信号与系统,沈元隆第五章课后答案
- 格式:ppt
- 大小:5.37 MB
- 文档页数:25
第五章 习题5-1 设某信号为1000||()t x t e -=(1)试求x (t )的傅里叶变换X (j ω),并绘制X (j ω)曲线;(2)假设分别以采样频率为f s =5000Hz 和f s =1000Hz 对该信号进行采样,得到一组采样序列x k ,说明采样频率对序列x k 频率特性X (e j Ω)的影响。
解:(1)1000||622000()()10j t t j t X j x t e dt e e dt ωωωω∞∞----∞-∞===+⎰⎰. X (j ω)的曲线如下图所示:(2)设采样周期为T ,则采样输出为()()()()k k k x x t t kT x kT t kT δδ∞∞=-∞=-∞=-=-∑∑.由时域相乘等于频域卷积,有1122()()*[()]()*[()]22j k k X e X j t kT X j kT Tππδδππ∞∞Ω=-∞=-∞=Ω-=ΩΩ-∑∑F 121212()()()2k k X j k d X j jk T T T T Tπππωδωωπ∞∞∞-∞=-∞=-∞=⋅=Ω--=Ω-∑∑⎰. 即序列x k 频率特性X (e j Ω)是原信号频谱X (j ω)以2Tπ为周期进行延拓而成的,而采样频率1122s f T Tππ==⋅,所以采样频率越高,序列x k 频率特性的各周期越分散,越不容易发生频谱混叠。
5-2 假设平稳随机过程x (t )和y (t )满足下列离散差分方程11;k k k k k k k x ax e y ay x v ---=-=+式中,|a|<1;e k ,v k ~N (0,σ 2)分布,且二者互不相关。
试求随机序列y k 的功率谱。
解:对1k k k x ax e --=进行离散时间傅里叶变换(DTFT ),且记DTFT(x k )=X (e j Ω),DTFT(e k )=E (e j Ω),则有j j j ()(1)()X e ae E e ΩΩΩ--=式中,Ω=ωT s ,称为数字频率(rad ),ω为实际频率(rad/s ),T s 为采样周期(s )。
1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1 图中信号的函数表达式。
1-3 已知信号x1(t)与x2(t)波形如题图1-3 中所示,试作出下列各信号的波形图,并加以标注。
题图1-3⑴x1(t2)⑵ x1(1 t)⑶ x1(2t 2)⑷ x2(t 3)⑸ x2(t 2) ⑹x2(1 2t)2⑺x1(t) x2( t)⑻x1(1 t)x2(t 1)⑼x1(2 t) x2(t 4)21- 4 已知信号x1(n)与x2 (n)波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴x1(2n 1) ⑵ x1(4 n)⑶ x1(n)2⑷ x2 (2 n)⑸ x2(n 2) ⑹ x2(n 2) x2( n 1)⑺x1(n 2) x2(1 2n)⑻x1(1 n) x2(n 4)⑼ x1(n 1) x2(n 3)1- 5 已知信号x(5 2t )的波形如题图1-5 所示,试作出信号x(t)的波形图,并加以标注。
题图1-51- 6 试画出下列信号的波形图:1⑴ x(t) sin( t) sin(8 t)⑵ x(t) [1 sin( t )] sin(8 t)21⑶x(t) [1 sin( t)] sin(8 t)⑷ x(t) sin( 2t )1-7 试画出下列信号的波形图:⑴ x(t)1 e t u(t) ⑵ x(t) e t cos10 t[u(t 1) u(t 2)]⑶ x(t)(2 e t)u(t)⑷ x(t) e (t 1)u(t)⑸ x(t)u(t22 9) ⑹ x(t)(t2 4)1-8 试求出以下复变函数的模与幅角,并画出模与幅角的波形图1j2 ⑴ X (j ) (1 e j2)⑵ X( j1 e j4⑶ X (j ) 11 ee j ⑷ X( j )试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。
题图 1-10形图。
题图 1-141-15 已知系统的信号流图如下,试写出各自系统的输入输出方程。
习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
信号与系统奥本海姆中⽂答案chapter5第五章习题解答【注】:F{}表⽰傅⽴叶变换5.9 对某⼀特殊的[]x n ,其傅⽴叶变化()jw X e ,已知下⾯四个条件 1、[]x n =0,0n > 2、[0]0x > 3、Im{()}sin sin 2jw X e w w =-4、21()32jw x e dw πππ-=?求[]x n 。
解:由条件(1), (2) 和(3)得 A e e j X j j +-=ωωω2)(所以,][]2[]1[][n A n n n x δδδ++-+= 代⼊条件4,则可得][]2[]1[][n n n n x δδδ++-+=5.12 设2sinsin 4[]()*()c nw n y n n nπππ=式中*记为卷积,且c w π≤。
试对c w 确定⼀个较严格的限制,以保证2sin4[]()n y n nππ=。
解:}4sin{*}4sin{}]4sin {[2nn=≤≤≤≤-≤≤-=πωππωπωππωω2,024,240,1所以,≤≤≤≤=πωωωωππc c n n F 001}4sin{易见,πωπ≤≤c 2时,满⾜条件5.14 假设⼀单位脉冲响应为[]h n ,频率响应为()jw H e 的LTI 系统S ,具有下列条件: 1、1 ()[][]4nu n g n →,其中[]0,0,0g n n n =≥< 2、 /2()1j H e π= 3、()()()jw j w H e H e π-= 求[]h n 。
解: ∑∞∞---+==]0[]1[][)(g e g e n g eG j n j j ωωω)(4111)(ωωωj j j e H e e G --=)()411()(ωωωj j j e G e e H --=∴ωωωj j j e g e g g eg -----+=]0[41]1[41]0[]1[2 1)()(22==-πH e H1]0[41]1[41]0[]1[=+++-∴g j g g jg 0]1[]0[411]1[41]0[=-=+∴g g g g可得,g[0]=16/17, g[1]=1/17 所以,]2[17/1][17/16][17/117/16)(2--=∴-=-n n n h e eH j j δδωω5.16 有⼀信号的傅⽴叶变化是3(/2)1()2()114k jwj w k k X e e π--==-∑可以证明 [][][]x n g n q n =,其中[]g n 具有[]na u n 的形式,[]q n 是周期为N 的周期信号。
第5章连续时间信号的抽样与量化5.1试证明时域抽样定理。
证明:设抽样脉冲序列是一个周期性冲激序列,它可以表示为T(t)(tnT)sn由频域卷积定理得到抽样信号的频谱为:1F s ()F()T 2()1 T snFns式中F()为原信号f(t)的频谱,T ()为单位冲激序列T (t)的频谱。
可知抽样后信 号的频谱()F 由F()以s 为周期进行周期延拓后再与1T s 相乘而得到,这意味着如果 s s2,抽样后的信号f s (t)就包含了信号f(t)的全部信息。
如果s2m ,即抽样m 间隔 1 Tsf2m,则抽样后信号的频谱在相邻的周期内发生混叠,此时不可能无失真地重建 原信号。
因此必须要求满足1 Tsf2 m,f(t)才能由f s (t)完全恢复,这就证明了抽样定理。
5.2确定下列信号的最低抽样频率和奈奎斯特间隔:2t (1)Sa(50t)(2)Sa(100)2t (3)Sa(50t)Sa(100t)(4)(100)(60)SatSa解:抽样的最大间隔 T s 12f 称为奈奎斯特间隔,最低抽样速率f s 2f m 称为奈奎m斯特速率,最低采样频率s 2称为奈奎斯特频率。
m(1)Sa(t[u(50)u(50)],由此知m50rad/s ,则50)5025 f , m由抽样定理得:最低抽样频率50 f s 2f m ,奈奎斯特间隔1 T 。
sf50s2t(2))Sa(100)(1100200脉宽为400,由此可得radsm200/,则100f,由抽样定理得最低抽样频率m200f s2f m,奈奎斯特间隔1T。
sf200s(3)Sa[(50)(50)],该信号频谱的m50rad/s(50t)uu50Sa(100t)[u(100)u(100)],该信号频谱的m100rad/s10050Sa(50t)Sa(100t)信号频谱的m100rad/s,则f,由抽样定理得最低m抽样频率100f s2f m,奈奎斯特间隔1T。
可编辑第一章习题参考解答1.1 绘出下列函数波形草图。
(1) ||3)(t e t x -= (2) ()⎪⎪⎨⎧<≥=02021)(n n n x n n (3) )(2sin )(t t t x επ= (5) )]4()([4cos )(--=-t t t e t x t εεπ (7) t t t t x 2cos )]2()([)(πδδ--= (9) )2()1(2)()(-+--=t t t t x εεε)5- (11) )]1()1([)(--+=t t dt d t x εε (12) )()5()(n n n x --+-=εε (13) ⎰∞--=t d t x ττδ)1()((14) )()(n n n x --=ε 1.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是。
(1) ||3)(t e t x -=解 能量有限信号。
信号能量为:(2) ()⎪⎩⎪⎨⎧<≥=02021)(n n n x n n解 能量有限信号。
信号能量为:(3) t t x π2sin )(=解 功率有限信号。
周期信号在(∞-∞,)区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1。
(4) n n x 4sin )(π=解 功率有限信号。
n 4sinπ是周期序列,周期为8。
(5) )(2sin )(t t t x επ= 解 功率有限信号。
由题(3)知,在),(∞-∞区间上t π2sin 的功率为1/2,因此)(2sin t t επ在),(∞-∞区间上的功率为1/4。
如果考察)(2sin t t επ在),0(∞区间上的功率,其功率为1/2。
(6) )(4sin )(n n n x επ=解 功率有限信号。
由题(4)知,在),(∞-∞区间上n 4sinπ的功率为1/2,因此)(4sin n n επ在),(∞-∞区间上的功率为1/4。
5-6 解题过程: 令 ()()1c e t t πδω=,()()2sin c c t e t tωω= ()()11πωω==⎡⎤⎣⎦cE j e t F()()()()220πωωπωωωωωωω⎧<⎪==+−−=⎡⎤⎡⎤⎨⎣⎦⎣⎦⎪⎩,,其他c c c c c E j e t u u F 理想低通的系统函数的表达式 ()()()j H j H j e ϕωωω=其中 ()10c c H j ωωωωω⎧<⎪=⎨≥⎪⎩,,()0t ϕωω=−因此有()()()0t 110ωπωωωωωω−⎧<⎪==⎨⎪⎩c c e R j H j E j ,,其他 ()()()0t 220ωπωωωωωω−⎧<⎪==⎨⎪⎩c c e R j H j E j ,,其他()()12ωω=R j R j 则()()1112ωω−−=⎡⎤⎡⎤⎣⎦⎣⎦R j R j FF5-8 解题过程: 记 ()sin sin ωωωπωπ==⋅c c cc t t f t t t ()()0πωωωωωω⎧<⎪==⎡⎤⎨⎣⎦⎪≥⎩,,ccc F j f t F ()()()()sin 0ωωππωωωωωωωω⎧⎫⎡⎤⎪⎪==⎡⎤⎨⎬⎢⎥⎣⎦⎪⎪⎣⎦⎩⎭⎧⋅<⎪==⎨⎪≥⎩,,c c cc td H j h t dt t j j F j F F故 ()0ωωωωπωωω⎧⋅<⎪=⎨⎪≥⎩c cc H j ,, ()20πωωϕωωω⎧<⎪=⎨⎪≥⎩c c,,()ωH j 和()ϕω的图形如解图。
5-11 解题过程:由题图5-11有()()()()211=−−∗⎡⎤⎣⎦v t v t T v t h t 据时域卷积定理有()()()()211ωωωωω−⎡⎤=−⎣⎦j TV j V j e V j H j(1)()()1=v t u t()()()()2=−−∗⎡⎤⎣⎦v t u t T u t h t由()()()101ωπ−==−⎡⎤⎣⎦h t H j Sa t t F,()()()λλ−∞∗=∫tf t u t f d ,有 ()()()()()00200''''''1111λλλλππλλλλππ−−∞−∞−−−−∞−∞=−−−=−∫∫∫∫t Ttt t Tt t v t Sa t d Sa t d Sa d Sa d又知()()−∞=∫yi S y Sa x dx ,所有()()()2001π=−−−−⎡⎤⎣⎦i i v t S t t T S t t (2)()12sin 22⎛⎞⎜⎟⎛⎞⎝⎠==⎜⎟⎝⎠t t v t Sa t()()111220πωω⎧<⎪==⎡⎤⎨⎣⎦⎪⎩V j F v t 其他则 ()()()()()021121120ωωωπωωωω−−−⎧−<⎪=−=⎨⎪⎩j t j Tj Te eV j V j H j e其他所以 ()()()()122001122ω−⎡⎤⎡⎤==−−−−⎡⎤⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦v t V j Sa t t T Sa t t F 5-18 解题过程:信号()g t 经过滤波器()ωH j 的频谱为()()()()()1sgn ωωωωω==−G G H j j G信号()g t 经过与()0cos ωt 进行时域相乘后频谱为()()()20012ωωωωω=++−⎡⎤⎣⎦G G G 信号()1g t 经过与()0sin ω−t 进行时域相乘后频谱为()()()()()()()()()()()310100000000021sgn sgn 21sgn sgn 2ωωωωωωωωωωωωωωωωωωωωω=−+−−⎡⎤⎣⎦=−++−−−⎡⎤⎣⎦=−−+++⎡⎤⎣⎦jG G G G G G G()()()()()()()()()()()()(){}23000000000011sgn sgn 2211sgn 1sgn 2ωωωωωωωωωωωωωωωωωωωωωωω=+=++−+−−+++⎡⎤⎡⎤⎣⎦⎣⎦=+−++−++⎡⎤⎡⎤⎣⎦⎣⎦V G G G G G G G G 又由于 ()()()00021sgn 0ωωωωωω>⎧⎪+−=⎨<⎪⎩则 ()()()()()0000ωωωωωωωωω=−−+++V G U G U 其图形如图所示5-20 解题过程:(1)系统输入信号为()δt 时,()()()0cos δωδ=t t t 所以虚框所示系统的冲激响应()h t 就是()i h t 即 ()()()()010sin 2ωπ−Ω−⎡⎤⎣⎦==⎡⎤⎣⎦−i t t h t H j t t F(2)输入信号与()0cos w t 在时域相乘之后()()()()()220200sin sin 1cos 2cos cos 2ωωωΩΩ+⎡⎤⎡⎤==⎢⎥⎢⎥ΩΩ⎣⎦⎣⎦t t t e t t t t t 又由()ωi H j 的表达式可知0ωΩ 时,载波为02ω的频率成分被滤除 而且 ()0ϕωω=−t故 ()()()200sin 12⎡⎤Ω−=⎢⎥Ω−⎣⎦t t r t t t(3)输入信号()e t 与0cos ωt 在时域相乘之后()()()()220000sin sin 1cos sin cos sin 22ωωωωΩΩ⎡⎤⎡⎤==⋅⎢⎥⎢⎥ΩΩ⎣⎦⎣⎦t t e t t t t t t t 0ωΩ 时,载波为02ω的频率成分被滤除故 ()0=r t(4)由于理想低通滤波器能够无失真的传输信号,只是时间上的搬移,故理想低通滤波器是线性时变系统;又 ()()=i h t h t 所以该系统是线性时变的。
1第一章习题参考解答1.1 绘出下列函数波形草图;1 ||3)(t et x -=2 ()⎪⎪⎨⎧<≥=02021)(n n n x n n3 )(2sin )(t t t x επ=4 )(4sin )(n n n x επ=5 )]4()([4cos )(--=-t t t et x tεεπ6 )]4()1([3)(---=n n n x nεε7 t t t t x 2cos)]2()([)(πδδ--=8 )]1()3([)(--+=n n n n x δδ29 )2()1(2)()(-+--=t t t t x εεε10 )5(5)]5()([)(-+--=n n n n n x εεε11 )]1()1([)(--+=t t dtdt x εε 12 )()5()(n n n x --+-=εε13 ⎰∞--=td t x ττδ)1()(14 )()(n n n x --=ε1.2 确定下列信号的能量和功率,并指出是能量信号还是功率信号,或两者均不是; 1 ||3)(t et x -=解 能量有限信号;信号能量为:()⎰⎰⎰⎰∞-∞-∞∞--∞∞-+===02022||2993)(dt edt edt e dt t xE ttt ∞<=⋅-⋅+⋅⋅=∞-∞-9)21(92190202tte e2 ()⎪⎩⎪⎨⎧<≥=02021)(n n n x n n解 能量有限信号;信号能量为:()∞<=+=+==∑∑∑∑∑∞=--∞=∞=--∞=∞-∞=35)41(4])21[(2)(0102122n n n nn n n n n n xE3 t t x π2sin )(=3解 功率有限信号;周期信号在∞-∞,区间上的平均功率等于在一个周期内的平均功率,t π2sin 的周期为1;214cos 2124cos 1)2(sin )2(sin 121212121212121212222=-=-===⎰⎰⎰⎰⎰-----tdt dt dt t dt t dt t TP T T ππππ 4 n n x 4sin)(π=解 功率有限信号;n 4sinπ是周期序列,周期为8;21218122cos1814sin 81)(143434322==-===∑∑∑∑--=-=>=<n n n N n nn n x NP ππ5 )(2sin )(t t t x επ=解 功率有限信号;由题3知,在),(∞-∞区间上t π2sin 的功率为1/2,因此)(2sin t t επ在),(∞-∞区间上的功率为1/4;如果考察)(2sin t t επ在),0(∞区间上的功率,其功率为1/2;6 )(4sin)(n n n x επ=解 功率有限信号;由题4知,在),(∞-∞区间上n 4sin π的功率为1/2,因此)(4sinn n επ在),(∞-∞区间上的功率为1/4;如果考察)(4sin n n επ在),0(∞区间上的功率,其功率为1/2;7 tet x -=3)(解 非功率、非能量信号;考虑其功率:())(49lim2921lim 921lim 321lim 22222T TT T Tt T T T t T T T t T e e TeT dt e T dt e T P --=-===-∞→--∞→--∞→--∞→⎰⎰上式分子分母对T 求导后取极限得∞→P ;8 )(3)(t e t x tε-=解 能量信号;信号能量为:29299)3()(0202022=-====∞-∞-∞-∞∞-⎰⎰⎰t t t e dt e dt e dt t x E1.3 已知)(t x 的波形如题图1.3所示,试画出下列函数的波形;)(t x1t -1 0 1 2题图1.341 )2(-t x2 )2(+t x3 )2(t x4 )21(t x5 )(t x -6 )2(+-t x7 )2(--t x8 )22(+-t x9 )221(-t x)2(+t x1t -3 -2 -1 0)2(-t x1t 0 1 2 3 4)2(t x1t -1/2 0 1)2/(t x1t-2 -1 0 1 2 3 4)(t x -1t -2 -1 0 1)2(+-t x1t 0 1 2 3)2(--t x1t -4 -3 -3 -1 0)22(+-t x1t 0 1 3/2)22/(-t x1t 0 1 2 3 4 5 6 7 8510 )221(--t x11 )221()(-+t x t x12 )21()2(t x t x ⋅ 13dtt dx )(14 ⎰∞-t d x ττ)(=⎪⎪⎪⎩⎪⎪⎪⎨⎧-<≥<≤+<≤-++=122320210121221t t t t t t t)22/(--t x1t -8 -4 -2 0)221()(-+t x t x 1t -1 0 1 2 3 4 5 6 7 8)21()2(t x t x ⋅1t -1/2 0 1 dt t dx )(1t -1 0⎰∞-td x ττ)(3/21/2-1 0 1 2 t61.4 已知)(1t x 及)(2t x 的波形如题图1.4所示,试分别画出下列函数的波形,并注意它们的区别;1 )2(1t x2 )21(1t x3 )2(2t x4 )21(2t x1.5已知)(n x 的波形如题图1.5所示,试画出下列序列的波形;)(1t x 2 1t -1 0 1 )(2t x 21t0 1 2 3 4a b题图1.4)2(1t x 21t-1/2 1/2 )2(2t x210 1 2 t)21(1t x 21t -2 0 2)21(2t x 21t 0 4 8n 题图1.571)4(+n x2 )(n x -3 )3(--n x4 )3(+-n x5 )3(--n x +)3(+-n x6 0)3()3(=+-⋅--n x n x 图略7 )1()()(--=∇n x n x n x8∑-∞=nm m x )(1.6 任何信号可以分解为奇分量和偶分量的和:)()()(t x t x t x o e += 或 )()()(n x n x n x o e +=其中e x 为偶分量;o x 为奇分量;偶分量和奇分量可以由下式确定:)]()([21)(t x t x t x e -+=, )]()([21)(t x t x t x o --= )]()([21)(n x n x n x e -+=, )]()([21)(n x n x n x o --=1 试证明)()(t x t x e e -=或)()(n x n x e e -=;)()(t x t x o o --=或)()(n x n x o o --=;n) nnn -6-5–4 -3–2 –1 0 1 2 3 4∑-∞=nm m x )(n82 试确定题图1.6a 和b 所示信号的偶分量和奇分量,并绘出其波形草图;1 证明 根据偶分量和奇分量的定义:)()]()([21)(t x t x t x t x e e =+-=- )()]()([21)]()([21)(t x t x t x t x t x t x o o -=---=--=-离散序列的证明类似; 2 根据定义可绘出下图1.7 设nn x 2)(=,试求)(),(),(),(22n x n x n x n x ∆∇∆∇;)(t x1t 0 1 2)(t x -1t-2 -1 0)(t x e1/2t-2 -1 0 1 2)(t x o1/2 -2 -10 1 2t)(n x en9解 11222122)1()()(--=⋅=-=--=∇n nn n n x n x n x 21212222122)1()()(----=⋅=-=-∇-∇=∇n n n n n x n x n xn n n n x n x n x 222)()1()(1=-=-+=∆+n n n n x n x n x 222)()1()(112=-=∆-+∆=∆-+1.8 判断下列信号是否为周期信号,若是周期的,试求其最小周期; 1 )64cos()(π+=t t x解 周期信号,21π=T2 )()2sin()(t t t x επ= 解 非周期信号;3 )2cos()(t et x tπ-=解 非周期信号;4 )3(4)(-=t j et x π解 周期信号,81=T ;5 )cos()5sin()(t b t a t x π+=解 若,0,0≠=b a 则)(t x 为周期信号,21=b T ;若,0,0=≠b a 则)(t x 为周期信号,π521=a T ;若,0,0≠≠b a 则)(t x 为非周期信号;6 )38cos()(+=n n x π解 周期信号,161=N ;7 )97cos()(n n x π= 解 周期信号,181=N ;8 )16()(n con n x = 解: 非周期信号;9 n j en x 152)(π=10解: 周期信号,151=N ;10 )34sin(2)3sin()6cos(3)(ππππ+-+=n n n n x 解: 周期信号,最小公共周期为241=N ;1.9 计算下列各式的值; 1⎰∞∞--dt t t t x )()(0δ解: 原式dt t t x )()(0δ⎰∞∞--==).(0t x -2⎰∞--td t x ττδτ)()(0解: 原式ττδd t x t)()(0⎰∞--=)()(0t t x ε⋅-=3⎰∞∞--dt t t t x )()(0δ解: 原式dt t t x )()(0δ⎰∞∞-=)(0t x =4⎰∞∞--dt t t t x )(')(0δ解: 原式)(')(000't x t t x t --=--==5⎰∞∞---dt t t t t )2()(00εδ 解: 原式dt t t t t )()2(000-⋅-=⎰∞∞-δε)2(0t ε=6⎰∞---td t t ττετδ)2()(00解: 原式=⎰∞---td t t t τετδ)2()(000=⎰∞---t d t t ττδε)()(00)()(00t t t --=εε=⎩⎨⎧<->0)(00000t t t t ε 7⎰∞∞-dt t )(δ解: 原式1= 8⎰-∞-0)(dt t δ解: 原式0=119⎰∞+)(dt t δ解 原式0= 10⎰+-00)(dt t δ解 原式1= 11⎰∞∞--+-dt t tt )12)(33(2δ解 令t v 3=得:原式dv v vv 31]132)3)[(3(2-+-=⎰∞∞-δ32]132)3[(31=-+=x v v 32=12⎰∞∞-+dt t x t )()1('δ解: 原式)1()('1'--=-=-=x t x t13⎰∞∞--dt et t)('δ解: 原式1][0'=-==-t t e 14⎰--3131)()32(dt t x t δ解: 令t v 2=得:原式dv v x v 21)2()3(3232⋅-=⎰-δ=dv v x v 21)2()3(3232⋅-=⎰-δ因为0)3(3232=-⎰-dv v δ,所以: 原式=01.10 设)(t x 或)(n x 为系统的输入信号,)(t y 或)(n y 为系统的输出信号,试判定下列各函数所描述的系统是否是:a 线性的 b 时不变的 c 因果的 d 稳定的 e 无记忆的 1 )4()(+=t x t y 解 )(a 线性的.若 );4()()(111+=→t x t y t x )4()()(222+=→t x t y t x则: )()()4()4()()()(212121t by t ay t bx t ax t y t bx t ax +=+++=→+)(b 时不变的.若 )4()()(+=→t x t y t x则: )4()(ττ-+→-t x t x)(c 非因果的.120t 时刻的响应取决于0t 以后时刻即40+t 时刻的输入. )(d 稳定的.若|M t x ≤|)(<∞ 则:∞<≤M t y |)(| )(e 有记忆的若系统的输出仅仅取决当前时刻的输入,则称此系统为无记忆系统;题给系统显然不满足此条件;2 )()()(τ-+=t x t x t y 0>τ,且为常数 解 )(a 线性的.若 )()()()(1111τ-+=→t x t x t y t x ,)()()()(2222τ-+=→t x t x t y t x则: )]()([)]()([)()()(221121ττ-++-+=→+t x t x b t x t x a t y t bx t ax =)()(21t by t ay +)(b 时不变的.若 )()()()(τ-+=→t x t x t y t x则: )()()()(0000t t y t t x t t x t t x -=--+-→-τ )(c 当0>τ时为因果的.当0>τ时:系统0t 时刻的输出仅与0t 及0t 以前时刻的输入有关. 当0<τ时:系统0t 时刻的输出与0t 以后时刻的输入有关. )(d 稳定的.若|)(|t x ∞<, 则∞<|)(|t y )(e 有记忆的.系统0t 时刻的输出与0t 时刻以前的输入有关.3 )2/()(t x t y = 解:)(a 线性的. 说明略)(b 时变的若)2()()(t x t y t x =→ 则: )2()2()(τττ-≠-→-t x t x t x )(c 非因果的.)21()1(-=-x y . 即1-=t 时刻的输出与1-=t 时刻以后)21(-=t 的输入有关.)(d 稳定的. 说明略)(e 有记忆的.)21()1(x y =. 即1=t 时刻的输入与1=t 时刻以前)21(=t 的输入有关.4 )()(2t x t y = 解:)(a 非线性的.若 )()()(2111t x t y t x =→, )()()(2222t x t y t x =→则: )()()()()]()([)()(21222122121t by t ay t bx t ax t bx t ax t bx t ax +=+≠+→+)(b 时不变的.13若)()()(2t x t y t x =→ 则: )()()(2τττ-=-→-t y t x t x)(c 因果的. 说明略 )(d 稳定的. 说明略 )(e 无记忆的.0t 时刻的输出仅取决于0t 时刻的输入.5 )(2)(t x et y =解:)(a 非线性的. 说明略)(b 时不变的. 说明略 )(c 因果的. 说明略d 稳定的.若 |)(t x |∞<≤M , 则∞<≤M e t y 2|)(|e 无记忆的. 说明略6 t t x t y π2sin )()(=解: a 线性的.若 )(]2[sin )()(111t x t t y t x π=→,)(]2[sin )()(222t x t t y t x π=→ 则: )()()]()([2sin )()(212121t by t ay t bx t ax t t bx t ax +=+→+π b 时变的.若 )()(t y t x →则: )()](2[sin )()()2(sin )(ττπττπτ--=-≠-→-t x t t y t x t t x c 因果的. 说明略d 稳定的.若∞<≤M t x |)(|, 则∞<≤≤M t M t y |2sin ||)(| e 无记忆的. 说明略7 ⎩⎨⎧>=0)()()(t x t x t y解: a 非线性的.若 0)()0()(1≠→<t y t x而0<a 时: )(0)()0)((12t ay t y t ax ≠=→<,即不满足均匀性. b 时不变的.若 )()(t y t x → 则: )(0)(00)()()(00000t t y t t x t t x t t x t t x -=⎩⎨⎧<->--→-c 因果的.0t 时刻的输出仅与0t 以后时刻的输入无关. d 稳定的. 说明略 e 无记忆的. 说明略148 dtt dx t y )()(=解:a 线性的.若 dt t dx t y t x )()()(111=→,dtt dx t y t x )()()(222=→ 则: )()()]()([)()(212121t by t ay t bx t ax dtdt bx t ax +=+→+ b 时不变的.若: dtt dx t y t x )()()(=→ 则: )()()()()(τττττ-=--=-→-t y t d t dx dt t dx t xc 因果的. 说明略d 非稳定的.)()()()(t t y t u t x δ=→=e 无记忆的 说明略 9 ⎰∞-=td x t y ττ)()(解: a 线性的. 说明略 b 时不变的.若: ⎰∞-=→td x t y t x ττ)()()(则: )()()()(0000t t y dv v x d t x t t x t t t-==-→-⎰⎰-∞-∞-ττc 因果的. 说明略d 非稳定的.若∞<=|)(||)(|t u t x 1,但∞→|)(|t y e 有记忆的. 说明略10 )1()()(-⋅=n x n x n y解: a 非线性的若 )1()()()(1111-⋅=→n x n x n y n x ,)1()()()(2222-⋅=→n x n x n y n x则: )()()]1()1()][()([)()(2122121n by n ay n bx n ax n bx n ax n bx n ax +≠-+-+→+b 时不变的.若 )1()()()(-⋅=→n x n x n y n x则: )()1()()(N n y N n x N n x N n x -=--⋅-→- c 因果的.0n 时刻的输出与0n 时刻以后的输入无关. d 稳定的.若 |∞<≤M n x |)(, 则: |∞<≤2|)(M n y15e 有记忆的.0n 时刻的输出与0n 时刻以前的输入有关.11 )()(n nx n y =解: a 线性的.若 )()()(11n nx n y n x =→,)()()(222n nx n y n x =→ 则: )()()]()([)()(212121n by n ay n bx n ax n n bx n ax +=+→+ b 时不变的.若 )()()(n nx n y n x =→则: )()()()(N n y N n x N n N n x -=--→- c 因果的. 说明略d 非稳定的.即使M n x <|)(|,∞→n 时,∞→)(n y e 无记忆的. 说明略12 6)(5)(+=n x n y解: a 非线性的.若 6)(5)()(111+=→n x n y n x ,6)(5)()(222+=→n x n y n x 则: )(6)(6)]()([5)()()(212121n y n ay n bx n ax n y n bx n ax +≠++=→+ b 时不变的. 说明略 c 因果的. 说明略 d 稳定的. 说明略 e 无记忆的. 说明略13 )()(n x n y -= 解: a 线性的. 说明略 b 时变的.若 )()()(n x n y n x -=→则: )]([)()()(N n x N n y N n x N n x --=-≠--→-c 非因果的.)1()1(x y =- . 即 1-=n 时刻的输出与 1-=n 以后时刻1=n 时刻的输入有关. d 稳定的. 说明略e 有记忆的.).1()1(-=x y 即 1=n 时刻的输出与1=n 以前时刻1-=n 时刻的输入有关.1.11 已知)22(t x -的波形如题图1.11所示,试画出)(t x 的波形; 解 将)22(t x -的波形扩展可得)2(t x -,将)2(t x -的波形翻转得)2(t x +,将)2(t x +右移2个单位可得)(t x 的波形如下:)22(t x -2 1t 0 1 2 3 4题图1.11161.12 判断下列每个系统是否是可逆的,如果是可逆的,试构成其逆系统;如果不是,找出使系统具有相同输出的两个输入信号; 1 ⎰∞---=tt d x e t y τττ)()()(解 原式两边求导得:⎰⎰⎰∞---∞---∞---=-⋅=⎪⎭⎫ ⎝⎛=tt tt t t tt d x et x d x e e t x e e d x e e dt d t y τττττττττ)()()()()()(')(上式同原式相加得:dtt dy t y t x )()()(+=所以系统可逆,逆系统为: dt t dy t y t x )()()(+=2 ⎪⎩⎪⎨⎧-≤=≥-=1)(001)1()(n n x n n n x n y解: 系统可逆,逆系统为: ⎩⎨⎧-≤≥+=1)(0)1()(n n y n n y n x3 dtt dx t y )()(=解 系统不可逆,因为不能由)(t x 唯一地确定)(t y ;例如:11)(c t x =,)()(2122c c c t x ≠=0)()()()(2111====τd t dx dt t dx t y t y4 )()(n nx n y =解 系统不可逆,因为当0=n 时,不论)(n x 取何值,0)(0==n n y ;5 ⎰∞-=td x t y ττ)()(解 系统可逆,逆系统为dtt dy t x )()(=; )(t x21t -6 -4 -2 0176 )()21()(k x n y k n nk --∞=∑=解 系统可逆,逆系统为)1(21)()(--=y n y n x ; )()()21(21)()21()1(21)(11n x k x k x n y n y kn n k k n nk =-=------∞=--∞=∑∑ 或从z 域考虑:),()211()()()(),(*)()21()(121z Y z z X z X z z z Y n x n n y n --=∴-==ε 即逆系统为: )1(21)()(--=n n n h δδ1.13 对于例1.2中的)(t x 和)(n x ,请指出下面求解)12(-t x 和)1(+-n x 的过程错在何处 求解)12(-t x 的过程:)]21(2[)12(-=-t x t x∴先将)(t x 的波形右移21个单元得到,)21(-t x 的波形,再将)21(-t x 的波形压缩一倍得到)]21(2[-t x 即)12(-t x 的波形,如题图1.13a 所示;求解)1(+-n x 的过程:)]1([)1(--=+-n x n x∴先将)(n x 的波形右移1个单元得到)1(-n x 的波形,再将)1(-n x 的波形反转得到)]1([--n x 即)1(+-n x 的波形,如题图1.13b 所示;题图1.1318答 设)21()(-=t x t g ,则)12()212()2(-≠-=t x t x t g ,所以)12(-t x 和)21(-t x 并不构成压扩关系;类似,)1(+-n x 和)1(-n x 并不构成反转关系;。
第一章 习 题1-1 画出下列各信号的波形:(1) f 1(t)=(2-e -t )U(t); (2) f 2(t)=e -t cos10πt×[U(t -1)-U(t-2)]。
答案(1))(1t f 的波形如图1.1(a )所示.(2) 因t π10cos 的周期s T 2.0102==ππ,故)(2t f 的波形如图题1.1(b)所示.1-2 已知各信号的波形如图题1-2所示,试写出它们各自的函数式。
答案)1()]1()([)(1-+--=t u t u t u t t f)]1()()[1()(2----=t u t u t t f)]3()2()[2()(3----=t u t u t t f1-3 写出图题1-3所示各信号的函数表达式。
答案2002121)2(21121)2(21)(1≤≤≤≤-⎪⎩⎪⎨⎧+-=+-+=+=t t t t t t t f)2()1()()(2--+=t u t u t u t f)]2()2([2sin )(3--+-=t u t u t t f π)3(2)2(4)1(3)1(2)2()(4-+---++-+=t u t u t u t u t u t f1-4 画出下列各信号的波形:(1) f 1(t)=U(t 2-1); (2) f 2(t)=(t-1)U(t 2-1);(3) f 3(t)=U(t 2-5t+6); (4)f 4(t)=U(sinπt)。
答案(1) )1()1()(1--+-=t u t u t f ,其波形如图题1.4(a)所示.(2))1()1()1()1()]1()1()[1()(2---+--=--+--=t u t t u t t u t u t t f 其波形如图题1.4(b)所示.(3))3()2()(3-++-=t u t u t f ,其波形如图1.4(c)所示.(4) )(sin )(4t u t f π=的波形如图题1.4(d)所示.1-5 判断下列各信号是否为周期信号,若是周期信号,求其周期T 。