余弦函数的图象与性质
- 格式:ppt
- 大小:444.00 KB
- 文档页数:15
余弦函数的概念余弦函数是一种三角函数,用于描述一个角的余弦值与其对边与斜边的比值之间的关系。
在数学中,余弦函数通常以cos(x)的形式表示,其中x为角度(以弧度为单位)。
一、余弦函数的定义余弦函数可以通过一个直角三角形中的角度来定义。
考虑一个直角三角形,其中一个角的度数为x。
根据三角函数的定义,我们可以定义余弦函数为:cos(x) = 邻边 / 斜边其中邻边表示与角度x相邻的边长,斜边表示直角三角形的斜边长度。
二、余弦函数的取值范围余弦函数的取值范围是[-1, 1]之间。
这是因为在一个直角三角形中,邻边和斜边的比值最大为1,最小为-1。
我们可以通过绘制余弦函数的图像来更好地理解其取值范围。
三、余弦函数的图像和性质余弦函数的图像通常是一个周期性的波形,其中周期为2π。
当角度x增加2π时,余弦函数的值会再次回到初始值。
余弦函数的图像在x轴上有一个最大值和一个最小值,分别为1和-1。
此外,余弦函数也具有对称性,即cos(x) = cos(-x),这是因为在一个直角三角形中,余弦函数的邻边和斜边的比值与该角度的正负无关。
除了周期性和对称性外,余弦函数还具有以下性质:1. 偶函数性质:cos(-x) = cos(x),即余弦函数关于y轴对称。
2. 周期性:cos(x + 2π) = cos(x),即在一个周期内,余弦函数的值相同。
3. 奇异点:余弦函数在90°、180°、270°等整数倍π的点上有奇异点,此时斜边为0,因此余弦函数无定义。
四、余弦函数的应用余弦函数在数学和物理中有广泛的应用。
以下是一些应用示例:1. 三角形的计算:余弦函数可用于计算三角形中的角度和边长。
通过已知两条边长和这两条边之间的夹角,可以使用余弦定理来计算第三条边的长度。
2. 波动和振动的分析:在物理学中,余弦函数常用于描述波动和振动的变化。
例如,声波和光波的传播可以使用余弦函数来建模。
3. 信号处理:余弦函数是一种常用的信号处理方法,可用于分析和处理信号的频域特性。
三角函数图像与性质三角函数的图像与性质一、正弦函数和余弦函数的图像:正弦函数y=sinx和余弦函数y=cosx的图像可以用五点法作图。
先取横坐标分别为-2π,-π,0,π,2π的五个点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图像。
二、正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)的性质:1.定义域:都是R。
2.值域:1)都是[-1,1]。
2)正弦函数y=sinx,当x=2kπ+3π/2(k∈Z)时,y取最小值-1;当x=2kπ+π/2(k∈Z)时,y取最大值1.余弦函数y=cosx,当x=2kπ(k∈Z)时,y取最大值1;当x=2kπ+π(k∈Z)时,y取最小值-1.3.周期性:1)正弦函数y=sinx、余弦函数y=cosx的最小正周期都是2π。
2)函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)的最小正周期都是T=2π/|ω|。
4.奇偶性与对称性:1)正弦函数y=sinx是奇函数,对称中心是(2kπ,0)(k∈Z),对称轴是直线x=kπ+π/2(k∈Z)。
2)余弦函数y=cosx是偶函数,对称中心是(kπ,0)(k∈Z),对称轴是直线x=kπ(k∈Z)。
例:若函数y=a-bsin(3x+π/6)的最大值为1,最小值为-2,则a=1/2,b=1或b=-1.课堂练:1.函数y=sinx-sin2x的值域是[-1,1]。
2.已知f(x)的定义域为[0,1],求f(cosx)的定义域为[-1,1]。
3.下列函数中,最小正周期为π的是B.y=sin2x。
4.若f(x)=sin(πx/3),则f(1)+f(2)+f(3)+。
+f(2003)=0.答:1001/2)正弦型函数的对称轴为过最高点或最低点且垂直于x轴的直线,对称中心为图象与x轴的交点。
例如,函数y=sin(5π/2x)的奇偶性是偶函数。
已知函数f(x)=ax+bsin(3x)+1(a,b为常数),且f(5)=7,则f(-5)=-5.单调性方面,y=sinx在[2kπ-,2kπ+](k∈Z)上单调递增,在[2kπ+,2kπ+](k∈Z)上单调递减;y=cosx在[2kπ,2kπ+π](k∈Z)上单调递减,在[2kπ+π,2kπ+2π](k∈Z)上单调递增。
4.7 余弦函数的图像和性质我们用描点法作出了正弦函数y=sin x在[0,2π]上的图像, 通过不断向左、向右平移(每次移动 2π个单位长度)得到了正弦函数y=sin x, x∈R的图像, 并通过正弦曲线研究了正弦函数的性质.对于余弦函数y=cos x, x∈R, 可否用同样的方法来研究?把区间[0,2π]分成12等份, 分别求出函数y=cos x在各分点及区间端点的正弦函数值.用描点法作出余弦函数y=cos x在 [0,2π]上的图像.(1)列表.根据表中x,y的数值在平面直角坐标系内描点(x, y) ,再用平滑曲线顺次连接各点,就得到正弦函数y=cos x 在 [0,2π]上的图像.用描点法作出余弦函数y=cos x在 [0,2π]上的图像.(1)列表.(2)描点作图.不难看出下面五个点是确定余弦函数y=cos x在 [0,2π]上的图像的关键点.因此,余弦函数的图像也可以用五点法画出简图.由诱导公式cos(2kπ+x)=cos x (k∈Z)可知, 将函数y=cos x在[0,2π]上的图像沿x轴向左或向右平移2π, 4π, …, 就得到了余弦函y=cos x, x∈R的图像.余弦函数的图像也称为余弦曲线, 它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.将正弦函数的图像和余弦函数的图像放在同一个坐标系内,可以看出:把正弦函数y=sin x, x∈R的图像向左平移个单位长度,就得到余弦函数y=cos x, x∈R的图像.y=sin x, x∈R若将正弦函数y=sin x, x∈R的图像向右平移, 是否也可以得到余弦函数y=cos x, x∈R的图像, 如果是, 需平移多少?(1)定义域.余弦函数的定义域是实数集R.观察余弦曲线,类比正弦函数,得到关于正弦函数y=sin x,x∈R的结论:(2)值域. 余弦函数的值域是[-1, 1].观察余弦曲线, 类比正弦函数, 得到关于正弦函数y=sin x, x∈R的结论:当x=2kπ(k∈Z)时, y取最大值, y max=1;当x=π+2kπ(k∈Z)时, y取最小值, y min=1.(3) 周期性.观察余弦曲线, 类比正弦函数, 得到关于正弦函数y=sin x, x∈R的结论:余弦函数是周期为2π的周期函数.观察余弦曲线, 类比正弦函数, 得到关于正弦函数y=sin x, x∈R的结论:(4) 奇偶性由图像关于y轴对称和诱导公式cos(−x)=cos x可知, 余弦函数是偶函数.余弦函数y=cos x在每一个闭区间[(2k-1)π, 2kπ] (k∈Z) 上都是增函数, 函数值从-1增大到1; 在每一个闭区间[2kπ,(2k+1)π] (k∈Z)上是减函数, 函数值从1减小到-1.观察余弦曲线, 类比正弦函数, 得到关于正弦函数y=sin x, x∈R的结论:(5) 单调性.例1利用五点法作出函数y=-cos x在[0,2π]上的图像.解(1)列表.(2)根据表中x ,y 的数值在平面直角坐标系内描点(x ,y ),再用平滑曲线顺次连接各点,就得到函数y=-cos x 在[0,2π]上的图像.例1 利用五点法作出函数y=-cos x 在[0,2π]上的图像.解 (1)列表.例2 求函数y=3cos x+1的最大值、最小值及取得最大值、最小值时x的集合.解由余弦函数的性质知,-1≤cos x≤1 ,所以-3≤3 cos x≤3 ,从而 -2≤3 cos x+1≤4 ,即 -2 ≤ y ≤ 4.故函数的最大值为4,最小值为-2.函数y=3cos x+1取最大值时的x的集合, 就是函数y=cos x取得最大值时的x的集合 {x|x=2kπ, k∈Z};函数y=3cos x+1取最小值时的x的集合, 就是函数y=cos x取得最小值时的x的集合 {x|x=2kπ+π, k∈Z}.例3不求值比较下列各组数值的大小:解根据余弦函数的图像和性质可知:(1) 因为 , 余弦函数y=cos x在区间[0, π,]上是减函数, 所以(2) 因为 , 余弦函数y=cos x在区间[-π,0]上是增函数, 所以例3不求值比较下列各组数值的大小:解根据余弦函数的图像和性质可知:练习1. 用五点法作出函数y=cos x -1在[0, 2π]上的图像.2.求下列函数的最大值和最小值,及取得最大值、最小值时自变量x的集合.练习3. 不求值,比较下列各组数的大小.1.书面作业:完成课后习题和学习与训练;2.查漏补缺:根据个人情况对课题学习复习与回顾;3.拓展作业:阅读教材扩展延伸内容.再见。