二次根式的化简与最简二次根式ppt课件
- 格式:ppt
- 大小:3.75 MB
- 文档页数:15
二次根式的化简与计算【知识要点】1.最简二次根式:①被开方数的因数是整数,因式是整式即被开方数不含有分母。
②被开方数中不含有能开得尽方的因式或因数。
2.化为最简二次根式的方法:①把被开方数的分子、分母尽量分解出一些平方数或平方式;②将这些平方数或平方式,用它的算术平方根代替移到根号外;③化去被开方数中的分母。
3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。
判断同类二次根式时,注意以下三点:①都是二次根式,即根指数都是2;②必须先化成最简二次根式;③被开方数相同。
4.二次根式的加减法:先把各根式化成最简二次根式,再合并同类二次根式。
合并同类二次根式的方法与合并同类项类似。
5.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:=①单项二次根式:利用a理化因式。
②两项二次根式:利用平方差公式来确定。
如a与a,,6.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;③最后结果必须化成最简二次根式或有理式。
7.二次根式的混合运算:①二次根式的混合运算的运算顺序与有理式的混合运算的顺序相同;②在二次根式的混合运算中,有理式的运算法则、定律、公式等同样适用。
【典型例题】例1 解答下列各题:(1)下列根式中,哪些是最简二次根式?哪些不是?为什么?,(其中0x >,0y >)。
(2)下列根式中,哪些是同类二次根式?为什么?(题中字母都为正数)2x ,127,(3)如果最简根式,m +m ,n 的值。
例2 计算下列各题:(1)⎛- ⎝ (2)-⎝(3例3 (1)把下列各式分母有理化:)a b ≠(2)把下列各式化简:练 习A 组1.下列各式正确的是( )A ===B =C a b =+D =2.下列各式正确的是( )A =B ()230,0a b a b =><C = D== 3.在下列二次根式中,若0,0a b >>,则属于最简二次根式的是( )A B C D4 ) A .4x < B .1x ≥ C .14x ≤< D .14x ≤≤5.化简的结果是( )A B .3 C . D .a6的相反数的倒数为 。
估算一、专题精讲题型一、估算无理数在哪两个整数之间例1.(1)判断×之值会介于下列哪两个整数之间?()A.22、23 B.23、24 C.24、25 D.25、26考点:估算无理数的大小.分析:先算出与的积,再根据所得的值估算出在哪两个整数之间,即可得出答案.解答:解:∵×=,又∵24<25,∴×之值会介于24与25之间,故选C.点评:本题考查了估算无理数大小,掌握的大约值是解题的关键,是一道基础题.(2)如果m=,那么m的取值范围是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4考点:估算无理数的大小.分析:先估算出在2与3之间,再根据m=,即可得出m的取值范围.解答:解:∵2<3,m=,∴m的取值范围是1<m<2;故选B.点评:此题考查了估算无理数的大小,解题关键是确定无理数的整数部分,是一到基础题.变式训练1.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间解答:解:∵2=<=3,∴3<<4,故选B.2.若n=﹣6,则估计n的值所在范围,下列最接近的是()A.4<n<5 B.3<n<4 C.2<n<3 D.1<n<2解答:解:∵49<59<64,∴7<<8,∴7﹣6<﹣6<8﹣6,即1<n<2.故选D.题型二、按要求估算例2.(1)估算下列各数的大小.(1)(误差小于0.1);(2)(误差小于1).考点:估算无理数的大小.分析:(1)(2)借助“夹逼法”先将其范围确定在两个整数之间,再通过取中点的方法逐渐逼近要求的数值,当其范围符合要求的误差时,取范围的中点数值,即可得到答案. 解答:解:(1)∵有62=36,6.52=42.25,72=49, ∴估计在6.5到7之间,6.62=43.56,6.72=44.89;∴≈6.65;(2)∵43=64,53=125, ∴4.53=91.125,4.43=85.184,∴≈4.45.点评:此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.变式训练1、估算下列数的大小.(1)(误差小于0.1) ; (2)(误差小于1). 解答:(1) ∵3.6<<3.7,∴≈3.6或3.7(只要是3.6与3.7之间的数都可以). (2) ∵9<<10,∴≈9或10(只要是9与10之间的数都可以).题型三、用估算比较两个数大小例3.(1)通过估算,比较下面各数的大小. (1)与 ; (2)与3.85. 解答: (1)∵<2,∴-1<1,即<. (2)∵3.85=14.8225,∴>3.85.变式训练1.(2010•杭州二模)估计大小关系是﹣1________ 0.5. 解答:解:∵0.5=﹣1,<3.∴﹣1<0.5.题型四、用估算法求解实际问题的近似解例4.(1)某小区有一块长为8米、宽为4米的长方形草坪,计划在草坪面积不减少的情况 下,把它改造成一个正方形,如果改造后的正方形草坪的边长为x 米.求正方形的边长(估 算到0.1)考点:算术平方根;估算无理数的大小.分析:根据面积相等列出关系式,解得x ,进即可得到正方形的边长.13.6380013.613.63800380031212153331212215解答:解:根据题意得:x2=8×4=32 x≈5.6.答:正方形的边长约为5.6米.点评:本题主要考查长方形、正方形的面积,根据面积相等得到方程是解题的关键.变式训练1.能否用面积为400cm2的正方形纸片裁出面积为300cm2且长、宽之比为3:2的长方形纸片?说明理由.(友情提示:不能对裁出的长方形进行拼接)解答:答:不能.理由:设长方形纸片的长为3xcm,宽为2xcm.依题意,得3x•2x=300,6x2=300,x2=50,∴x=或x=﹣(舍去),∴长方形纸片的长为,∵50>49,∴>7,∴3>21,∴长方形纸片的长应该大于21cm,又∵已知正方形纸片的边长大只有20cm,∴不能用这块正方形纸片裁出符合要求的长方形纸片.题型五、表示一个无理数的小数部分例5.(1)(2010•巫山县模拟)已知,m、n分别是的整数部分和小数部分,那么,2m﹣n的值是()A.B.C.D.考点:估算无理数的大小.专题:探究型.分析:先估算出的值,进而可得出m、n的值,再代入2m﹣n进行计算即可.解答:解:∵≈1.732,∴6﹣的整数部分为4,小数部分为6﹣﹣4,即n=2﹣,∴2m﹣n=8﹣2+=6+.故选B.点评:本题考查的是估算无理数的大小,熟记≈1.732是解答此题的关键.(2)(1)已知数M的平方根是a+5及﹣3a+11,求M.(2)已知5+与5﹣的小数部分分别是a、b,求3a+2b的值.考点:估算无理数的大小;平方根.专题:探究型.分析:(1)由于M的平方根是a+5及﹣3a+11,所以这两个数互为相反数,据此可求出a的值,进而得出数M;(2)先估算出的取值范围,再得出a、b的值,代入所求代数式进行计算即可.解答:解:(1)∵M的平方根是a+5及﹣3a+11,∴a+5=3a﹣11,解得a=8,∴a+5=8+5=13,∴M=132=169;(2)∵3<<4,∴5+的小数部分是﹣3;5﹣的小数部分是,4﹣,∴a=﹣3,b=4﹣,∴3a+2b=3(﹣3)+2(4﹣)=﹣1.点评:本题考查的是估算无理数的大小及平方根的定义,在解答(2)时要先估算出的大小,再进行计算.变式训练1.(2013•吴江市模拟)3+的整数部分是a ,3﹣的小数部分是b ,则a+b 等于__________.解答:解:∵1<<2,∴4<3+<5, ∴3+的整数部分a=4; ∵1<<2, ∴﹣2<﹣<﹣1, ∴1<3﹣<2,设3﹣的整数部分为m ,则m=1, ∴3﹣的小数部分b=3﹣﹣m=2﹣, ∴a+b=4+2﹣=6﹣.故答案为6﹣.2.设x 是的整数部分,y 是的小数部分,化简|x ﹣y ﹣3|. 解答:解:∵<<, ∴5<<6, ∴x=5,y=﹣5, ∴|x ﹣y ﹣3|=|5﹣(﹣5)﹣3|=|7﹣|=7﹣.二次根式的化简及计算一、专题精讲题型一:二次根式的概念例1.(1)下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x ≥0,y•≥0). 分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、-、(x ≥0,y ≥0);不是二次根式的有:、、、. 例2.当x 是多少时,在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•才能有意义.解:由3x-1≥0,得:x ≥2331xx 04221x y+x y +2x 02x y +331x421x y+31x -31x -13A . 3到4之间B . 4到5之间C . 5到6之间D . 6到7之间解答:解:∵正方形的面积为28,∴它的边长为, 而5<<6. 故选C .2、(宝坻区二模)估算的值在( ) A .在4和5之间 B .在5和6之间 C .在6和7之间 D .在7和8之间 解答:解:∵<<, ∴2<<3,∴5+2<5+<5+3, 即7<5+<8, 故选:D .3、通过估算比较大小: _________.解答:解:∵2<<3, ∴0<﹣2<1, ∴<.4.化简:=-2)3(π 。