信号与系统 连续时间LTI系统的频率响应共28页文档
- 格式:ppt
- 大小:815.50 KB
- 文档页数:28
MATLAB与信号实验——连续LTI系统的时域分析连续LTI系统的时域分析是信号与系统学中的重要课题。
MATLAB作为一种强大的科学计算软件,提供了丰富的工具和函数来进行信号与系统的分析。
下面将介绍MATLAB在连续LTI系统时域分析中的应用。
首先,我们需要了解连续LTI系统的基本概念。
一个连续域线性时不变系统(LTI系统)可以由它的冲激响应完全描述。
冲激响应是系统对单位冲激信号的响应。
在MATLAB中,可以使用impulse函数来生成单位冲激信号。
假设我们有一个连续LTI系统的冲激响应h(t),我们可以使用conv 函数来计算系统对任意输入信号x(t)的响应y(t)。
conv函数实现了卷积运算,可以将输入信号与冲激响应进行卷积运算得到输出信号。
例如,我们假设一个连续LTI系统的冲激响应为h(t) = exp(-t)u(t),其中u(t)是单位阶跃函数。
我们可以使用以下代码生成输入信号x(t)和计算输出信号y(t):```matlabt=-10:0.1:10;%时间范围x = sin(t); % 输入信号h = exp(-t).*heaviside(t); % 冲激响应y = conv(x, h, 'same'); % 计算输出信号```这段代码首先定义了时间范围t,然后定义了输入信号x(t)和冲激响应h(t)。
接下来,使用conv函数计算输入信号和冲激响应的卷积,设置参数’same’表示输出信号与输入信号长度相同。
最后,得到了输出信号y(t)。
在得到输出信号后,我们可以使用MATLAB的绘图功能来可视化结果。
例如,使用以下代码可以绘制输入信号和输出信号的图像:```matlabfigure;plot(t, x, 'b', 'LineWidth', 2); % 绘制输入信号hold on;plot(t, y, 'r', 'LineWidth', 2); % 绘制输出信号xlabel('时间');ylabel('幅度');legend('输入信号', '输出信号');```除了卷积运算外,MATLAB还提供了许多其他函数来进行连续LTI系统的时域分析。
MATLAB与信号实验-——-连续LTI系统的时域分析在信号处理中,MATLAB是一个强大的工具,它提供了许多功能,使我们能够模拟和分析各种信号系统。
对于连续LTI系统,时域分析是一个重要的方法,它允许我们直接观察系统的输入和输出信号之间的关系。
下面是一个关于连续LTI系统的时域分析的实验。
一、实验目的本实验的目的是验证连续LTI系统的时域响应,通过使用MATLAB模拟系统,我们可以观察到不同的输入信号产生的输出信号,从而了解系统的特性。
二、实验步骤1.定义系统:首先,我们需要定义我们的连续LTI系统。
这可以通过使用MATLAB中的lti函数来完成。
我们需要提供系统的传递函数,它描述了系统的输入和输出之间的关系。
2.设置输入信号:为了观察系统的行为,我们需要设置一个合适的输入信号。
在MATLAB中,我们可以使用square函数来生成一个方波信号,该信号具有固定的频率和幅度。
3.模拟系统:使用MATLAB的lsim函数,我们可以模拟我们的连续LTI系统。
这个函数将输入信号和系统的传递函数作为参数,然后计算出系统的输出信号。
4.分析结果:我们可以使用MATLAB的图形功能来观察输入和输出信号。
这可以帮助我们理解系统的行为,并验证我们的模型是否正确。
三、实验结果与分析在实验中,我们使用了不同的输入信号(如方波、正弦波等)来测试我们的连续LTI系统。
对于每种输入信号,我们都观察了系统的输出信号,并记录了结果。
通过对比不同的输入和输出信号,我们可以得出以下结论:1.对于方波输入,系统的输出信号是带有延迟的方波,这表明系统对突变信号的响应是瞬时的。
2.对于正弦波输入,系统的输出信号是与输入信号同频同相位的正弦波,这表明系统对正弦波的响应是具有稳定性的。
这些结果验证了连续LTI系统的基本特性:即对于单位阶跃函数(突变信号)的输入,系统的响应是瞬时的;而对于周期性输入(如正弦波),系统的响应具有稳定性。
这些结果与我们在理论上学到的知识相符,从而验证了我们的模型是正确的。
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
信号与系统电子教案信号与系统西安电子科技大学第二章连续系统的时域分析LTI连续系统的时域分析,归结为:建立并求解线性微分方程。
由于在其分析过程涉及的函数变量均为时间t,故称为时域分析法。
这种方法比较直观,物理概念清楚,是学习各种变换域分析法的基础。
两种基本的求解方法:解微分方程法卷积法2.1 LTI 连续系统的响应一、微分方程的经典解y (n)(t) + a n-1y (n-1)(t) + …+ a 1y (1)(t) + a 0y (t)= b m f (m)(t) + b m-1f (m-1)(t) + …+ b 1f (1)(t) + b 0f (t)微分方程的经典解:y(t)(完全解) = y h (t)(齐次解) + y p (t)(特解)齐次解是齐次微分方程y (n)+a n-1y (n-1)+…+a 1y (1)(t)+a 0y(t)=0的解。
y h (t)的函数形式由上述微分方程的特征根确定。
特解的函数形式与激励函数的形式有关。
例1:描述某系统的微分方程为y”(t) + 5y’(t) + 6y(t) = f(t)求(1)当f(t) = 2e-t,t≥0;y(0)=2,y’(0)= -1时的全解;(2)当f(t) = e-2t,t≥0;y(0)= 1,y’(0)=0时的全解。
解: (1) a.求方程齐次解:特征方程为λ2 + 5λ+ 6 = 0其特征根λ1= –2,λ2= –3。
齐次解为yh (t) = C1e –2t + C2e –3tc.确定全解:y(t) = y h (t) + y p (t) = C 1e –2t + C 2e –3t + e –t其中待定常数C 1,C 2由初始条件确定。
y(0) = C 1+C 2+ 1 = 2,y’(0) = –2C 1 –3C 2 –1= –1 解得C 1 = 3 ,C 2 = –2最后得全解y(t) = 3e –2t –2e –3t + e –t , t≥0 b.求方程特解:当f(t) = 2e –t 时,其特解可设为y p (t) = Pe –t将其代入微分方程得Pe –t + 5(–Pe –t ) + 6Pe –t = 2e –t 解得P=1于是特解为y p (t) = e –t(2)齐次解同上。