LTEA的载波聚合技术.ppt
- 格式:ppt
- 大小:1021.96 KB
- 文档页数:36
L T E的载波聚合技术人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必然选择。
什么是载波聚合?简单一点说,就是把零碎的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率。
我们先来看看全球CA发展历程。
1)2013年,韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。
LGU+一个月后跟进。
2)2013年11月,英国运营商EE宣布完成inter-band 40 MHz载波聚合,理论速率可达300Mpbs。
3)2013年12月,澳大利亚运营商Optus首次完成在TD-LTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
2014年,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不断演进,相信未来还有更多CC的载波聚合。
当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在2014年9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intra-band 和inter-band载波聚合,其中intra-band载波聚合又分为连续(contiguous)和非连续(non-contiguous)。
对于intra-band CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
对于intra-band 非连续载波聚合,该间隔为一个或多个GAP(s)。
3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re-10到Re-12的定义历程。
3GPP Rel-10定义了bands 1 (FDD) 和band 40 (TDD)的intra-band 连续载波,分别命名为CA_1C 和CA_40C。
L T E的载波聚合技术人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必然选择。
什么是载波聚合简单一点说,就是把零碎的LTE 频段合并成一个“虚拟”的更宽的频段,以提高数据速率。
我们先来看看全球CA发展历程。
1)2013年,韩国SK电信首次商用CA,其将800MHZ频段和频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。
LGU+一个月后跟进。
2)2013年11月,英国运营商EE宣布完成inter-band 40 MHz载波聚合,理论速率可达300Mpbs。
3)2013年12月,澳大利亚运营商Optus首次完成在TD-LTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
2014年,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不断演进,相信未来还有更多CC的载波聚合。
当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在2014年9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intra-band 和inter-band载波聚合,其中intra-band载波聚合又分为连续(contiguous)和非连续(non-contiguous)。
对于intra-band CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
对于intra-band 非连续载波聚合,该间隔为一个或多个GAP(s)。
3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re-10到Re-12的定义历程。
3GPP Rel-10定义了bands 1 (FDD) 和band 40 (TDD)的intra-band 连续载波,分别命名为CA_1C 和CA_40C。
LTE的载波聚合技术人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必然选择。
什么是载波聚合?简单一点说,就是把零碎的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率。
我们先来看看全球CA发展历程。
1)2013年,韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。
LGU+一个月后跟进。
2)2013年11月,英国运营商EE宣布完成inter-band 40 MHz载波聚合,理论速率可达300Mpbs。
3)2013年12月,澳大利亚运营商Optus首次完成在TD-LTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
2014年,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不断演进,相信未来还有更多CC的载波聚合。
当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在2014年9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intra-band 和 inter-band载波聚合,其中intra-band 载波聚合又分为连续(contiguous)和非连续(non-contiguous)。
对于intra-band CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
对于intra-band 非连续载波聚合,该间隔为一个或多个GAP(s)。
3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re-10到Re-12的定义历程。
3GPP Rel-10定义了bands 1 (FDD) 和 band 40 (TDD)的intra-band 连续载波,分别命名为CA_1C 和CA_40C。
LTE的载波聚合技术人们对数据速率的要求愈来愈高,载波聚合(CarrierAggregation,CA)成为营运商面向将来的必定选择。
什么是载波聚合?简单调点说,就是把琐碎的LTE频段归并成一个“虚构”的更宽的频段,以提升数据速率。
我们先来看看全世界CA发展历程。
1)2013年,韩国SK电信初次商用CA,其将800MHZ频段和频段聚合为一个20MHZ频段,以获取下行峰值速率150Mbps。
LGU+一个月后跟进。
2)2013年11月,英国营运商EE宣告达成inter-band40MHz 载波聚合,理论速率可达300Mpbs。
3)2013年12月,澳大利亚营运商Optus初次达成在TD-LTE上载波聚合。
紧随后来,日本软银、香港CSL、澳大利亚Telstra等也接踵部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
2014年,韩国SK电信、LGU+成功演示了3载波聚合。
跟着技术的不停演进,相信将来还有更多CC的载波聚合。
自然还包含TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在2014年9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了求情楚载波聚合,我们第一来认识一下LTE的频段分派。
载波聚合的分类载波聚合主要分为intra-band 和inter-band 载波聚合,此中intra-band载波聚合又分为连续(contiguous)和非连续(non-contiguous)。
对于intra-bandCA(contiguous)中心频点间隔要知足300kHz的整数倍,即Nx300kHz。
对于intra-band非连续载波聚合,该间隔为一个或多个GAP(s)。
3GPP对于载波聚合的定义下列图是3GPP对于载波聚合从Re-10到Re-12的定义历程。
3GPPRel-10定义了bands1(FDD)和band40(TDD)的intra-band连续载波,分别命名为CA_1C和CA_40C。
LTE的载波聚合技术之青柳念文创作人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必定选择.什么是载波聚合?简单一点说,就是把零星的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率.我们先来看看全球CA发展过程.1),韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps.LGU+一个月后跟进.2)11月,英国运营商EE宣布完成interband 40 MHz载波聚合,实际速率可达300Mpbs.3)12月,澳大利亚运营商Optus首次完成在TDLTE上载波聚合.紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继安排或商用载波聚合.刚开端,载波聚合安排仅限于2载波.,韩国SK电信、LGU+成功演示了3载波聚合.随着技术的不竭演进,相信未来还有更多CC的载波聚合.当然还包含TDD和FDD、LTE和WiFi之间的载波聚合.中国电信在9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑.为了说清楚载波聚合,我们首先来懂得一下LTE的频段分配.载波聚合的分类载波聚合主要分为intraband 和 interband载波聚合,其中intraband载波聚合又分为持续(contiguous)和非持续(noncontiguous).对于intraband CA (contiguous)中心频点间隔要知足300kHz的整数倍,即Nx300 kHz.对于intraband 非持续载波聚合,该间隔为一个或多个GAP(s).3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re10到Re12的定义过程.3GPP Rel10定义了bands 1 (FDD) 和 band 40 (TDD)的intraband 持续载波,分别定名为CA_1C 和CA_40C.同时还定义band1和5的interband载波聚合,定名为CA_1A5A. 3GPP Rel11定义了更多CA配置,如下图:3GPP Rel12包含了TDD和FDD的载波聚合,同时还定义了支持上行2CC和下行3CC载波聚合等等.持续CA带宽等级和呵护带宽对于频段内持续载波聚合,CA 带宽等级根据其支持的CC 数量和物理资源块(Physical Resource Blocks ,PRBs)) 的数量来定义.CA 带宽等级暗示最大ATBC和最大CC 数量.ATBC,即Aggregated Transmission Bandwidth Configuration,指聚合的PRB的总数量.呵护带宽(Guard bands)专门定义于持续CA,指持续CC之间需有一定的呵护带宽.下表列出了CA带宽等级和相应呵护带宽.别的,对于带内持续CA,PCell和SCell频段相同,频点间隔为300kHz整数倍,且知足如下公式:大白了上面关于带宽等级的定义,我们就很容易懂得载波聚合的定名规则了.比方,以CA_1C 为例,它暗示在band1上的intraband持续载波聚合,2个CC,带宽等级为C,即最大200 RBs.对应于带宽等级为C,每CC的RB分配也可以是分歧的组合,不过范围在100200 RBs之间.带内持续intraband(contiguous)载波聚合有两种方案:● 一种能够的方案是F1 和F2 小区位置相同而且重叠,提供几乎完全相同的覆盖范围.两层都提供重复的覆盖,并在两层都支持移动性.相似的方案是F1 和F2 位于拥有相似途径损失配置文件的同一频段上.● 另外一方案是F1 和F2 位置相同而实现分歧覆盖范围:F2 天线导向至F1 的小区鸿沟或者F1 覆盖浮泛中,以便改善覆盖范围和/或提高小区边沿吞吐量.频段间非持续● 当F1(较低频率)提供广覆盖而且F2 上的RRH F2(较高频率)用于改善热点上的吞吐量时,可以思索射频拉远(RRH) 方案.移动性根据F1 覆盖来执行.F1 和F2 处于分歧频段时思索近似的方案.● 在HetNet 方案中,有望看到许多小型小区和中继在各种频段上工作.PCell / SCell / Serving Cell 概念每一个CC对应一个独立的Cell.配置了CA的UE与1个PCell和至多4个SCell相连.某UE的PCell和所有SCell 组成了该UE的Serving Cell集合.Serving Cell可指代PCell也可以指代SCell.PCell是UE初始接入时的cell,负责与UE之间的RRC通信.SCell是在RRC重配置时添加的,用于提供额外的无线资源.PCell是在毗连建立(connection establishment)时确定的;SCell是在初始平安激活流程(initial security activation procedure)之后,通过RRC毗连重配置消息RRCConnectionReconfiguration添加/修改/释放的.每一个CC都有一个对应的索引,primary CC索引固定为0,而每一个UE的secondary CC索引是通过UE特定的RRC 信令发给UE的.某个UE聚合的CC通常来自同一个eNodeB且这些CC是同步的.当配置了CA的UE在所有的Serving Cell内使用相同的CRNTI.CA是UE级的特性,分歧的UE能够有分歧的PCell以及Serving Cell集合.Pcell是UE与之通信的主要小区,被定义为用来传输RRC 信令的小区,或者相当于存在物理上行节制信道(PUCCH)的小区,这个信道在一个指定的UE中只能有一个.一个PCell 始终在RRC_CONNECTED 形式中处于活动状态,同时能够有一个或多个SCell 处于活动状态.其他的SCells 仅可在毗连建立后配置为CONNECTED 形式,以提供额外的无线资源.所有PCell 和SCell 统称为服务小区.PCell 和SCell 以此为基础的分量载波分别为主分量载波(PCC) 和辅助分量载波(SCC).● 一个PCell 配有一个物理下行节制信道(PDCCH) 和一个物理上行节制信道(PUCCH).丈量和移动性过程基于PCell随机接入过程在PCell 上停止PCell 不成被去激活.● 一个SCell 能够配有一个物理下行节制信道(PDCCH),也能够不,详细取决于UE 功能.SCell 绝没有PUCCH.SCell 支持以MAC 层为基础的激活/去激活过程,以便UE 节俭电池电量.简单地做个比较:还以上面的运输做类比,PCell相当于主干道,主干道只有一条,不但运输货物,还负责与接纳端停止交流,根据接纳端的才能(UE Capability)以及有多少货物要发(负载)等告诉接纳端要在哪几条干道上收货以及这些干道的基本情况等(PCell负责RRC毗连).SCell 相当于辅干道,只负责运输货物.接纳端需要告诉发货端自己的才能,比方能不克不及同时从多条干道接纳货物,在每条干道上一次能接纳多少货物等(UE Capability).发货端(eNodeB)才好依照对端(UE)的才能调度发货,否则接纳端处理不过来也是白搭!(这里只是以下行为例,UE也能够为发货端).因为分歧的干道还能够运输另外一批货物(其它UE的数据),分歧的货物需要区分开,所以在分歧的干道上传输的同一批货物(属于同一个UE)有一个相同的标识表记标帜(CRNTI).跨载波调度跨载波调度是Release 10 中为UE 引入的可选功能,它可以在UE 才能传输过程中通过RRC 激活.此功能的目标是减少使用了大型小区、小型小区和中继的异构网络(HetNet) 方案中对载波聚合的干扰.跨载波调度仅用于在没有PDCCH 的SCell 上调度资源.负责在跨载波调度上下文中提供调度信息的载波通过下行节制信息(DCI) 中的载波指示符字段(CIF) 指明.此调度也支持HetNet 和分歧错误称配置.激活与去激活为了更好地管理配置了CA的UE的电池消耗,LTE提供了SCell的激活/去激活机制(不支持PCell的激活/去激活).当SCell激活时,UE在该CC内1)发送SRS;2)上报CQI/PMI/RI/PTI;3)检测用于该SCell和在该SCell上传输的PDCCH.当SCell去激活时,UE在该CC内 1)不发送SRS;2)不上报CQI/PMI/RI/PTI;3)不传输上行数据(包含pending 的重传数据);4)不检测用于该SCell和在该SCell上传输的PDCCH;5)可以用于pathloss reference for measurements for uplink power control,但是丈量的频率降低,以便降低功率消耗.重配消息中不带mobility节制信息时,新添加到serving cell的SCell初始为“deactivated”;而原本就在serving cell集合中SCell(未变更或重配置),不改变他们原有的激活状态.重配消息中带mobility节制信息时(例如handover),所有的SCell均为“deactivated”态.UE的激活/去激活机制基于MAC control element和deactivation timers的连系.基于MAC CE的SCell激活/去激活操纵是由eNodeB节制的,基于deactivation timer的SCell激活/去激活操纵是由UE节制.AC CE的格式:LCID为11011,见下图:Bit设置为1,暗示对应的SCell被激活;设置为0,暗示对应的SCell被去激活.每一个SCell有一个deactivation timer,但是对应某个UE的所有SCell,deactivation timer是相同的,并通过sCellDeactivationTimer字段配置(由eNodeB配置).该值可以配置成“infinity”,即去使能基于timer的deactivation.当在deactivation timer指定的时间内,UE没有在某个CC上收到数据或PDCCH消息,则对应的SCell将去激活.这也是UE可以自动将某SCell去激活的唯一情况.当UE在子帧n收到激活饬令时,对应的操纵将在n+8子帧启动.当UE在子帧n收到去激活饬令或某个SCell的deactivation timer超时,除了CSI陈述对应的操纵(停止上报)在n+8子帧完成外,其它操纵必须在n+8子帧内完成.SCell 添加与删除载波聚合新增SCell 无法在RRC 建立时当即激活.因此,RRC 毗连设置过程中没有针对SCell 的配置.SCell 通过RRC 毗连重新配置过程在服务小区集合中添加和删除.请注意,由于LTE 间切换视为RRC 毗连重新配置,SCell“切换”受到支持.SCell添加与删除,涉及A4、A2事件的详细原理和计算公式.SCell添加添加SCell的预置条件基站今朝仅仅支持同一基站的小区作为CA小区,即主辅小区必须属于同一基站.UE接入或者切入后的服务小区即为PCell,要将某小区配置为SCell需知足如下条件:1>UE的CA才能及协议定义的频段组合,支持PCell与该小区之间停止CA;2>该小区与PCell互为邻区;3>该小区与PCell互为CA协同小区;两种SCell添加方式1)附着或切入后基站主动为UE添加SCell2)基站收到添加辅载波的A4陈述后为UE添加两种添加方式都需知足上述配置SCell的3个预置条件,不同仅在邻区关系,邻区关系在网管可配,若为“同覆盖”或“邻区包含本小区”则基站主动添加,其它邻区关系基站会在初始接入下发针对该邻区所在频点的A4丈量,UE上报A4陈述后,基站配置该邻区为UE的SCell.A4事件下发信令添加SCellRRC重配消息配置SCell:SCell删除基站在配置某个邻区为UE的SCell的同时,会下发针对该SCell的A2事件,用来监控SCell的信号质量,当SCell 的信号质量小于A2事件的门限,UE上报A2陈述,基站通过RRC重配通知UE删除该SCell.A2事件下发删除SCell切换Release 10 引入了一个新的丈量事件:事件A6.当相邻小区的强度比SCell强一个偏移量时,便会发生事件A6.对于频段内SCell,此事件没那末有用,因为PCell 和SCell 的强度通常极为相似.然而,对于频段间服务小区,相邻PCell 的强度能够会与服务SCell 的大不相同.根据网络状况(如流量负载分布),切换至事件A6 标识的小区能够会很有利.基站在配置某个邻区为UE的SCell的同时,如果这个SCell有同频邻区,且该邻区与PCell为邻区(非同覆盖关系)、CA协同小区,基站会下发用于SCell更新的A6事件,当邻区信号质量减去SCell信号质量大于A6事件门限,UE上报A6,基站通过RRC重配通知UE删除原SCell 并添加丈量陈述中质量更好的邻区为SCell.A6事件下发更新SCellRRC重配消息携带删除原辅小区、增加新辅小区的配置:。
LTE的载波聚合技术人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必然选择。
什么是载波聚合简单一点说,就是把零碎的LTE 频段合并成一个“虚拟”的更宽的频段,以提高数据速率。
我们先来看看全球CA发展历程。
1)2013年,韩国SK电信首次商用CA,其将800MHZ频段和频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。
LGU+一个月后跟进。
2)2013年11月,英国运营商EE宣布完成inter-band 40 MHz载波聚合,理论速率可达300Mpbs。
3)2013年12月,澳大利亚运营商Optus首次完成在TD-LTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
2014年,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不断演进,相信未来还有更多CC的载波聚合。
当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在2014年9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intra-band 和 inter-band载波聚合,其中intra-band 载波聚合又分为连续(contiguous)和非连续(non-contiguous)。
对于intra-band CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
对于intra-band 非连续载波聚合,该间隔为一个或多个GAP(s)。
3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re-10到Re-12的定义历程。
3GPP Rel-10定义了bands 1 (FDD) 和 band 40 (TDD)的intra-band 连续载波,分别命名为CA_1C 和CA_40C。
LTE的载波聚合技术之袁州冬雪创作人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必定选择.什么是载波聚合?简单一点说,就是把零星的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率.我们先来看看全球CA发展过程.1),韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps.LGU+一个月后跟进.2)11月,英国运营商EE宣布完成interband 40 MHz载波聚合,实际速率可达300Mpbs.3)12月,澳大利亚运营商Optus首次完成在TDLTE上载波聚合.紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继安排或商用载波聚合.刚开端,载波聚合安排仅限于2载波.,韩国SK电信、LGU+成功演示了3载波聚合.随着技术的不竭演进,相信未来还有更多CC的载波聚合.当然还包含TDD和FDD、LTE和WiFi之间的载波聚合.中国电信在9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑.为了说清楚载波聚合,我们首先来懂得一下LTE的频段分配.载波聚合的分类载波聚合主要分为intraband 和 interband载波聚合,其中intraband载波聚合又分为持续(contiguous)和非持续(noncontiguous).对于intraband CA (contiguous)中心频点间隔要知足300kHz的整数倍,即Nx300 kHz.对于intraband 非持续载波聚合,该间隔为一个或多个GAP(s).3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re10到Re12的定义过程.3GPP Rel10定义了bands 1 (FDD) 和 band 40 (TDD)的intraband 持续载波,分别定名为CA_1C 和CA_40C.同时还定义band1和5的interband载波聚合,定名为CA_1A5A. 3GPP Rel11定义了更多CA配置,如下图:3GPP Rel12包含了TDD和FDD的载波聚合,同时还定义了支持上行2CC和下行3CC载波聚合等等.持续CA带宽等级和呵护带宽对于频段内持续载波聚合,CA 带宽等级根据其支持的CC 数量和物理资源块(Physical Resource Blocks ,PRBs)) 的数量来定义.CA 带宽等级暗示最大ATBC和最大CC 数量.ATBC,即Aggregated Transmission Bandwidth Configuration,指聚合的PRB的总数量.呵护带宽(Guard bands)专门定义于持续CA,指持续CC之间需有一定的呵护带宽.下表列出了CA带宽等级和相应呵护带宽.别的,对于带内持续CA,PCell和SCell频段相同,频点间隔为300kHz整数倍,且知足如下公式:大白了上面关于带宽等级的定义,我们就很容易懂得载波聚合的定名规则了.比方,以CA_1C 为例,它暗示在band1上的intraband持续载波聚合,2个CC,带宽等级为C,即最大200 RBs.对应于带宽等级为C,每CC的RB分配也可以是分歧的组合,不过范围在100200 RBs之间.带内持续intraband(contiguous)载波聚合有两种方案:● 一种能够的方案是F1 和F2 小区位置相同而且重叠,提供几乎完全相同的覆盖范围.两层都提供重复的覆盖,并在两层都支持移动性.相似的方案是F1 和F2 位于拥有相似途径损失配置文件的同一频段上.● 另外一方案是F1 和F2 位置相同而实现分歧覆盖范围:F2 天线导向至F1 的小区鸿沟或者F1 覆盖浮泛中,以便改善覆盖范围和/或提高小区边沿吞吐量.频段间非持续● 当F1(较低频率)提供广覆盖而且F2 上的RRH F2(较高频率)用于改善热点上的吞吐量时,可以思索射频拉远(RRH) 方案.移动性根据F1 覆盖来执行.F1 和F2 处于分歧频段时思索近似的方案.● 在HetNet 方案中,有望看到许多小型小区和中继在各种频段上工作.PCell / SCell / Serving Cell 概念每一个CC对应一个独立的Cell.配置了CA的UE与1个PCell和至多4个SCell相连.某UE的PCell和所有SCell 组成了该UE的Serving Cell集合.Serving Cell可指代PCell也可以指代SCell.PCell是UE初始接入时的cell,负责与UE之间的RRC通信.SCell是在RRC重配置时添加的,用于提供额外的无线资源.PCell是在毗连建立(connection establishment)时确定的;SCell是在初始平安激活流程(initial security activation procedure)之后,通过RRC毗连重配置消息RRCConnectionReconfiguration添加/修改/释放的.每一个CC都有一个对应的索引,primary CC索引固定为0,而每一个UE的secondary CC索引是通过UE特定的RRC 信令发给UE的.某个UE聚合的CC通常来自同一个eNodeB且这些CC是同步的.当配置了CA的UE在所有的Serving Cell内使用相同的CRNTI.CA是UE级的特性,分歧的UE能够有分歧的PCell以及Serving Cell集合.Pcell是UE与之通信的主要小区,被定义为用来传输RRC 信令的小区,或者相当于存在物理上行节制信道(PUCCH)的小区,这个信道在一个指定的UE中只能有一个.一个PCell 始终在RRC_CONNECTED 形式中处于活动状态,同时能够有一个或多个SCell 处于活动状态.其他的SCells 仅可在毗连建立后配置为CONNECTED 形式,以提供额外的无线资源.所有PCell 和SCell 统称为服务小区.PCell 和SCell 以此为基础的分量载波分别为主分量载波(PCC) 和辅助分量载波(SCC).● 一个PCell 配有一个物理下行节制信道(PDCCH) 和一个物理上行节制信道(PUCCH).丈量和移动性过程基于PCell随机接入过程在PCell 上停止PCell 不成被去激活.● 一个SCell 能够配有一个物理下行节制信道(PDCCH),也能够不,详细取决于UE 功能.SCell 绝没有PUCCH.SCell 支持以MAC 层为基础的激活/去激活过程,以便UE 节俭电池电量.简单地做个比较:还以上面的运输做类比,PCell相当于主干道,主干道只有一条,不但运输货物,还负责与接纳端停止交流,根据接纳端的才能(UE Capability)以及有多少货物要发(负载)等告诉接纳端要在哪几条干道上收货以及这些干道的基本情况等(PCell负责RRC毗连).SCell 相当于辅干道,只负责运输货物.接纳端需要告诉发货端自己的才能,比方能不克不及同时从多条干道接纳货物,在每条干道上一次能接纳多少货物等(UE Capability).发货端(eNodeB)才好依照对端(UE)的才能调度发货,否则接纳端处理不过来也是白搭!(这里只是以下行为例,UE也能够为发货端).因为分歧的干道还能够运输另外一批货物(其它UE的数据),分歧的货物需要区分开,所以在分歧的干道上传输的同一批货物(属于同一个UE)有一个相同的标识表记标帜(CRNTI).跨载波调度跨载波调度是Release 10 中为UE 引入的可选功能,它可以在UE 才能传输过程中通过RRC 激活.此功能的目标是减少使用了大型小区、小型小区和中继的异构网络(HetNet) 方案中对载波聚合的干扰.跨载波调度仅用于在没有PDCCH 的SCell 上调度资源.负责在跨载波调度上下文中提供调度信息的载波通过下行节制信息(DCI) 中的载波指示符字段(CIF) 指明.此调度也支持HetNet 和分歧错误称配置.激活与去激活为了更好地管理配置了CA的UE的电池消耗,LTE提供了SCell的激活/去激活机制(不支持PCell的激活/去激活).当SCell激活时,UE在该CC内1)发送SRS;2)上报CQI/PMI/RI/PTI;3)检测用于该SCell和在该SCell上传输的PDCCH.当SCell去激活时,UE在该CC内 1)不发送SRS;2)不上报CQI/PMI/RI/PTI;3)不传输上行数据(包含pending 的重传数据);4)不检测用于该SCell和在该SCell上传输的PDCCH;5)可以用于pathloss reference for measurements for uplink power control,但是丈量的频率降低,以便降低功率消耗.重配消息中不带mobility节制信息时,新添加到serving cell的SCell初始为“deactivated”;而原本就在serving cell集合中SCell(未变更或重配置),不改变他们原有的激活状态.重配消息中带mobility节制信息时(例如handover),所有的SCell均为“deactivated”态.UE的激活/去激活机制基于MAC control element和deactivation timers的连系.基于MAC CE的SCell激活/去激活操纵是由eNodeB节制的,基于deactivation timer的SCell激活/去激活操纵是由UE节制.AC CE的格式:LCID为11011,见下图:Bit设置为1,暗示对应的SCell被激活;设置为0,暗示对应的SCell被去激活.每一个SCell有一个deactivation timer,但是对应某个UE的所有SCell,deactivation timer是相同的,并通过sCellDeactivationTimer字段配置(由eNodeB配置).该值可以配置成“infinity”,即去使能基于timer的deactivation.当在deactivation timer指定的时间内,UE没有在某个CC上收到数据或PDCCH消息,则对应的SCell将去激活.这也是UE可以自动将某SCell去激活的唯一情况.当UE在子帧n收到激活饬令时,对应的操纵将在n+8子帧启动.当UE在子帧n收到去激活饬令或某个SCell的deactivation timer超时,除了CSI陈述对应的操纵(停止上报)在n+8子帧完成外,其它操纵必须在n+8子帧内完成.SCell 添加与删除载波聚合新增SCell 无法在RRC 建立时当即激活.因此,RRC 毗连设置过程中没有针对SCell 的配置.SCell 通过RRC 毗连重新配置过程在服务小区集合中添加和删除.请注意,由于LTE 间切换视为RRC 毗连重新配置,SCell“切换”受到支持.SCell添加与删除,涉及A4、A2事件的详细原理和计算公式.SCell添加添加SCell的预置条件基站今朝仅仅支持同一基站的小区作为CA小区,即主辅小区必须属于同一基站.UE接入或者切入后的服务小区即为PCell,要将某小区配置为SCell需知足如下条件:1>UE的CA才能及协议定义的频段组合,支持PCell与该小区之间停止CA;2>该小区与PCell互为邻区;3>该小区与PCell互为CA协同小区;两种SCell添加方式1)附着或切入后基站主动为UE添加SCell2)基站收到添加辅载波的A4陈述后为UE添加两种添加方式都需知足上述配置SCell的3个预置条件,不同仅在邻区关系,邻区关系在网管可配,若为“同覆盖”或“邻区包含本小区”则基站主动添加,其它邻区关系基站会在初始接入下发针对该邻区所在频点的A4丈量,UE上报A4陈述后,基站配置该邻区为UE的SCell.A4事件下发信令添加SCellRRC重配消息配置SCell:SCell删除基站在配置某个邻区为UE的SCell的同时,会下发针对该SCell的A2事件,用来监控SCell的信号质量,当SCell 的信号质量小于A2事件的门限,UE上报A2陈述,基站通过RRC重配通知UE删除该SCell.A2事件下发删除SCell切换Release 10 引入了一个新的丈量事件:事件A6.当相邻小区的强度比SCell强一个偏移量时,便会发生事件A6.对于频段内SCell,此事件没那末有用,因为PCell 和SCell 的强度通常极为相似.然而,对于频段间服务小区,相邻PCell 的强度能够会与服务SCell 的大不相同.根据网络状况(如流量负载分布),切换至事件A6 标识的小区能够会很有利.基站在配置某个邻区为UE的SCell的同时,如果这个SCell有同频邻区,且该邻区与PCell为邻区(非同覆盖关系)、CA协同小区,基站会下发用于SCell更新的A6事件,当邻区信号质量减去SCell信号质量大于A6事件门限,UE上报A6,基站通过RRC重配通知UE删除原SCell 并添加丈量陈述中质量更好的邻区为SCell.A6事件下发更新SCellRRC重配消息携带删除原辅小区、增加新辅小区的配置:。
LTE的载波聚合技术之马矢奏春创作人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的肯定选择.什么是载波聚合?简单一点说,就是把零碎的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率.我们先来看看全球CA发展历程.1),韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps.LGU+一个月后跟进.2)11月,英国运营商EE宣布完成interband 40 MHz载波聚合,理论速率可达300Mpbs.3)12月,澳年夜利亚运营商Optus首次完成在TDLTE上载波聚合.紧随其后,日本软银、香港CSL、澳年夜利亚Telstra等也相继布置或商用载波聚合.刚开始,载波聚合布置仅限于2载波.,韩国SK电信、LGU+胜利演示了3载波聚合.随着技术的不竭演进,相信未来还有更多CC的载波聚合.固然还包括TDD和FDD、LTE和WiFi之间的载波聚合.中国电信在9月胜利演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑.为了说清楚载波聚合,我们首先来了解一下LTE的频段分配.载波聚合的分类载波聚合主要分为intraband 和 interband载波聚合,其中intraband载波聚合又分为连续(contiguous)和非连续(noncontiguous).对intraband CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz.对intraband 非连续载波聚合,该间隔为一个或多个GAP(s).3GPP关于载波聚合的界说下图是3GPP关于载波聚合从Re10到Re12的界说历程.3GPP Rel10界说了bands 1 (FDD) 和 band 40 (TDD)的intraband 连续载波,分别命名为CA_1C 和CA_40C.同时还界说band1和5的interband载波聚合,命名为CA_1A5A.3GPP Rel11界说了更多CA配置,如下图:3GPP Rel12包括了TDD和FDD的载波聚合,同时还界说了支持上行2CC和下行3CC载波聚合等等.连续CA带宽品级和呵护带宽对频段内连续载波聚合,CA 带宽品级根据其支持的CC 数量和物理资源块(Physical Resource Blocks ,PRBs)) 的数量来界说.CA 带宽品级暗示最年夜ATBC和最年夜CC 数量.ATBC,即Aggregated Transmission Bandwidth Configuration,指聚合的PRB的总数量.呵护带宽(Guard bands)专门界说于连续CA,指连续CC之间需有一定的呵护带宽.下表列出了CA带宽品级和相应呵护带宽.另外,对带内连续CA,PCell和SCell频段相同,频点间隔为300kHz整数倍,且满足如下公式:明白了上面关于带宽品级的界说,我们就很容易理解载波聚合的命名规则了.比如,以CA_1C 为例,它暗示在band1上的intraband连续载波聚合,2个CC,带宽品级为C,即最年夜200 RBs.对应于带宽品级为C,每CC的RB分配也可以是分歧的组合,不外范围在100200 RBs之间.带内连续intraband(contiguous)载波聚合有两种方案:● 一种可能的方案是F1 和F2 小区位置相同而且重叠,提供几乎完全相同的覆盖范围.两层都提供重复的覆盖,并在两层都支持移动性.相似的方案是F1 和F2 位于拥有相似路径损失配置文件的同一频段上.● 另一方案是F1 和F2 位置相同而实现分歧覆盖范围:F2 天线导向至F1 的小区鸿沟或者F1 覆盖空洞中,以便改善覆盖范围和/或提高小区边缘吞吐量.频段间非连续● 当F1(较低频率)提供广覆盖而且F2 上的RRH F2(较高频率)用于改善热点上的吞吐量时,可以考虑射频拉远(RRH) 方案.移动性根据F1 覆盖来执行.F1 和F2 处于分歧频段时考虑类似的方案.● 在HetNet 方案中,有望看到许多小型小区和中继在各种频段上工作.PCell / SCell / Serving Cell 概念每个CC对应一个自力的Cell.配置了CA的UE与1个PCell和至多4个SCell相连.某UE的PCell和所有SCell组成了该UE的Serving Cell集合.Serving Cell可指代PCell也可以指代SCell.PCell是UE初始接入时的cell,负责与UE之间的RRC通信.SCell 是在RRC重配置时添加的,用于提供额外的无线资源.PCell是在连接建立(connection establishment)时确定的;SCell是在初始平安激活流程(initial security activation procedure)之后,通过RRC连接重配置消息RRCConnectionReconfiguration添加/修改/释放的.每个CC都有一个对应的索引,primary CC索引固定为0,而每个UE的secondary CC索引是通过UE特定的RRC信令发给UE的.某个UE聚合的CC通常来自同一个eNodeB且这些CC是同步的.当配置了CA的UE在所有的Serving Cell内使用相同的CRNTI. CA是UE级的特性,分歧的UE可能有分歧的PCell以及Serving Cell集合.Pcell是UE与之通信的主要小区,被界说为用来传输RRC信令的小区,或者相当于存在物理上行控制信道(PUCCH)的小区,这个信道在一个指定的UE中只能有一个.一个PCell 始终在RRC_CONNECTED 模式中处于活动状态,同时可能有一个或多个SCell 处于活动状态.其他的SCells 仅可在连接建立后配置为CONNECTED 模式,以提供额外的无线资源.所有PCell 和SCell 统称为服务小区.PCell 和SCell 以此为基础的分量载波分别为主分量载波(PCC) 和辅助分量载波(SCC).● 一个PCell 配有一个物理下行控制信道(PDCCH) 和一个物理上行控制信道(PUCCH).丈量和移动性过程基于PCell随机接入过程在PCell 上进行PCell 不成被去激活.● 一个SCell 可能配有一个物理下行控制信道(PDCCH),也可能不,具体取决于UE 功能.SCell 绝没有PUCCH.SCell 支持以MAC 层为基础的激活/去激活过程,以便UE节省电池电量.简单地做个比力:还以上面的运输做类比,PCell相当于主干道,主干道只有一条,不单运输货物,还负责与接收端进行交流,根据接收真个能力(UE Capability)以及有几多货物要发(负载)等告诉接收端要在哪几条干道上收货以及这些干道的基本情况等(PCell负责RRC连接).SCell相当于辅干道,只负责运输货物.接收端需要告诉发货端自己的能力,比如能不能同时从多条干道接收货物,在每条干道上一次能接收几多货物等(UE Capability).发货端(eNodeB)才好依照对端(UE)的能力调度发货,否则接收端处置不外来也是白费!(这里只是以下行为例,UE也可能为发货端).因为分歧的干道还可能运输另一批货物(其它UE的数据),分歧的货物需要区分开,所以在分歧的干道上传输的同一批货物(属于同一个UE)有一个相同的标识表记标帜(CRNTI).跨载波调度跨载波调度是Release 10 中为UE 引入的可选功能,它可以在UE 能力传输过程中通过RRC 激活.此功能的目的是减少使用了年夜型小区、小型小区和中继的异构网络(HetNet) 方案中对载波聚合的干扰.跨载波调度仅用于在没有PDCCH 的SCell 上调度资源.负责在跨载波调度上下文中提供调度信息的载波通过下行控制信息(DCI) 中的载波指示符字段(CIF) 指明.此调度也支持HetNet 和分歧毛病称配置.激活与去激活为了更好地管理配置了CA的UE的电池消耗,LTE提供了SCell的激活/去激活机制(不支持PCell的激活/去激活).当SCell激活时,UE在该CC内1)发送SRS;2)上报CQI/PMI/RI/PTI;3)检测用于该SCell和在该SCell上传输的PDCCH.当SCell去激活时,UE在该CC内 1)不发送SRS;2)不上报CQI/PMI/RI/PTI;3)不传输上行数据(包括pending的重传数据);4)不检测用于该SCell和在该SCell上传输的PDCCH;5)可以用于pathloss reference for measurements for uplink power control,可是丈量的频率降低,以便降低功率消耗.重配消息中不带mobility控制信息时,新添加到serving cell的SCell初始为“deactivated”;而原本就在serving cell集合中SCell(未变动或重配置),不改变他们原有的激活状态.重配消息中带mobility控制信息时(例如handover),所有的SCell均为“deactivated”态.UE的激活/去激活机制基于MAC control element和deactivation timers的结合.基于MAC CE的SCell激活/去激活把持是由eNodeB控制的,基于deactivation timer的SCell激活/去激活把持是由UE控制.AC CE的格式:LCID为11011,见下图:Bit设置为1,暗示对应的SCell被激活;设置为0,暗示对应的SCell被去激活.每个SCell有一个deactivation timer,可是对应某个UE的所有SCell,deactivation timer是相同的,并通过sCellDeactivationTimer字段配置(由eNodeB配置).该值可以配置成“infinity”,即去使能基于timer的deactivation.当在deactivation timer指定的时间内,UE没有在某个CC上收到数据或PDCCH消息,则对应的SCell将去激活.这也是UE可以自动将某SCell去激活的唯一情况.当UE在子帧n收到激活命令时,对应的把持将在n+8子帧启动.当UE在子帧n收到去激活命令或某个SCell的deactivation timer超时,除CSI陈说对应的把持(停止上报)在n+8子帧完成外,其它把持必需在n+8子帧内完成.SCell 添加与删除载波聚合新增SCell 无法在RRC 建立时立即激活.因此,RRC 连接设置过程中没有针对SCell 的配置.SCell 通过RRC 连接重新配置过程在服务小区集合中添加和删除.请注意,由于LTE 间切换视为RRC 连接重新配置,SCell“切换”受到支持.SCell添加与删除,涉及A4、A2事件的具体原理和计算公式. SCell添加添加SCell的预置条件基站目前仅仅支持同一基站的小区作为CA小区,即主辅小区必需属于同一基站.UE接入或者切入后的服务小区即为PCell,要将某小区配置为SCell需满足如下条件:1>UE的CA能力及协议界说的频段组合,支持PCell与该小区之间进行CA;2>该小区与PCell互为邻区;3>该小区与PCell互为CA协同小区;两种SCell添加方式1)附着或切入后基站主动为UE添加SCell2)基站收到添加辅载波的A4陈说后为UE添加两种添加方式都需满足上述配置SCell的3个预置条件,分歧仅在邻区关系,邻区关系在网管可配,若为“同覆盖”或“邻区包括本小区”则基站主动添加,其它邻区关系基站会在初始接入下发针对该邻区所在频点的A4丈量,UE上报A4陈说后,基站配置该邻区为UE的SCell.A4事件下发信令添加SCellRRC重配消息配置SCell:SCell删除基站在配置某个邻区为UE的SCell的同时,会下发针对该SCell 的A2事件,用来监控SCell的信号质量,当SCell的信号质量小于A2事件的门限,UE上报A2陈说,基站通过RRC重配通知UE删除该SCell.A2事件下发删除SCell切换Release 10 引入了一个新的丈量事件:事件A6.当相邻小区的强度比SCell强一个偏移量时,便会发生事件A6.对频段内SCell,此事件没那么有用,因为PCell 和SCell 的强度通常极为相似.然而,对频段间服务小区,相邻PCell 的强度可能会与服务SCell 的年夜不相同.根据网络状况(如流量负载分布),切换至事件A6 标识的小区可能会很有利.基站在配置某个邻区为UE的SCell的同时,如果这个SCell有同频邻区,且该邻区与PCell为邻区(非同覆盖关系)、CA协同小区,基站会下发用于SCell更新的A6事件,当邻区信号质量减去SCell信号质量年夜于A6事件门限,UE上报A6,基站通过RRC重配通知UE删除原SCell并添加丈量陈说中质量更好的邻区为SCell.A6事件下发更新SCellRRC重配消息携带删除原辅小区、增加新辅小区的配置:。
LTE的载波聚合技术人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必然选择。
什么是载波聚合?简单一点说,就是把零碎的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率。
我们先来看看全球CA发展历程。
1)2013年,韩国SK电信首次商用CA,其将800MHZ频段和频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。
LGU+一个月后跟进。
2)2013年11月,英国运营商EE宣布完成inter-band 40 MHz载波聚合,理论速率可达300Mpbs。
3)2013年12月,澳大利亚运营商Optus首次完成在TD-LTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
2014年,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不断演进,相信未来还有更多CC的载波聚合。
当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在2014年9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intra-band 和 inter-band载波聚合,其中intra-band载波聚合又分为连续(contiguous)和非连续(non-contiguous)。
对于intra-band CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
对于intra-band 非连续载波聚合,该间隔为一个或多个GAP(s)。
3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re-10到Re-12的定义历程。
3GPP R el-10定义了bands 1 (FDD) 和 band 40 (TDD)的intra-band 连续载波,分别命名为CA_1C 和CA_40C。
LTE的载波聚合技术之巴公井开创作人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation ,CA) 成为运营商面向未来的必定选择。
什么是载波聚合?简单一点说,就是把零碎的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率。
我们先来看看全球CA发展历程。
1),韩国SK电信首次商用CA,其将800MHZ频段和1.8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbps。
LGU+一个月后跟进。
2)11月,英国运营商EE宣布完成interband 40 MHz载波聚合,理论速率可达300Mpbs。
3)12月,澳大利亚运营商Optus首次完成在TDLTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继安排或商用载波聚合。
刚开始,载波聚合安排仅限于2载波。
,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不竭演进,相信未来还有更多CC 的载波聚合。
当然还包含TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在9月成功演示了FDD和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intraband 和 interband载波聚合,其中intraband载波聚合又分为连续(contiguous)和非连续(noncontiguous)。
对于intraband CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHz。
对于intraband 非连续载波聚合,该间隔为一个或多个GAP (s)。
3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re10到Re12的定义历程。
3GPP Rel10定义了bands 1 (FDD) 和 band 40 (TDD)的intraband 连续载波,分别命名为CA_1C 和CA_40C。
LTE的载波聚合技术CA Revised by Liu Jing on January 12, 2021L T E 的载波聚合技术人们对数据速率的要求越来越高,载波聚合(Carrier Aggregation , CA)成为运营商面向未来的必然选择。
什么是载波聚合?简单一点说,就是把零碎的LTE频段合并成一个“虚拟”的更宽的频段,以提高数据速率。
我们先来看看全球CA发展历程。
1)2013年,韩国SK电信首次商用CA,其将800MHZ频段和1. 8GHZ频段聚合为一个20MHZ频段,以获得下行峰值速率150Mbpso LGU+—个月后跟进。
2)2013年11月,英国运营商EE宣布完成inter-band 40 MHz载波聚合,理论速率可达300Mpbso3)2013年12月,澳大利亚运营商Optus首次完成在TD-LTE上载波聚合。
紧随其后,日本软银、香港CSL、澳大利亚Telstra等也相继部署或商用载波聚合。
刚开始,载波聚合部署仅限于2载波。
2014年,韩国SK电信、LGU+成功演示了3载波聚合。
随着技术的不断演进,相信未来还有更多CC的载波聚合。
当然还包括TDD和FDD、LTE和WiFi之间的载波聚合。
中国电信在2014年9月成功演示了FDD 和TDD的载波聚合,这也是载波聚合路上一个新的里程碑。
为了说清楚载波聚合,我们首先来了解一下LTE的频段分配。
载波聚合的分类载波聚合主要分为intra-band和inter-band载波聚合,其中intraband 载波聚合乂分为连续(contiguous)和非连续(non-contiguous)。
对于intra-band CA (contiguous)中心频点间隔要满足300kHz的整数倍,即Nx300 kHzo对于intra-band非连续载波聚合,该间隔为一个或多个GAP (s)。
3GPP关于载波聚合的定义下图是3GPP关于载波聚合从Re-10到Re-12的定义历程。