弹塑性波与结构动力学-第二章
- 格式:ppt
- 大小:923.50 KB
- 文档页数:20
弹塑性波与冲击动力学-第二章2-1材料坐标和空间坐标的连续介质力学的基本出发点之一,不是从微观角度考虑物体的真实材料结构,而是从宏观角度将物体视为连续粒子系统,也就是说,将物体视为一组连续粒子。
每个粒子在空间中占据一定的空间位置,不同的粒子在不同的时间占据不同的空间位置。
配置:在给定时间内粒子在物体中的位置排列。
如何描述粒子运动?定义坐标系(1)粒子命名(为了区分不同的粒子),例如,xi(a,b,c) (2)描述了xi被粒子占据的空间位置。
I=1,一维;在连续介质力学中,经常使用两种观点和方法来研究介质的运动:拉格朗日法和欧拉法。
相应地,当研究杆的运动时,应该首先选择坐标系。
一般来说,有两种坐标系:拉格朗日坐标(即物质坐标,用介质粒子流来检验)和欧拉坐标(即空间坐标,用固定的空间位置来检验)。
拉格朗日描述(方法):当介质中的固定粒子观察物质的运动时,研究的是给定粒子上各种物理量随时间的变化,以及这些量从一个粒子到另一个粒子的变化。
这种描述介质运动的方法称为拉格朗日描述法,也称为按需法。
欧拉描述(方法):观察物质在固定空间点的运动。
所研究的是在给定空间点不同时间到达该点的不同粒子的各种物理量随时间的变化,以及这些物理量从一个空间点变化到另一个空间点时的变化。
这种描述介质运动的方法称为欧拉描述法,也称为局部法。
拉格朗日坐标:为了识别运动物体的粒子,一组数字(a,b,c)被用作其标记,不同的粒子由不同的数字(a,b,c)表示。
这组数字(a,b,c)被称为拉格朗日坐标(或物质坐标、卫星坐标)。
拉格朗日记法:t=t0位置,欧拉坐标:为了表示物体粒子在不同时间移动到空间中的一个位置,该位置由一组固定在空间中的坐标表示。
这组坐标称为欧拉坐标(或空间坐标)。
两种方法的例子如下:城市公共交通部门使用两种方法来计算乘客量:①在每辆公共汽车上设置一个记录器来记录在不同时间(站)上下车的乘客数量(采用拉格朗日法,即跟随体法);(2)在每个车站设置一个记录仪,记录不同时间进出车站的车辆数量(欧拉法,即当地法)。
εij第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
解:在右图示单元体上建立xoy 坐标,则知σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定) 代入材力有关公式得:3030cos 2sin 22210410413cos 602sin 6073222226.768 6.77()104sin 2cos 2sin 602cos 60223132 3.598 3.60()22x yx yxy x y xy MPa MPa σσσσσατασστατα+-=+----+=++=--⨯+⨯=----+=⋅+=⋅-=-⨯-⨯=--代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +23030()cos 2sin 22210410413cos 602sin 6073222226.768 6.77()104sin 2cos 2sin 602cos 60222132 3.598 3.60()22x yx yxyx y xy MPa MPa s ss ss a tas s t a t a +-=++---+=++=--??=----+=-?=-?=??由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A z z A Aγσγ⋅⋅===⋅; 所以离下端为z 处的任意一点c 的线应变εz 为:δy题图1-3τxyx 30°10n24xO10yTτ30°δ30°zz zEEσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22zzzzz z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆=== ;(W=γAl )2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
第二章 习题解答2-1解:已知 0,0,===-==y x xy y xf f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂xy y yxx x y yx τστσ23()()⎩⎨⎧++s xy y s yx x l m m l σστστσ 有:lq t x -=代入(*4理、几何方程得:E x u x ==∂∂ε11E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。
综合1)~4),。
q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。
2)验证相容方程:0)(2=+∇y x σσ 亦满足。
3)验证应力边界条件: i) 主要边界:()0,2=±=h y yx yτσ满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。
2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y xυσσ12即:2222 2-4、x, y n l σσ2==2l 应力主向成∴l σn3-3、解: 1由x=0得: 2由 得: Fx Ex Cx Bx Ax y ++++=∴注:公式中已略去ϕ中与应力分量无关的一次项和常数项。
弹性与塑性力学第2-3章习题答案(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章(曾海斌)物体上某点的应力张量σij 为σij =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1003100031001000000(应力单位) 求出:(a )面积单位上应力矢量的大小,该面元上的法线矢量为n =(1/2,1/2,1/2);(b )应力主轴的方位; (c )主应力的大小; (d )八面体应力的大小; (e )最大剪应力的大小。
解答:(a)利用式()计算应力矢量的分量nT i ,得n T 1=σ1j n j =σ11n 1+σ12n 2 +σ13n 3 = 0 ;同样 n T 2= j n j = nT 3=σ3j n j = 所以,应力矢量nT 的大小为=nT [(nT 1 )2+(nT 2 )2+(nT 3)2]1/2=(b)(c)特征方程:σ3—I 1σ2 + I 2σ—I 3=0其中I 1 =σij 的对角项之和、I 2 =σij 的对角项余子式之和、I 3 =σij 的行列式。
从一个三次方程的根的特征性可证明: I 1 =σ1+σ2+σ3 I 2=σ1σ2+σ2σ3+σ3σ1 I 3=σ1σ2σ3其中得,σ1=400、σ2=σ3=0 是特征方程的根。
将σ1、σ2和σ3分别代入(),并使用恒等式n 12+ n 22 + n 32=1 可决定对应于主应力每个值的单位法线n i 的分量(n 1 、n 2 、n 3): n i (1)=(0, ±,±) n i (2)=(0, ,±) n i (3)=(±1, 0,0)注意主方向2和3不是唯一的,可以选用与轴1正交的任何两个相互垂直的轴。
(d )由式(),可算 σotc =1/3(0+100+300)=τotc =1/3(90000+40000+10000+6*30000) 1/2=(e) 已经求得σ1=400、σ2=σ3=0,则有()给出的最大剪应力为τmax =200 (曾海斌)对于给定的应力张量σij ,求出主应力以及它们相应的主方向。