点 A 、 B 、 C 不在同一条直线上的是()A、 AB=8cm , BC=19cm , AC=27cm B 、 AB=10cm , BC=9cm , AC=18cmC、 AB=11cm , BC=21cm , AC=10cm D 、 AB=30cm , BC=12cm , AC=18cm10、以下说法中,正确的个数有()①两条不订交的直线叫做平行线;②两条直线订交所成的四个角相等,则这两条直线相互垂直;③经过一点有且只有一条直线与已知直线平行;④假如直线a∥ b, a∥ c,则 b∥ c.A、1 个B、2 个C、3 个D、4 个11、以下图中表示∠A BC 的图是()A、B、C、D、12、以下说法中正确的个数为()①不订交的两条直线叫做平行线②平面内,过一点有且只有一条直线与已知直线垂直③平行于同一条直线的两条直线相互平行④在同一平面内,两条直线不是平行就是订交A、1 个B、2 个C、3 个D、4 个13、∠ 1 和∠ 2 为锐角,则∠1+∠ 2 知足()A、 0°<∠ 1+∠ 2< 90°B、 0°<∠ 1+∠2< 180°C、∠ 1+∠ 2< 90° D 、 90°<∠ 1+∠ 2< 180°二、填空题(共 5 小题,每题 5 分,满分25 分)14、如图,点 A 、B 、 C、 D 在直线 l 上.( 1)AC=﹣CD; AB++CD=AD ;( 2)如图共有条线段,共有条射线,以点 C 为端点的射线是.15、用三种方法表示如图的角:.16、将一张正方形的纸片,按以下图对折两次,相邻两条折痕(虚线)间的夹角为度.17、如图, OB , OC 是∠ AOD 的随意两条射线,OM 均分∠ AOB , ON 均分∠ COD ,若∠ MON=α,∠ BOC=β,则表示∠ AOD 的代数式是∠ AOD=.18、如图,∠ AOD= ∠ AOC+=∠ DOB+.三、解答题(共 3 小题,满分23 分)19、如图, M 是线段AC 的中点, N 是线段 BC 的中点.(1)假如 AC=8cm , BC=6cm ,求 MN 的长.(2)假如 AM=5cm , CN=2cm ,求线段 AB 的长.20、如图,污水办理厂要把办理过的水引入排水渠PQ,应如何铺设排水管道,才能用料最省?试画出铺设管道的路线,并说明原因.21、如图,直线AB 、 CD、 EF 都经过点O,且 AB ⊥ CD ,∠ COE=35°,求∠ DOF 、∠ BOF 的度数.北师大版七年级下册第二章订交线、平行线单元测试题一、填空(每题 4 分,共 40 分)1、一个角的余角是30o,则这个角的大小是..2、一个角与它的补角之差是20o,则这个角的大小是3、如图①,假如∠= ∠,那么依据可得 AD ∥BC(写出一个正确的就能够).4、如图②,∠ 1 = 82o,∠ 2 = 98o,∠ 3 = 80o,则∠ 4 =度.5、如图③,直线AB , CD,EF 订交于点 O,AB ⊥CD,OG 均分∠ AOE,∠ FOD = 28o,则∠ BOE =度,∠ AOG =度.6、时钟指向 3 时 30 分时,这不时针与分针所成的锐角是.7、如图④, AB ∥ CD,∠ BAE = 120o,∠DCE = 30o,则∠ AEC =度.8、把一张长方形纸条按图⑤中,那样折叠后,若获得∠ AOB ′= 70o,则∠ B′OG =.9、如图⑥中∠ DAB 和∠ B 是直线 DE 和 BC 被直线称它们为角.10、如图⑦,正方形ABCD 边长为 8,M 在 DC 上,且则 DN + MN 的最小值为.二、选择题(每题 3 分,共 18 分)11、以下正确说法的个数是()①同位角相等②对顶角相等③等角的补角相等④两直线平行,同旁内角相等A. 1,B.2,C.3,D.412、如图⑧,在△ ABC 中, AB = AC ,∠ A = 36o,BD均分∠ ABC , DE∥ BC,那么在图中与△ ABC 相像的三角形的个数是()A.0,B.1,C.2,D.3所截而成的,DM=2,N是AC上一动点,13、以下图中∠ 1 和∠ 2 是同位角的是()A. ⑴、⑵、⑶,B.⑵、⑶、⑷,C. ⑶、⑷、⑸,D.⑴、⑵、⑸14、以下说法正确的选项是()A.两点之间,直线最短;B.过一点有一条直线平行于已知直线;C.和已知直线垂直的直线有且只有一条;D. 在平面内过一点有且只有一条直线垂直于已知直线.15、一束光芒垂直照耀在水平川面,在地面上放一个平面镜,欲使这束光芒经过平面镜反射后成水平光芒,则平面镜与地面所成锐角的度数为()A.45o,B.60o,C.75o,D.80o16、如图⑨, DH∥EG∥ BF,且 DC∥EF,那么图中和∠ 1 相等的角的个数是()A.2,B.4,C. 5,D.6三、解答题:117、按要求作图(不写作法,但要保存作图印迹)( 3 分)已知点 P、 Q 分别在∠ AOB 的边 OA , OB 上(如图) .①作直线 PQ,2②过点 P 作 OB 的垂线,③过点 Q 作 OA 的平行线 .18、已知线段 AB,延伸 AB 到 C,使 BC∶AB=1 ∶3,D 为 AC 中点,若 DC = 2cm,求 AB 的长 . (7 分)19、如图,,已知AB∥ CD,∠ 1 =∠ 2.求证.:∠ E=∠ F(6分)20、如图所示,在△ AFD 和△ BEC 中,点 A、 E、F、C 在同向来线上,有下边四个判断:⑴AD=CB⑵AE=FC⑶ ∠B= ∠D⑷ AD∥BC请用此中三个作为已知条件,余下一个作为结论,编一道数学识题,并写出解答过程.(8分)21、如图,ABCD是一块釉面砖,居室装饰时需要一块梯形APCD 的釉面砖,且使∠ APC=120o. 请在长方形 AB边上找一点 P,使∠ APC= 120o. 而后把剩余部切割下来,试着表达如何选用 P 点及其选用 P 点的原因 . ( 8 分)22、如图,已知AB ∥CD,∠ ABE和∠ CDE的均分线订交于F,∠ E = 140o,求∠ BFD 的度数 .(10 分)北师大版七年级下册第三章三角形单元测试题(一):一、选择题1.一个三角形的两边长为 2 和 6,第三边为偶数.则这个三角形的周长为()A.10 B .12C. 142.在△ ABC中, AB= 4a,BC=14,AC=3a.则 a 的取值范围是()A. a> 2B.2<a< 14 C .7<a< 14 D . a<143.一个三角形的三个内角中,锐角的个数最少为()A.0 B. 1 C .2D.34.下边说法错误的选项是()A.三角形的三条角均分线交于一点 B .三角形的三条中线交于一点C.三角形的三条高交于一点D.三角形的三条高所在的直线交于一点5.能将一个三角形分红面积相等的两个三角形的一条线段是()A.中线B.角均分线C.高线 D .三角形的角均分线6.如图—∠°⊥AB,垂足是 D,则图中与∠A 相等5 12,已知ACB=90 , CD的角是()A.∠1B.∠2 C .∠B D.∠1、∠ 2和∠B7.点 P 是△ ABC内随意一点,则∠ APC与∠ B 的大小关系是() A.∠ APC>∠ B B.∠ APC=∠ B C.∠APC<∠B D.不可以确立8.已知:a、b、c是△ABC三边长,且 M= (a + b+c)(a +b- c)(a - b-c) ,那么()A.M>0B. M=0 C.M<0 D.不可以确立9.周长为P 的三角形中,最长边m的取值范围是()A.Pm P B.P m P C .Pm P D.Pm P32323232()10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有A.5 个B.4个 C .3个D.2 个二、填空题1.五条线段的长分别为 1,2, 3,4, 5,以此中随意三条线段为边长能够________个三角形.2.在△ ABC中, AB= 6,AC= 10,那么 BC边的取值范围是 ________,周长的取值范围是 ___________ 3.一个三角形的三个内角的度数的比是2:2: 1,这个三角形是 _________三角形.4.一个等腰三角形两边的长分别是15cm 和 7cm则它的周长是 __________.5.在 △ABC 中,三边长分别为正整数≥ ≥a 、b 、c ,且 c b a > 0,假如 b =4,则这样的三角形共有 _________个.6.直角三角形中,两个锐角的差为 40 ° _________.,则这两个锐角的度数分别为7.在 △ ABC 中, ∠ A - ∠ ° ∠ C = 4 ∠ B ,则 ∠ C = ________.B = 30 、8.如图 — △ ⊥ ⊥ ⊥ ⊥5 13,在 ABC 中,AD BC ,GC BC ,CF AB ,BE AC ,垂足分别为 D 、C 、F 、E ,则 _______是 △ ABC 中 BC 边上的高, _________是 △ ABC 中 AB 边上的高, _________是 △ ABC 中 AC边上的高, CF 是△ ABC 的高,也是 △ _______、 △ _______、 △ _______、 △ _________的高.— △ ABC 的两个外角的均分线订交 于点 D ,假如 ∠ ° ∠ D =_____.9.如图 5 14, A = 50 ,那么— △ ABC 中, ∠A =60 ° ∠ ABC 、 ∠ ACB 的均分线 BD 、 CD 交于点D ,则 ∠ BDC =_____ 10.如图 5 15, , — ∠ A + ∠ B + ∠ C + ∠ D + ∠E = ________度.11.如图 5 16,该五角星中,12.等腰三角形的周长为 24cm ,腰长为 xcm ,则 x 的取值范围是 ________. 三、解答题1.如图 —A 、B 、C 、D 、E 五点可确立多少个三角形 ?说明原因.5 17,点 B 、 C 、D 、E 共线,试问图中 2.如图 — ∠ BAD = ∠ CAD ,则 AD 是 △ ABC 的角均分线,对 吗 ?说明理5 18, 由.3.一个飞机部件的形状如图 — 所示,按规定 ∠ °∠ B , ∠ D 5 19 A 应等于 90 ,应分别是 20 ° ° ∠ BCD =143 °部件不合 和 30 ,康师傅量得 ,就能判定这个格,你能说出此中的道理吗 ?— △ ABC 中,AD 是 BC 边上的中线, △ ADC 的周长比 △ ABD 的 4.如图 5 20,在周长多 5cm ,AB 与 AC 的和为 11cm ,求 AC 的长.5.如图 — △ ABC 中, ∠ B = 34 ° ∠ ACB = 104° ∠ BAC 的均分线,求5 21, , , AD 是 BC 边上的高, AE是 ∠ DAE 的度数.6.如图 5—22,在 △ ABC 中, ∠ ACB = 90°, CD 是 AB 边上的高, AB = 13cm ,BC = 12cm ,AC =5cm ,求:(1) △ ABC 的面积; (2)CD 的长.7.已知:如图 5 — △ ABC 内任一点,求证: ∠ BPC > ∠A .23,P 是 8. △ ABC 中,三个内角的度数均为整数,且 ∠ A <∠ B <∠ C ,4∠ C =7∠ A ,求 ∠ A 的度数.9.已知:如图 5 — △ABC 内任一点,求证: AB + AC > BP + PC . 24,P 是—A 、B 、C 、D .此刻要建筑一个水塔 P .请回答水塔 P 应建在何地点,10.如图 5 25,豫东有四个乡村 才能使它到 4 村的距离之和最小,说明最节俭资料的方法和原因.11.已知△ ABC 的周长为 48cm ,最大边与最小边之差为 14cm ,另一边与最小边之和为 25cm ,求△ ABC 各边的长.北师大版七年级下册 第三章三角形 单元测试题(二):1.必定在△ ABC 内部的线段是( )A .锐角三角形的三条高、三条角均分线、三条中线B .钝角三角形的三条高、三条中线、一条角均分线C .随意三角形的一条中线、二条角均分线、三条高D .直角三角形的三条高、三条角均分线、三条中线 2.以下说法中,正确的选项是( )A .一个钝角三角形必定不是等腰三角形,也不是等边三角形B .一个等腰三角形必定是锐角三角形,或直角三角形C .一个直角三角形必定不是等腰三角形,也不是等边三角形D .一个等边三角形必定不是钝角三角形,也不是直角三角形3.如图,在△ ABC中, D、 E 分别为 BC上两点,且 BD= DE=EC,则图中面积相等的三角形有(A.4对B.5对C.6对D.7对)(注意考虑完整,不要遗漏某些状况)4.假如一个三角形的三条高的交点正是三角形的一个极点,那么这个三角形是(A.锐角三角形 B .钝角三角形 C .直角三角形 D .没法确立5.以下各题中给出的三条线段不可以构成三角形的是()A. a+ 1,a+ 2, a+ 3(a> 0)B.三条线段的比为4∶ 6∶ 10C. 3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18B.15C.18或15D.没法确立)7.两根木棒分别为5cm和 7cm,要选择第三根木棒,将它们钉成一个三角形,假如第三根木棒长为偶数,那么第三根木棒的取值状况有()种A.3B.4C.5D.68.△ ABC的三边 a、 b、c 都是正整数,且知足a≤b≤ c,假如 b= 4,那么这样的三角形共有(个A.4B.6C.8D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个B.2个C.3个D.4个)10.三角形全部外角的和是(A. 180°B.360°)C. 720°D. 540°11.锐角三角形中,最大角α的取值范围是()A. 0°<α< 90°; B .60°<α< 180°; C . 60°<α< 90°; D . 60°≤α< 90°12.假如三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B .钝角或锐角三角形;C .直角三角形 ; D .钝角或直角三角形13.已知△ ABC中,∠ ABC与∠ ACB的均分线交于点O,则∠ BOC必定()A.小于直角 ; B.等于直角;C.大于直角;D.大于或等于直角14.如图 : ( 1) AD⊥ BC,垂足为 D,则 AD是 ________的高,∠________=∠ ________= 90°;(2)AE 均分∠ BAC,交 BC于点 E,则 AE叫 ________,∠________=∠ ________=1∠ ________,AH叫 ________;2(3)若 AF= FC,则△ ABC的中线是 ________;(4)若 BG= GH= HF,则 AG是 ________的中线, AH是 ________的中线.15.如图,∠ ABC=∠ ADC=∠ FEC=90°.(1)在△ ABC中, BC边上的高是 ________;(2)在△ AEC中, AE边上的高是 ________;(3)在△ FEC中, EC边上的高是 ________;(4 )若 AB= CD= 3, AE= 5 ,则△ AEC 的面积为________.16.在等腰△ ABC中,假如两边长分别为 6cm、10cm,则这个等腰三角形的周长为 ________.17.五段线段长分别为 1cm、 2cm、 3cm、 4cm、 5cm,以此中三条线段为边长共能够构成________个三角形.18.已知三角形的两边长分别为 3 和 10,周长恰巧是 6 的倍数,那么第三边长为________.19.一个等腰三角形的周长为5cm,假如它的三边长都是整数,那么它的腰长为________cm.20.在△ ABC中,若∠ A∶∠ B∶∠ C= 5∶ 2∶ 3,则∠ A= ______;∠ B= ______;∠ C=______.21.如图,△ ABC中,∠ ABC、∠ ACB的均分线订交于点 I .(1)若∠ ABC= 70°,∠ ACB= 50°,则∠ BIC= ________;(2)若∠ ABC+∠ ACB=120°,则∠ BIC=________;( 3)若∠ A =60°,则∠ BIC = ________; ( 4)若∠ A =100°,则∠ BIC =________;( 5)若∠ A =n °,则∠ BIC = ________. 22.如图,在△ ABC 中,∠ BAC 是钝角.画出:( 1)∠ ABC 的均分线;( 2)边 AC 上的中线;( 3)边 AC 上的高.23.△ ABC 的周长为 16cm , AB =AC ,BC 边上的中线 AD 把△ ABC 分红周长相等的两个三角形.若BD =3cm ,求 AB 的长.24.如图, AB ∥ CD , BC ⊥ AB ,若 AB =4cm , S ABC 12cm 2,求△ ABD 中 AB 边上的高.25 .学校有一块菜地,以以下图.现计划从点 D 表示的地点( BD ∶DC = 2∶ 1)开始挖一条小水渠,希望小水渠两边的菜地面积相等.有人说:假如D 是 BC 的中点的话,由此点 D 笔挺地挖至点 A 就 能够了.此刻 D 不是 BC 的中点,问题就没法解决了. 但有人以为假如仔细研究的话必定能办到. 你以为上边两种建议哪一种正确,为何?23 题24 题26 .在直角△ ABC 中,∠ BAC = 90°,以以下图所示.作BC 边上的高,图中出现三个直角三角形( 3= 2×1+1);又作△ ABD 中 AB 边上的高DD 1,这时图中便出现五个不一样的直角三角形( 5=2×2+ 1);依据相同的方法作 D 1D 2、D 2 D 3、 、D k 1D k.看作出D k 1D k时,图中共有多少个不同的直角三角形 ? 25 题 26 题27.一块三角形优秀品种试验田,现引进四个良种进行对照实验,需将这块土地分红面积相等的四块.请你制定出两种以上的区分方案.28.一个三角形的周长为 36cm ,三边之比为 a ∶ b ∶ c =2∶3∶ 4,求 a 、b 、 c . 29.已知三角形三边的长分别为:5、 10、a -2,求 a 的取值范围.30.已知等腰三角形中, AB = AC ,一腰上的中线 BD 把这个三角形的周长分红 15cm 和 6cm 两部分,求这个等腰三角形的底边的长. 31.如图,已知△ ABC 中, AB =AC ,D 在 AC 的延伸线上.求证: BD - BC < AD - AB .32.如图,△ ABC 中, D 是 AB 上一点.求证:( 1) AB + BC + CA > 2CD ;(2) AB + 2CD >AC +BC .33.如图, AB ∥ CD ,∠ BMN 与∠ DNM 的均分线订交于点 G , ( 1)达成下边的证明:31 题∵ MG 均分∠ BMN ( ),∴ ∠ GMN = 1∠ BMN (),32 题2同理∠ GNM = 1∠ DNM .2∵ AB ∥CD ( ),∴ ∠ BMN +∠ DNM = ________( ).∴ ∠ GMN +∠ GNM = ________.∵∠ GMN +∠ GNM +∠ G = ________(),∴∠ G= ________ .∴ MG 与 NG的地点关系是 ________.( 2)把上边的题设和结论,用文字语言归纳为一个命题:_______________________________________________________________.34.已知,如图D是△ ABC中 BC边延伸线上一点,DF⊥ AB交 AB 于 F,交 AC于 E,∠ A= 46°,∠ D = 50°.求∠ ACB的度数.35.已知,如图△ ABC中,三条高AD、 BE、 CF订交于点 O.若∠ BAC= 60°,求∠ BOC的度数.36.已知,如图△ ABC中,∠ B=65°,∠ C= 45°, AD是 BC边上的高, AE 是∠ BAC的均分线.求∠ DAE的度数.37.已知,如图CE是△ ABC的外角∠ ACD的均分线, BE 是∠ ABC内任一射线,交CE 于 E.求证:∠EBC<∠ ACE.38.画出图形,并达成证明:35 题34 题已知: AD是△ ABC的外角∠ EAC的均分线,且A D∥BC.求证:∠ B=∠ C.北师大版七年级下册第三章三角形单元测试题(三):一、选择题 (每题 3 分,共 30 分)1.有以下长度的三条线段,能构成三角形的是()A2,3,4B1,4,2 C 1,2, 3D6,2, 32.在以下各组图形中,是全等的图形是()3.以下条件中,能判断两个直角三角形全等的是()A 、一个锐角对应相等B 、两个锐角对应相等C、一条边对应相等 D 、两条边对应相等4.已知:如图, CD ⊥ AB , BE⊥ AC ,垂足分别为D、 E,BE、CD 订交于 O 点,∠ 1=∠ 2.图中全等的三角形共有()A.4 对B..3对C2 对D.1 对5.如图所示,某同学把一块三角形玻璃打坏成了三块,此刻要到玻店去配一块完整相同的玻璃,那么最省事的方法是()①②③A. 带①去B. 带②去C. 带③去D. 带①和②去 5 题A6.右图中三角形的个数是() A.6B.7C. 8 D . 97.假如两个三角形全等,那么以下结论不正确的选项是()B FA .这两个三角形的对应边相等B .这两个三角形都是锐角三角形D C.这两个三角形的面积相等 D .这两个三角形的周长相等E C 6 题8.在以下四组条件中,能判断△ABC ≌△ A /B/C/的是()=A /B/, BC= B /C/,∠ A= ∠ A / B.∠A= ∠ A/,∠ C=∠C/,AC= B /C/C.∠ A= ∠ B/,∠ B=∠ C/, AB= B/C/=A /B/, BC= B /C/,△ ABC 的周长等于△ A /B /C/的周长9.以下图中,与左图中的图案完整一致的是()10.以下判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中起码有两个锐角,③有两个内角为500和 200的三角形必定是钝角三角形,④直角三角形中两锐角的和为900,此中判断正确的有()个个个个二、填空题:(每题4分共 24分)11、为了使一扇旧木门不变形,木匠师傅在木门的反面A B C。
初一数学下能力测试题(20)班级、填空题2 1、 在厶 ABC 中,Z A=3Z B=± Z C,则Z A=3 Z B=Z C ,则厶ABC 是 三角形2、 已知:△ ABC^A DEF ,若厶 ABC 的周长为 32cm, AB=8cm BC=14cm 贝U DE= cm ,EF= ___ cm , DF= cm,Z B=姓名,Z C =;若/ A+ CBADA0 0则对应相等的边为对应相等的角为AABE CDBFD如图, 若/ 若/ 若/ 若/ C B E4、如图,在直角三角形 ABC 中,/ ACB=90, CDLAB 于点D,则图中有个直角三角形它们是_Z A 是 ____互余的角有已知在△ ABC 中,Z ABC Z ACB 的平分线相交于点 0,ABC=50,Z ACB=65,则 Z B0C=__________ABC+Z ACB=130,则Z B0C=__________ ; A=9C °,则Z B0C= __________ ;BOC=1O0,则Z A= __________ 3cm 和5cm,要选择第三根木棒 它的长为 _和 _____________ 公共角 几对,它们是BC将它们钉成一个三角形,当第三 0DE=“, Z 0CD=B=5C ,则 Z A0C= _______5 (1) (2) (3) (4) 6、 两根木棒的长分别为 根木棒长为偶数厘米时,它的长为cm7、 若直角三角形的两锐角的差为200,则两锐角的度数分别是8、 如图 8,若Z B=3C 0,Z AOB=1l0, CE// AB,则Z 9、 如图9,已知△ ABC 中,AD 丄BC, CE1 AB,若Z若 Z A0C=Z B 时,则 Z B= ____10、 如图 10,若厶 ABF ^A ACE C二、选择题1、三角形的三边的长可以为下列哪一组()A 1 , 2 , 3B 、8 , 3 , 5C 、2 , 5 , 10D 、10 , 10 , 2;若 AB=BC=10 则 C<3、在厶ABC中,若AB=7, BC=5 贝U <AC<3、如图△ ABC中,AB=AC AD是中线,请你说出两个正确的结论,并加以证明4 、如图中,已知AB// CD AB=CD求证:/ B=/ D2、如图,要使得厶ABC^A ADC还需要()A AB=AD / B=Z DB 、AB=AD / ACB= ACDC BC=DC / BCA玄DCAD AB=AD / BCA玄DCA3、如图,O为AC的中点,只加上()则厶AOB与△ COD不全等,A、/ A=Z CB、/ B=Z DC AB=CD D 、OB=OD4、以长为10cm 7cm 5cm, 3cm的四条线段中的三条为边,BA D可画三角形的个数为()A 1B 、2C 、3D 、45、三角形的高是指()A、从三角形的一个顶点向另一边画的垂线B从三角形的一个顶点向另一边画的垂线段的长度C从三角形的一个顶点向它的对边画垂线,顶点与垂足间的线段D从顶点向对边所画的垂线6、如图中,/ A+/ B+/ C+/ D+/ E=()A 1800B 、2400C 3600 D、4800A三、证明题1、如图,已知:AC=AD,BC=BD试问△ADB全等吗?说说你的理由。
人教版数学七年级上册第4章能力测试题含答案4.1几何图形一.选择题1.下列几何体中,是圆锥的为()A.B.C.D.2.如图所示,截面的形状是()A.长方形B.平行四边形C.梯形D.五边形3.如图,是一个正方体的一种平面展开图,正方体的每个面上都有一个汉字,那么在原正方体中和“培”字相对面的汉字是()A.我B.爱C.北D.大4.下列图形能折叠成正方体的是()A.B.C.D.5.有一个正六面体骰子放在桌面上,将骰子如图所示顺时针方向滚动,每滚动90°算一次,则滚动第2020次后,骰子朝下一面的数字是()A.5 B.4 C.3 D.26.下列几何体中,是棱锥的为()A.B.C.D.7.如图是一个正方体的表面展开图,则原正方体中与“创”字所在的面相对的面上标的字是()A.魅B.力C.大D.庆8.下面各图是圆柱的展开图的是()A.B.C.D.9.某正方体的平面展开图如图所示,这个正方体可能是下面四个选项中的()A.B.C.D.10.下面图形中,以直线为轴旋转一周,可以得到圆柱体的是()A.B.C.D.二.填空题11.如果一个大正方体的体积是小正方体体积的27倍,那么这个大正方体的表面积是小正方体表面积的倍.12.观察如图所示的长方体,用符号(“∥”或“⊥”)表示下列两棱的位置关系:AD BC,AB AA,AB C1D1.113.有一个六个面分别标上数字1、2、3、4、5、6的正方体,甲、乙、丙三位同学从不同的角度观察的结果如图所示.如果记2的对面的数字为m,3的对面的数字为n,则方程m x+1=n的解x满足k<x<k+1,k为整数,则k=.14.如图,三个大小相同的球恰好放在一个圆柱形盒子里(球的半径为R时,球的体积为V=),若圆柱的容积为300π,则三个球的体积之和为.(结果保留π)15.如图:已知小正方形的面积是16平方厘米,则圆的面积是平方厘米.三.解答题16.如图、把一个圆分成四个扇形,求出四个扇形的圆心角(按照从大到小排序).17.小明将一个底面为正方形,高为n的无盖纸盒展开,如图(a)所示.(1)请你计算图(a)所示的无盖纸盒的表面展开图的面积S1;(2)将阴影部分剪拼成一个长方形,如图(b)所示,请你计算该长方形的面积S2.(3)比较(1)(2)的结果,你得出什么结论?18.学习《乘法公式》时可以发现:用两种不同的方法表示同一个图形的面积,可以得到一个等式,进而可以利用得到的等式解决问题.(1)如图1,是由边长为a、b的正方形和长为a、宽为b的长方形拼成的大长方形,由图1可得等式:;(2)知识迁移:①如图2,是用2个小正方体和6个小长方体拼成的一个大正方体,类比(1),用不同的方法表示这个大正方体的体积,可得等式:;②已知a+b=7,a2b=48,ab2=36,利用①中所得等式,求代数式a3+b3的值.19.冰融化成水后,体积减少,现有一块冰,融化成水后体积为180cm3.(1)这块冰的体积是多少?(2)有一种饮料瓶,瓶身是圆柱形(不包括瓶颈),如果把融化后的180cm3的水倒人瓶子,瓶颈向上正放时(如图①)水面高度是20cm,瓶颈向下倒放时(如图②)空余部分的高度是4cm,求饮料瓶的容积是多少毫升?(3)如果把融化后的180cm3的水倒入大圆柱形空杯中,大空杯底面积36.28cm2.现把一个圆柱形小杯放入大杯内,小杯底面半径2cm,高6cm.通过计算判断杯内的水是否会流入小杯内,如果流入小杯,求小杯内水面高度;如果没流入小杯,求此时大杯内水面高度.(说明:大杯的高足够高;小杯放入大杯后,假设底面重合)参考答案与试题解析一.选择题1.【解答】解:圆锥是锥体,底面是圆形的,因此选项C中的几何体符合题意,故选:C.2.【解答】解;由于面与面相交成线,前后平行,上下面平行,可得截面的对边是平行的,因此是平行四边形,故选:B.3.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“培”与面“爱”相对.故选:B.4.【解答】解:A、能折叠成正方体,故此选项符合题意;B、出现了“凹”字格,不能折叠成正方体,故此选项不符合题意;C、折叠后有两个面重合,不能折叠成正方体,故此选项不符合题意;D、出现了“田”字格,不能折成正方体,故此选项不符合题意.故选:A.5.【解答】解:观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2020÷4=505,∴滚动第2020次后与第一个相同,∴朝下的数字是3的对面4,故选:B.6.【解答】解:选项中的四个几何体的名称分别为:圆柱,圆锥,四棱柱,四棱锥,故选:D.7.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“力”是相对面,“魅”与“大”是相对面,“创”与“庆”是相对面.故选:D.8.【解答】解:由图可知,该圆柱底面直径为6,高为4,所以该圆柱的底面周长(圆柱侧面展开得到的长方形的长)为:6×3.14=18.84,故选:C.9.【解答】解:根据题意及图示经过折叠后符合只有A.故选:A.10.【解答】解:A、以直线为轴旋转一周可以得到圆锥,故此选项不合题意;B、以直线为轴旋转一周可以得到两个圆锥,故此选项不合题意;C、以直线为轴旋转一周可以得到圆柱,故此选项符合题意;D、以直线为轴旋转一周可以得到球,故此选项不合题意;故选:C.二.填空题11.【解答】解:设小正方体的棱长为a,∵大正方体的体积是小正方体体积的27倍,∴大正方体的棱长是小正方体棱长的3倍,为3a,∴小正方体的表面积是6a2,大正方体的表面积是(3a)2×6=54a2,∵54a2÷6a2=9然后进行比较即可.∴这个大正方体的表面积是小正方体表面积的9倍,故答案为:9.12.【解答】解:在平面A﹣B﹣C﹣D中,直线AD、BC无公共点,因此AD∥BC,在平面A﹣B﹣A1﹣B1中,直线AB、AA⊥相交成直角,因此AB⊥AA1,AB和C1D1是异面直线,根据异面直线的位置关系可得AB∥C1D1,故答案为:∥,⊥,∥.13.【解答】解:从图可以看出2和6、1、3、2都相邻,所以2的对面只能是4,即m=43和1、2、5、3相邻,那么3的对面是6,即n=6,∵m x+1=n,∴4x+1=6,∴1<x+1<2,∵k<x<k+1,k为整数,∴k=0.故答案为:0.14.【解答】解:设球的半径为r,根据题意得:三个球的体积之和=3×πr3=4πr3,圆柱体盒子容积=πr26r=6πr3,=,300π×=200π.答:三个球的体积之和是200π.故答案为:200π.15.【解答】解:因为小正方形的面积是16平方厘米,所以小正方形的边长是4厘米,即圆的半径是4厘米,所以S=πr2=16π(平方厘米)≈50.24(平方厘米).三.解答题16.【解答】解:因为一个圆周角为360°,所以分成的四个扇形的圆心角分别是:360°×40%=144°360°×25%=90°360°×20%=72°360°×15%=54°17.【解答】解:(1)无盖纸盒的表面展开图的面积S1=(3m)2﹣4n2=9m2﹣4n2;(2)长方形的长是:3m+2n,宽是:3m﹣2n,∴长方形的面积S2=(3m+2n)(3m﹣2n);(3)由题可得,9m2﹣4n2=(3m+2n)(3m﹣2n).18.【解答】解:(1)如图1,整体上长方形的面积为(a+b)(2a+b),组成大长方形的六部分的面积和为a2+a2+ab+ab+ab+b2=2a2+3ab+b2,因此有(a+b)(2a+b)=2a2+3ab+b2,故答案为:(a+b)(2a+b)=2a2+3ab+b2;(2)①整体上大正方体的体积为(a+b)3,组成大正方体的2个小正方体和6个小长方体的体积的和为a3+3a2b+3ab2+b3,因此有,(a+b)3=a3+3a2b+3ab2+b3,故答案为:(a+b)3=a3+3a2b+3ab2+b3.②由(a+b)3=a3+3a2b+3ab2+b3得4.2直线线段射线拔高拓展训练一、选择题1.图中直线PQ、射线AB、线段MN能相交的是A. B. C. D.2.下列语句:其中正确的个数是直线AB与直线BA是同一条直线;射线AB与射线BA是同一条射线;两点确定一条直线;经过一点有且只有一条直线与已知直线平行;经过一点有且只有一条直线与已知直线垂直;两点之间的线段叫做两点之间的距离.A. 3B. 4C. 5D. 63.下列说法正确的个数有两点确定一条直线;反向延长线段AB可以得到射线AB;两个数比较大小,绝对值大的反而小;整式包括单项式和多项式.A. 3个B. 2个C. 1个D. 0个4.下列四个说法:线段AB是点A与点B之间的距离;射线AB与射线BA表示同一条射线;角是由两条有公共端点的射线组成的;直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.其中正确的有.A. 1个B. 2个C. 3个D. 4个5.下列说法正确的是延长直线AB至C;延长射线OA;延长线段AB;反向延长射线EF.A. B. C. D.6.如图所示,关于图中线段、射线和直线的条数,下列说法中正确的是.7. A. 5条线段,3条射线,1条直线 B. 3条线段,1条射线,1条直线C. 3条线段,2条射线,1条直线D. 3条线段,3条射线,1条直线8.下列各图中所给的线段、射线、直线能相交的是A. B. C. D9.下列说法中正确的有.过两点有且只有一条直线;连接两点的线段叫两点的距离;两点之间线段最短;若,则点B是AC的中点;把一个角分成两个角的射线叫角的平分线;直线l经过点A,那么点A 在直线l上.A. 2个B. 3个C. 4个D. 5个10.下列说法中,正确的有两条射线组成的图形叫角两点之间,直线最短;同角或等角的余角相等;若,则点B是线段AC的中点.A. 1个B. 2个C. 3个D. 4个11.下列说法:反向延长射线AB;几个数的乘积为负数,则其中负因数的个数是奇数;经过两点,有且只有一条直线;若线段AM等于线段BM,则点M是线段AB的中点;连接两点的线段叫做这两点之间的距离;射线AB 和射线BA表示同一条射线;射线a比直线b短。
初一数学几何试题及答案一、选择题(每题3分,共30分)1. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 任意三角形D. 等腰梯形答案:B2. 一个角的补角是它的余角的三倍,这个角的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:A3. 如果一个多边形的内角和是900°,那么这个多边形有多少条边?A. 5B. 6C. 7D. 8答案:C4. 下列哪个选项是正确的比例关系?A. 2:3 = 6:9B. 3:4 = 6:8C. 4:5 = 8:10D. 5:6 = 10:12答案:C5. 一个直角三角形的两个直角边长分别是3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A6. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是多少?A. 16B. 17C. 18D. 19答案:C7. 一个圆的半径是4,那么它的面积是多少?B. 32πC. 64πD. 100π答案:C8. 如果一个圆的直径增加一倍,那么它的面积会增加多少倍?A. 2倍B. 4倍C. 8倍D. 16倍答案:B9. 一个扇形的圆心角是60°,半径是6,那么它的面积是多少?A. 18πB. 9πD. 3π答案:B10. 下列哪个图形是中心对称图形?A. 等边三角形B. 等腰梯形C. 矩形D. 平行四边形答案:C二、填空题(每题3分,共30分)11. 一个角的补角是120°,那么这个角的度数是______。
答案:60°12. 如果一个多边形的外角和是360°,那么这个多边形的边数是______。
答案:任意13. 一个等腰三角形的顶角是70°,那么它的底角是______。
答案:55°14. 一个直角三角形的两个直角边长分别是6和8,那么斜边的长度是______。
答案:1015. 一个圆的半径是5,那么它的周长是______。
几何初步及三角形相关计算复习考点攻略考点一直线、射线、线段相关概念和性质1.直线的性质(1)两条直线相交.只有一个交点;(2)经过两点有且只有一条直线.即两点确定一条直线;(3)直线的基本事实:经过两点有且只有一条直线.2.线段的性质:两点确定一条直线.两点之间.线段最短.两点间线段的长度叫两点间的距离.3.线段的中点性质:若C是线段AB中点.则AC=BC=12AB;AB=2AC=2BC.4.两条直线的位置关系在同一平面内.两条直线只有两种位置关系:平行和相交.5.垂线的性质(1)两条直线相交所构成的四个角中有一个角是直角.则这两条直线互相垂直.其中一条直线叫做另一条直线的垂线;(2)①经过一点有且只有一条直线与已知直线垂直;②直线外一点与直线上各点连接的所有线段中.垂线段最短.6.点到直线的距离:从直线外一点向已知直线作垂线.这一点和垂足之间线段的长度叫做点到直线的距离.7. 角:有公共端点的两条射线组成的图形.8.角平分线(1)定义:在角的内部.以角的顶点为端点把这个角分成两个相等的角的射线(2)角平分线的性质:①若OC是∠AOB的平分线.则∠AOC=∠BOC=12∠AOB.∠AOB=2∠AOC =2∠BOC.②角平分线上的点到角两边的距离相等。
9.度、分、秒的运算方法1°=60′.1′=60″.1°=3600″.1周角=2平角=4直角=360°.10.余角和补角(1)余角:∠1+∠2=90°⇔∠1与∠2互为余角;(2)补角:∠1+∠2=180°⇔∠1与∠2互为补角.(3)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.11.方向角和方位角在描述方位角时.一般应先说北或南.再说偏西或偏东多少度.而不说成东偏北(南)多少度或西偏北(南)多少度.当方向角在45°方向上时.又常常说成东南、东北、西南、西北方向.【例1】如图.在数轴上有A、B、C、D四个整数点(即各点均表示整数).且2AB=BC=3CD.若A、D两点表示的数分别为-5和6.且AC的中点为E.BD的中点为M.BC之间距点B的距离为13BC的点N.则该数轴的原点为A.点E B.点FC.点M D.点N【例2】如图.∠AOB=180°.∠BOC=80°.OD平分∠AOC.∠DOE=3∠COE.求∠BOE.【例3】如图.要修建一条公路.从A村沿北偏东75°方向到B村.从B村沿北偏西25°方向到C 村.若要保持公路CE与AB的方向一致.则∠ECB的度数为A.80°B.90°C.100°D.105°【例4】计算:18°30′=__________°考点二立体图形1.常见的立体图形有:球、柱体和锥体.圆柱和棱柱的区别:圆柱的底面是圆.棱柱的底面是多边形;圆柱的侧面是曲面.棱柱的侧面是四边形;圆锥和棱锥的区别:圆锥的底面是圆.侧面是曲面;棱锥的底面是多边形.侧面是三角形.2.点动成线.线动成面.面动成体.线没有粗细.点没有大小.3.设立体图形的面数为F.顶点数为V.棱数为E.则F+V-E=2.4.正方体的平面展开图有如下11种类型:【例5】如图是一个正方体包装盒的表面积展开图.若在其中的三个正方形A、B、C内分别填上适当的数.使得将这个表面展开图沿虚线折成正方体后.相对面上的两数互为相反数.则填在A、B、C内的三个数依次为A.0.-2.1 B.0.1.2C.1.0.-2 D.-2.0.1考点三三角形的基本概念(1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
初一数学能力测试题(8)
班级___________姓名____________
一、填空题
1、如果∠A =45°,那么∠A 的余角等于______;补角等于_________
2、如图①,直线a 、b 被直线c 所截(即直线c 与直线a 、b 都相交),已知a ∥b ,若∠1=120°,则∠2的度数=__________,若∠1=3∠2,则∠1的度数=___________;如图②中,已知a ∥b ,且∠1+2∠2=1500,则∠1+∠2=_________0
3、推理填空,如图③,根据图形填空 ∵∠B =∠______;
∴AB ∥CD (________________________); ∵∠DGF =______;
∴CD ∥EF (________________________);
∵AB ∥EF ;
∴∠B +______=180°(________________________); 4、若一个角的余角等于它的补角的
5
1
,则这个角的余角等于__________ 5、如图④中,已知OC ⊥OD ,直线经过点O ,则∠AOC —∠BOD=_________0, 若∠AOC :∠BOD=4:1,则∠BOC=__________0
6、中国是一个人口总数为1295330000人,国土面积为9596960千米 2
的大国。
梵帝冈是
世界上最小的国家,它的面积仅有0.44千米2
,相当于天安门广场的面积。
根据这段材料,回答:
⑴9596960千米 2
是__________(精确数还是近似数),在报刊等媒体中常说:我国的国
土是960万平方千米。
近似数960万平方千米是由9596960千米 2
精确到__________位得到的,它的有效数字是__________。
⑵把我国的人口数写成1.3×109
人,它精确到__________位,有__________个有效数字,若把中国的人口数用3个有效数字表示,可写成__________。
⑶梵帝冈那真是大小了?假若我们把梵帝冈的土地看成是一个正方形,平时我们做操时每人需占用2平方米,那梵帝冈能同时容纳__________人做操。
⑷梵帝冈国土面积的百万分之一有多大?相当于______的面积。
A .一间教室 B .一块黑板 C . 一本数学课本 D .一张讲桌
O C
D
A 如图④
7、在生活中人们常用“细如发丝”来形容物体非常非常微小,自从扫描隧道显微镜发明以后,世界上便诞生了一门新学科,这就是“纳米技术”。
纳米是一种长度单位,它用来表示微小的长度,1纳米是1微米的千分之一,1纳米是1米的亿分之一,1纳米相当于1根头发丝的六百万分之一。
VCD 光碟是一个圆形薄片,它的两面有用激光刻成的小凹坑,坑的宽度只有0.4微米。
阅读这段材料后回答问题: ⑴1纳米=__________米;1微米=__________米;
⑵这种小凹坑的宽度有__________纳米,1根头发丝约有________纳米。
8、观察图形,回答问题
⑴物体A 的重量精确到1千克是______千克,若精确到0.1千克约是______千克。
⑵线段AB 的长度精确到10厘米是______厘米,有______个有效数字。
④某班在组织学生议一议:测量1张纸大约有多厚。
出现了以下四种观点,
A 直接用三角尺测量1张纸的厚度
B 先用三角尺测量同类型的2张纸的厚度
C 先用三角尺测量同类型的50张纸的厚度
D 先用三角尺测量同类型的1000张纸的厚度 你认为较合理且可行的观点是______ 二、选择题
1、如果一个角的补角是150°,那么这个角的余角的度数是( ) A 30° B 60° C 90° D 120°
2、如图2:已知AB ∥CD ,∠B=400,∠D=500,则∠O 等于( ) A 、800 B 、900 C 、1000 D 、1200
3、如图3:已知AB ∥CD ,∠B=1200,∠D=1500,则∠O 等于( )
A 、500
B 、600
C 、800
D 、900
4、如图4:已知AB ∥CD ,∠B=600,∠D=200,则∠O 等于( )
A 、300
B 、400
C 、500
D 、600
A B C D O
B A O
A B
B C D
5、已知∠1和∠2互补,且∠1>∠2,那么∠2与
2
1
(∠1—∠2)的关系是( ) A 、互余 B 、互补 C 、和为450 D 、差为22.50 6、由四舍五入法得到的近似数3.45亿精确到( ) A 、百分位 B 、亿位 C 、千万位 D 、百万位 7、下列各个数字属于准确数的是( )
A 、我国有31个省、市、自治区
B 、直径10cm 的圆的周长是31.5cm
C 、一只没洗干净的手,约带有各种细菌4亿个
D 、男子100米短跑的世界纪录是9.84秒
8、由四舍五入法得到的近似数3.00万( )
A 、精确到万位,有1个有效数字
B 、精确到个位,有1个有效数字
C 、精确到百分位,有5个有效数字
D 、精确到百位,有3个有效数字 三、解答下列各题
1、如图,在四边形ABCD 中,已知AB ∥CD ,∠B =60°,你能求出哪些角的度数?为什么?你能求出∠A 的度数吗?
2、如图,在四边形ABCD 中,已知∠B =60°,∠C =2∠B ,由这些条件你能判断哪两条直线平行?说说你的理由。
3、如图,已知DC ⊥AC ,AB ∥CD ,∠1与∠B 互余,
⑴ ∠DCB +∠D =__________; ⑵ AD 与BC 平行吗?为什么?
A B C
D A B
C D A B C D 1
4、如图,∠1=∠2,能判断AB ∥DF 吗?为什么? 若再添加条件:∠1=
21∠ABD ,∠2=2
1
∠BDF ;你能说明AB ∥DF 的理由吗?这时候 BC ∥DE 吗?为什么?
5、如图,MN 、EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠2
(1)用尺规作图作出光线BC 经镜面EF 反射后的反射光线CD ; (2)试判断
6、计算机存储容量的基本单位是字节,用b 表示,计算机中一般用Kb (千字节)或Mb
(兆字节)或Gb (吉字节)作为存储容量的计量单位,它们之间的关系为b Kb 10
21=,
Kb Mb 1021=,Mb Gb 1021=。
学校机房服务器的硬盘存储容量为40Gb ,它相当于多
少Kb ?如果1Mb 可以存储汉字50万字,若平均每本书20万字,问学校机房服务器总共可以存储多少本书(结果用科学计数法表示,并保留三个有效数字)
A B C 1 E
D F 2。