信号与系统连续时间信号和系统时域分析
- 格式:ppt
- 大小:1.69 MB
- 文档页数:5
连续时间系统的时域分析实验报告实验目的本实验旨在通过对连续时间系统的时域分析,研究信号在时域上的特性,包括信号的时域图像、平均功率、能量以及系统的时域响应。
实验原理连续时间系统是指输入输出都是连续时间信号的系统。
在时域分析中,我们关注的是信号在时间上的变化情况。
通过观察信号的时域图像,我们可以了解信号的波形和时域特性。
实验装置与步骤实验装置•函数发生器•示波器•连接线实验步骤1.将函数发生器和示波器连接起来,并确保连接正常。
2.设置函数发生器的输出信号类型和幅度,选择合适的频率和幅度。
3.打开示波器并调整合适的触发方式和触发电平。
4.观察示波器上的信号波形,并记录下观察到的时域特性。
实验数据与分析实验数据根据实验装置和步骤,我们得到了如下的实验数据:时间(ms)电压(V)0 01 12 23 14 05 -1实验分析根据实验数据,我们可以绘制出信号的时域图像。
从图像中可以看出,信号在时域上呈现出一个周期性的波形,且波形在[-1, 2]范围内变化。
由此可知,输入信号是一个连续时间周期信号。
接下来,我们可以计算信号的平均功率和能量。
平均功率表示信号在一个周期内平均消耗的功率,而能量表示信号的总能量大小。
首先,我们计算信号的平均功率。
根据公式,平均功率可以通过信号在一个周期内的幅值的平方的平均值来计算。
在本实验中,信号的周期为5ms,幅值范围为[-1, 2],所以信号的平均功率为:平均功率= (∫[-1, 2] x^2 dx) / T由此可知,信号的平均功率为(1^2 + 2^2 + 1^2 + 0^2 + (-1)^2) / 5 = 1.2。
接下来,我们计算信号的能量。
根据公式,信号的能量可以通过信号在时间上的幅值的平方的积分来计算。
在本实验中,信号在整个时间范围内的幅值范围为[-1, 2],所以信号的能量为:能量= ∫[-1, 2] x^2 dx由此可知,信号的能量为(1^2 + 2^2 + 1^2 + 0^2 + (-1)^2) = 7。
信号与系统公式总结在信号与系统的学习过程中,公式总结是非常重要的,它可以帮助我们更好地理解和掌握知识。
下面将对信号与系统中常见的公式进行总结,希望能够对大家的学习有所帮助。
一、基本概念公式总结。
1. 信号的分类:连续时间信号,x(t)。
离散时间信号,x[n]2. 基本信号:单位冲激函数,δ(t)或δ[n]阶跃函数,u(t)或u[n]3. 基本性质:奇偶性,x(t) = x(-t),x[n] = x[-n]周期性,x(t) = x(t+T),x[n] = x[n+N]二、时域分析公式总结。
1. 基本运算:时移性质,x(t-t0)或x[n-n0]反褶性质,x(-t)或x[-n]放大缩小,Ax(t)或Ax[n]2. 基本运算公式:加法,x1(t) + x2(t)或x1[n] + x2[n]乘法,x1(t)x2(t)或x1[n]x2[n]三、频域分析公式总结。
1. 傅里叶变换:连续时间信号,X(ω) = ∫x(t)e^(-jωt)dt。
离散时间信号,X(e^jω) = Σx[n]e^(-jωn)。
2. 傅里叶变换性质:线性性质,aX1(ω) + bX2(ω)。
时移性质,x(t-t0)对应X(ω)e^(-jωt0)。
频移性质,x(t)e^(jω0t)对应X(ω-ω0)。
四、系统分析公式总结。
1. 系统性质:线性性,y(t) = ax1(t) + bx2(t)。
时不变性,y(t) = x(t-t0)对应h(t-t0)。
2. 系统时域分析:离散卷积,y[n] = Σx[k]h[n-k]连续卷积,y(t) = ∫x(τ)h(t-τ)dτ。
3. 系统频域分析:系统函数,H(ω) = Y(ω)/X(ω)。
五、采样定理公式总结。
1. 采样定理:连续信号采样,x(t)对应x[n],x[n] = x(nT)。
重建滤波器,h(t) = Tsinc(πt/T)。
六、傅里叶级数公式总结。
1. 傅里叶级数:周期信号的傅里叶级数展开。
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
四、实验内容1、一系统满足微分方程''()5'()6()()(1)y t y t y t u t u t++=--(1)求出该系统的零状态响应的解析表达式y zs(t),并用向量表示法绘制响应曲线。
(2)用lsim求出该系统的零状态响应;利用(1)所得结果画出该系统的零状态响应。
比较二者是否相同。
%用向量表示法绘制响应曲线clearclc%函数dsolve用来解符号常微分方程、方程组,如果没有初始条件,则求出通解。
如果有初始条件,则求出特解%MATLAB常微分方程符号解的语法是:dsolve('equation', 'condition')%其中,equation代表常微分方程式,且以Dy代表一阶微分项y',D2y代表.一阶微分项y", condition则为初始条件。
disp('零状态响应');a=dsolve('D2y+5*Dy+6*y = u(t)-u(t-1)','y(0) = 0','Dy(0)=0')%用lsim求出该系统的零状态响应clearclcdisp('用线性常系数微分方程描述LTI系统');t=-6:0.001:6;sys=tf([1],[1 5 6]);ft2=((t>=0)-(t>=1));%ft2=heaviside(t)-heaviside(t-1);y1=lsim(sys,ft2,t);plot(t,y1);xlabel('x');ylabel('y1');title('零状态响应');grid on%axis([0, t(end), -1.1, 1.1])%axis一般用来设置axes的样式,包括坐标轴范围,可读比例等2、如图所示电路,其中121,1,1,2,L H C F R R ===Ω=Ωf(t)是输入信号,y(t)是输出响应。