关系模式分解
- 格式:ppt
- 大小:1.39 MB
- 文档页数:99
2.保持FD (函数依赖)的分解定义1:设F 是属性集U 上的FD 集,Z 是U 的子集,F 在Z 上的投影用πZ (F)表示,定义为πZ (F)={X →Y|X →Y ∈F +,且XY ⊆Z}定义2. 设},...{1K R R =ρ 是R 的一个分解,F 是R 上的FD 集,如果有)(1F R i ki π=Y ╞ F ,那么称分解ρ保持函数依赖集F 。
根据定义1,测试一个分解是否保持FD ,比较可行的方法是逐步验证F 中的每个FD 是否被)(1F R i ki π=Y 逻辑蕴涵。
如果F 的投影不蕴涵F ,而我们又用},...{1K R R =ρ表达R ,很可能会找到一个数据库实例σ 满足投影后的依赖,但不满足F 。
对σ的更新也有可能使r 违反FD 。
案例1:R (T#,TITLE ,SALARY )。
如果规定每个教师只有一个职称,并且每个职称只有 一个工资数目,那么R 上的FD 有T#→TITLE 和TITLE →SALARY 。
如果R 分解成ρ={R 1,R 2},其中R 1={T#,TITLE},R 2={T#,SALARY }。
则该分解具有无损连接性,但未保持函数依赖,丢失了依赖TITLE →SALARY 。
习题1:设关系模式R (ABC ),ρ={AB ,AC}是R 的一个分解。
试分析分别在F 1={A →B};F 2={A →C ,B →C},F 3={B →A},F 4={C→B,B→A}情况下, 是否具有无损分解和保持FD的分解特性。
算法1:分解成2NF模式集的算法设关系模式R(U),主码是W,R上还存在FD X→Z,并且Z是非主属性和X⊂W,那么W→Z就是非主属性对码的部分依赖。
此时,应把R分解成两个关系模式:R1(XZ),主码是X;R2(Y),其中Y=U-Z,主码仍为W,外码是X(参照R1)利用外码和主码的连接可以从R1和R2重新得到R。
如果R1和R2还不是2NF,则重复上述过程,一直到数据库模式中的每个关系模式都是2NF为止。
关系模式的分解准则
关系模式的分解准则有:
(1)实体冗余(E-R)分解法。
根据E-R模式的规则,可以把一个实体分成多个实体,其中重要的实体可以多次出现。
(2)覆盖索引(CRC)分解法。
它考虑了实体约束和属性约束,用两个分解条件来分解关系模式,即冗余表分解(RD)和实体冗余分解(ERD)。
(3)非集中规范化(3NF)分解法。
它强调的是保持一般情况表的不可分割性,
其分解方法是根据实体与属性的约束,从模式中把出现在死关系中的属性拆分出来。
(4)最终规范化(BCNF)分解法。
这种分解方法更强调实体的约束,它是根据实体与实体之间的约束,把关系拆分成几个满足BCNF规范化要求的子集。
数据库范式分解数据库范式分解是关系数据库设计中非常重要的步骤。
其作用是将一个复杂的关系模式分解成多个更小的、更简单的关系模式,以便于数据的存储和管理。
数据库范式分解能够提高数据库的数据完整性和可靠性,避免数据冗余和不一致性,提高数据处理效率。
在数据库设计中,范式分解的目的是消除冗余数据,保持数据的完整性和一致性。
数据库设计要保证数据的每个属性只有一个地方存放,在数据库有多个实例时,这个属性的值就必须保持一致。
如果数据有冗余,由于这个属性值在不同的地方存放,就可能会产生不一致的情况。
因此,范式分解的目的就是尽量减少数据的冗余。
根据关系数据库理论,数据库中的数据分为不同的范式,从第一范式(1NF)到第五范式(5NF)。
每个范式都有其独特的规则和要求,用于确保数据的正确性和一致性。
在范式分解中,关系模式根据其范式级别进行分解,范式越高则数据冗余越少,关系模式结构越简单。
在实际数据库设计中,我们通常采用前三范式(1NF、2NF、3NF)进行范式分解。
其中,第一范式要求每个属性只包含一个值,即属性具有原子性;第二范式要求将关系模式的每个非主属性都完全依赖于主属性,即表中的每个非主属性都只依赖于主属性;第三范式要求关系模式的非主属性之间不存在传递依赖,即任何非主属性都不依赖于其他非主属性。
在范式分解时,首先要进行函数依赖分析,即确定每个属性之间的依赖关系。
然后根据依赖关系将关系模式进行分解,使其尽量符合范式要求。
例如,可以将一个原始的关系模式分解为多个符合第三范式的关系模式,从而消除冗余数据并确保数据的一致性。
但是,范式分解也存在一些问题。
范式分解会使得数据的查询效率降低,因为查询需要在多个表中进行,而且不同表的之间的关联也需要花费较多的时间。
此外,在进行范式分解时,有时候会出现数据丢失或不一致的情况,需要做好相关的数据备份和恢复措施。
总之,数据库范式分解是数据库设计中必不可少的一部分。
通过范式分解,我们可以提高数据库的数据完整性和可靠性,避免数据冗余和不一致性,提高数据处理效率。
一、选择题1 关系模型中,一个关键字是()。
A.可由多个任意属性组成B.至多由一个属性组成C.可由一个或多个其值能惟一标识该关系模式中任何元组的属性组成D.以上都不是C2 关系数据库中的关键字是指( ) 。
A.能唯一决定关系的字段B.不可改动的专用保留字C.关键的很重要的字段D.能唯一标识元组的属性或属性集合D3 在一个关系中如果有这样一个属性存在,它的值能唯一地标识关系中的每一个元组,称这个属性为( )。
A.关键字B.数据项C.主属性D.主属性值A4 关系模式分解的结果()。
A.惟一B.不惟一,效果相同C.不惟一,效果不同,有正确与否之分D.不惟一,效果不同,有应用的不同D5 3NF同时又是()。
A.2NFB.1NFC. BCNFD.1NF,2NFD6 当B属性函数依赖于A属性时,属性A与B的联系是()。
A. 1对多B. 多对1C. 多对多D. 以上都不是A7 当关系模式R(A,B)已属于3NF,下列说法中( )是正确的。
A.它消除了删除异常B.仍存在插入和删除异常C.属于BCNF D.它消除了插入异常B8 根据关系数据库规范化理论,关系数据库的关系要满足第一范式。
下面"部门"关系中,因哪个属性而使它不满足第一范式?( )A.部门总经理B.部门成员C.部门名D.部门号B9 关系模式规范化的最起码的要求是达到第一范式,即满足()。
A.每个非码属性都完全依赖于主码。
B.主码属性唯一标识关系中的元组C.关系中的元组不可重复D.每个属性都是不可分解的数据项。
D10 关系模式中,满足2NF的范式()A.不可能是1NFB.可能是3NFC.必定是1NF且必定是3NFB11 关系模式中不存在任何非主属性对主属性的完全函数依赖,则其范式()A.是1NFB.是2NFC.是3NFB12 关系数据库规范化的目的是为解决关系数据库中()问题。
A.插入删除异常和数据冗余B.提高查询速度C.减少数据操作的复杂性。
自考04735数据库原理及应用关系模式设计理论要求、目标:了解关系数据库规范化理论及其在数据库设计中的作用,重点是函数依赖和范式,要求掌握这些概念并能运用它们来进行模式分解。
一、关系模式的设计准则1.数据冗余:同一个数据在系统中多次重复出现。
2.关系模式设计不当引起的异常问题:数据冗余、操作异常(包括修改异常、插入异常和删除异常)3.关系模式的非形式化设计准则1)关系模式的设计应尽可能只包含有直接联系的属性,不要包含有间接联系的属性。
也就是,每个关系模式应只对应于一个实体类型或一个联系类型。
2)关系模式的设计应尽可能使得相应关系中不出现插入异常、删除和修改等操作异常现象。
3)关系模式的设计应尽可能使得相应关系中避免放置经常为空值的属性。
4)关系模式的设计应尽可能使得关系的等值连接在主键和外键的属性上进行,并且保证以后不会生成额外的元组。
4.习惯使用的一些符号:1)英文字母表首部的大写字母“A,B,C,…”表示单个的属性。
2)英文字母表尾部的大写字母“…,U,V,W,X,Y,Z”表示属性集。
3)大写字母R表示关系模式,小写字母r表示其关系。
4)关系模式的简化表示方法:R(A,B,C,…)或R(ABC…)5)属性集X和Y的并集简写为XY。
二、函数依赖1.函数依赖(FD)的定义:设有关系模式R(U),X和Y是属性集U的子集,函数依赖是形成X→Y的一个命题,只要r是R的当前关系,对r中任意两个元组t和s,都有t[X]=s[X]蕴涵t[Y]=s[Y],那么称FD X→Y在关系模式R(U)中成立。
说明:1)t[X]表示元组t在属性集X上的值,其余类同。
2)X→Y读作“X函数决定Y”或“Y函数依赖于X”。
3)FD是对关系模式R的一切可能的关系r定义的。
对于当前关系r的任意两个元组,如果X值相同,则要求Y值也相同,即有一个X值就有一个Y值与之对应,或者说Y值由X值决定。
例:设关系模式R(ABCD),在R的关系中,属性值间有这样的联系:A值与B值有一对多联系;C值与D值之间有一对一联系。
一、选择题1 关系模型中,一个关键字是()。
A.可由多个任意属性组成B.至多由一个属性组成C.可由一个或多个其值能惟一标识该关系模式中任何元组的属性组成D.以上都不是C2 关系数据库中的关键字是指( ) 。
A.能唯一决定关系的字段B.不可改动的专用保留字C.关键的很重要的字段D.能唯一标识元组的属性或属性集合D3 在一个关系中如果有这样一个属性存在,它的值能唯一地标识关系中的每一个元组,称这个属性为( )。
A.关键字B.数据项C.主属性D.主属性值A4 关系模式分解的结果()。
A.惟一B.不惟一,效果相同C.不惟一,效果不同,有正确与否之分D.不惟一,效果不同,有应用的不同D5 3NF同时又是()。
A.2NFB.1NFC. BCNFD.1NF,2NFD6 当B属性函数依赖于A属性时,属性A与B的联系是()。
A. 1对多B. 多对1C. 多对多D. 以上都不是A7 当关系模式R(A,B)已属于3NF,下列说法中( )是正确的。
A.它消除了删除异常B.仍存在插入和删除异常C.属于BCNF D.它消除了插入异常B8 根据关系数据库规范化理论,关系数据库的关系要满足第一范式。
下面"部门"关系中,因哪个属性而使它不满足第一范式?( )A.部门总经理B.部门成员C.部门名D.部门号B9 关系模式规范化的最起码的要求是达到第一范式,即满足()。
A.每个非码属性都完全依赖于主码。
B.主码属性唯一标识关系中的元组C.关系中的元组不可重复D.每个属性都是不可分解的数据项。
D10 关系模式中,满足2NF的范式()A.不可能是1NFB.可能是3NFC.必定是1NF且必定是3NFB11 关系模式中不存在任何非主属性对主属性的完全函数依赖,则其范式()A.是1NFB.是2NFC.是3NFB12 关系数据库规范化的目的是为解决关系数据库中()问题。
A.插入删除异常和数据冗余B.提高查询速度C.减少数据操作的复杂性。
第4章关系数据库设计理论、选择题1、C2、B3、C4、C5、A9、D 10、B二、填空题1、数据依赖主要包括—函数_依赖、—多值—依赖和连接依赖。
2、一个不好的关系模式会存在_插入异常_、_删除异常_和—修改复杂_等弊端。
3、设X T Y为R上的一个函数依赖,若_对任意X的真子集X '均无XY存在__, 则称Y完全函数依赖于X.4、设关系模式R上有函数依赖X T Y和Y T Z成立若_Y不包含于X_且_Y T X不成立_,则称Z传递函数依赖于X。
5、设关系模式R的属性集为U, K为U的子集,若_K T U为完全函数依赖_,则称K 为R的候选键。
6、包含R中全部属性的候选键称_主属性_。
不在任何候选键中的属性称—非主属性7、Armstrong公理系统是—有效__的和—完备__的.8、第三范式是基于_函数_依赖的范式,第四范式是基于_多值_依赖的范式。
9、关系数据库中的关系模式至少应属于_第一_范式。
10、规范化过程,是通过投影分解,把_一个范式级别较低的_的关系模式“分解”为_若干个范式级别较高__的关系模式。
三、简答题1、解释下列术语的含义:函数依赖、平凡函数依赖、非平凡函数依赖、部分函数依赖、 完全函数依赖、传递函数依赖、范式、无损连接性、依赖保持性。
解:函数依赖:设关系模式R ( U ,F), U 是属性全集,F 是U 上的函数依赖集,X 和丫是U 的子集,如果对于R(U)的任意一个可能的关系 r ,对于X 的每一个具体值,Y 都有唯一的具 体的值与之对应,则称X 函数决定Y,或Y 函数依赖于X ,记X T Y 。
我们称X 为决定因素, Y 为依赖因素。
当Y 不函数依赖于 X 时,记作:©Y 。
当X T Y 且Y T X 时,则记作:X Y 。
平凡函数依赖:当属性集Y 是属性集X 的子集时,则必然存在着函数依赖X T Y ,这种类型的函数依赖称为平凡的函数依赖。
非平凡函数依赖: 如果Y 不是X 子集,则称X T Y 为非平凡的函数依赖。
第五章关系数据理论部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑第五章关系数据理论6.3 数据依赖的公理系统1. 逻辑蕴含定义6.11 对于满足一组函数依赖 F 的关系模式R <U,F>,其任何一个关系r,若函数依赖X→Y都成立, (即对于r中任意两个元组s,t,若s[X]=t[X],则s[Y]t[Y]>,则称F逻辑蕴含X→Y例如R(X, Y,Z>,F={X→Y, Y→Z}X→Z为了求得给定关系模式的码,为了从一组给定的函数依赖求得蕴涵的函数依赖,就需要一套推理规则。
这组推理规则是Armstrong于1974年提出的,所以称为Armstrong公理系统。
2. Armstrong公理系统一套推理规则,是模式分解算法的理论基础用途:求给定关系模式的码从一组函数依赖求得蕴含的函数依赖关系模式R <U,F >来说有以下的推理规则:Al.自反律<Reflexivity):若Y X U,则X →Y为F所蕴含。
(Sno,S name> →Sname注意:由自反律所得到的函数依赖均是平凡的函数依赖,自反律的使用并不依赖于FA2.增广律<Augmentation):若X→Y为F所蕴含,且Z→U,则XZ→YZ为F所蕴含。
A3.传递律<Transitivity):若X→Y及Y→Z为F所蕴含,则X→Z为F所蕴含。
定理 6.1 Armstrong推理规则是正确的<l)自反律:若Y X U,则X →Y为F所蕴含证: 设Y X U对R <U,F> 的任一关系r中的任意两个元组t,s:若t[X]=s[X],由于Y X,有t[y]=s[y],所以X→Y成立.自反律得证<2)增广律: 若X→Y为F所蕴含,且Z U,则XZ→YZ 为F 所蕴含。
证:设X→Y为F所蕴含,且Z U。
设R<U,F> 的任一关系r中任意的两个元组t,s;若t[XZ]=s[XZ],则有t[X]=s[X]和t[Z]=s[Z];由X→Y,于是有t[Y]=s[Y],所以t[YZ]=s[YZ],所以XZ→YZ为F所蕴含.增广律得证。
简述关系模式分解的两大准则
关系模式分解是数据库设计中的重要步骤之一,它通过将一个大型关系模式分解成多个较小的、相关的关系模式,来提高数据库的性能和可维护性。
关系模式分解需要遵循以下两大准则:
第一,无损连接(Lossless Join)准则。
即分解后所得到的关系模式能够保持对原始关系模式中所有可能连接的支持,即能够无损地连接起来。
这意味着分解后的关系模式能够通过连接操作得到与原始关系模式相同的结果,不会因为分解而引入额外的元组或导致遗失某些元组。
无损连接准则确保了数据的完整性和一致性。
第二,函数依赖(Functional Dependency)准则。
即分解后的关系模式要能够保持原始关系模式中的所有函数依赖。
对于给定的关系模式R,如果存在函数依赖A → B,那么在分解后的关系模式中,A和B仍然在同一个关系模式中,并且该函数依赖仍然有效。
这意味着分解后的关系模式要能够保持数据的一致性和完整性。
通过遵循无损连接和函数依赖准则,关系模式分解能够确保分解结果的数据完整性和一致性,提高数据库的性能和可维护性。
关系模式分解的依据1.引言1.1 概述关系模式分解是数据库设计中的一个重要步骤,旨在将复杂的关系模式分解为更小的关系模式,以提高数据库的性能和管理效率。
在关系模型中,数据以表的形式组织,每个表代表一个实体或关系。
本文将探讨关系模式分解的依据,即为何需要对关系模式进行分解。
关系模式分解的目的是消除数据冗余和数据更新异常,提高数据库的运行效率和数据的一致性。
本文将分为引言、正文和结论三部分。
在引言部分,将对关系模式分解的概述进行阐述,介绍文章的结构和目的。
接下来的正文部分将详细探讨关系模式分解的定义和背景,并重点讨论关系模式分解的两个主要依据:数据冗余和数据更新异常。
在结论部分,将对关系模式分解的依据进行总结,并展望关系模式分解在未来的意义和应用。
通过本文的探讨,读者将能够理解关系模式分解的重要性和必要性,以及在数据库设计和管理中的实际应用价值。
本文的内容将为数据库设计师和管理者提供指导,帮助他们更好地进行数据库设计和优化。
文章结构部分应该介绍本文的结构和各章节的内容,可以使用如下方式进行编写:1.2 文章结构本文分为引言、正文和结论三个部分,具体的章节结构如下所示:1. 引言部分1.1 概述在本部分,我们将介绍关系模式分解的背景和定义,以及本文的目的。
1.2 文章结构在本部分,我们将展示本文的章节结构和各章节的内容,帮助读者了解文章的整体组织。
1.3 目的在本部分,我们将说明本文的目的是为了探讨关系模式分解的依据,并展望其意义和应用。
2. 正文部分2.1 关系模式分解的定义和背景在本部分,我们将介绍关系模式分解的定义,并概述其背景和发展历程。
2.2 关系模式分解的依据在本部分,我们将详细讨论关系模式分解的依据,包括数据冗余和数据更新异常等方面。
2.2.1 数据冗余在本小节,我们将解释数据冗余在关系模式中的含义和问题,并说明为什么需要对其进行分解。
2.2.2 数据更新异常在本小节,我们将介绍数据更新异常的概念和原因,并说明为什么需要通过分解关系模式来解决它。