酶专题知识归纳与透析资料
- 格式:doc
- 大小:158.00 KB
- 文档页数:12
高中生物中各种酶的考点归纳1 、高中生物学学科体系中的酶酶是由活细胞合成、在机体内行使催化功能的生物催化剂。
目前已发现的酶约有万余种,在高中生物学学科体系中常见的酶及功能概括如表1所示。
2、酶的化学本质一般认为,自然界绝大多数酶是蛋白质,仅有少数为RNA。
蛋白类的酶可分为单纯酶(其分子组成全为蛋白质)和全酶(含蛋白质和非蛋白质成分,图1)两种。
核酶是具有催化功能的RNA分子,大多数核酶具有剪切RNA的功能。
经过30多年的研究历程,科学家已证实自然发生的14种核酶(表2)。
在高中生物学学科体系中涉及的核酶主要有催化真核细胞核mRNA前体剪接的剪接体和催化蛋白质生物合成的核糖体。
3、酶作用的机制酶的作用机制是通过降低生化反应的活化能来提高反应速率。
目前该机制一般用中间产物学说来解释,其核心是酶在催化过程中首先与底物结合形成酶-底物中间复合物,发生化学反应后再分解成酶和产物,酶在反应前后数量和性质均不变。
4、酶的作用特点酶的作用具有高效性,与无机催化剂的反应相比,酶促反应的速率一般要高1010~1012倍,甚至更高(表3)。
酶的作用具有专一性,酶对底物的选择具有严格的专一性,即一种酶只能作用于一种或一类底物,使其发生特定类型的化学反应,并产生特定的产物。
酶的催化活性依赖其空间结构的完整,一旦变性则会失去催化能力。
高温、高压、极端pH和重金属盐等都容易使酶失去催化活性。
故酶促反应要求在比较温和的条件下进行,如常温、常压等。
核酶在发挥作用时与上述起催化作用的蛋白质具有相似的特征,也有专一性,高效性和对温度、pH敏感等。
5、关于酶专一性的假说酶作用的专一性源于酶在催化时存在活性中心与底物结合的过程。
酶的活性中心又称活性部位,是指酶分子中能直接同底物结合并起催化反应的空间部位(图2)。
5.1“锁钥”学说人教版高中生物学教材必修1“降低化学反应活化能的酶”一节课后习题中展示了酶作用专一性的“锁钥”学说。
其主要观点是底物的结构(形状、大小、电荷的分布等)必须与酶活性中心的构象非常吻合才能结合"。
酶的相关知识点总结酶的种类生物体内有数以万计的酶,它们在生物体内执行各种各样的生化反应。
酶的种类多种多样,其主要可以分为六类:1.氧化还原酶:主要负责氧化还原反应,例如过氧化物酶、还原酶等。
2.转移酶:主要负责转移功能,例如葡萄糖转移酶、氨基转移酶等。
3.水解酶:主要负责水解反应,例如淀粉酶、脂肪酶等。
4.缩合酶:主要负责合成反应,例如脱氢酶、羧化酶等。
5.异构酶:能使底物分子发生构象变化,例如异构酶、光异构酶等。
6.水合酶:主要负责水合反应,例如碳酸脱水酶、水合酶等。
酶的结构酶是一种生物大分子,通常由多肽链构成,具有特定的空间结构。
酶的结构包括原核酶和蛋白质酶两种。
1.原核酶:由RNA组成,其代表是核糖体。
2.蛋白质酶:由氨基酸组成,其中催化活性部位主要由氨基酸残基组成。
酶活性的调节酶的活性受多种因素的调节。
1.温度:在一定的范围内,温度上升可以增加酶的活性,但过高的温度会破坏酶分子的结构,使其失活。
2.酸碱度(pH值):pH值的改变会影响酶分子的电荷状态,从而影响其活性。
不同的酶对pH值的适应范围不同。
3.底物浓度:酶活性受到底物浓度的影响,通常情况下,酶活性与底物浓度呈正相关关系。
4.抑制物:有些物质可以抑制酶的活性,分为竞争性抑制和非竞争性抑制两种。
5.激活物:有些物质可以激活酶的活性,提高酶的催化效率。
酶的应用酶在生物技术、医药、食品和环保等领域有广泛的应用。
1.生物技术:酶在DNA重组、基因工程、酶工程等领域的应用广泛。
2.医药:酶在疾病诊断、药物生产、治疗等方面有重要的作用。
3.食品:酶在食品加工、酿造、酶解等方面有广泛的应用。
4.环保:酶在废水处理、土壤修复、生物降解等方面有重要的应用。
酶在生物技术、医药、食品和环保等领域的应用为人类生产生活带来了巨大的便利和经济效益。
酶工程酶工程是利用基因重组技术和发酵工程技术对酶进行改造和生产,是将“天然酶”进行改造,以满足实际需要的技术。
酶工程技术的应用为酶的生产提供了更多的选择,扩大了酶的用途范围和提高了酶的效率。
酶1.酶的概念的理解及实验验证设计思路⑴酶的概念:由活细胞产生的具有催化作用的有机物,其中绝大多数是蛋白质,少数是RNA。
⑵酶的化学本质和生理作用及其实验验证①酶是有机物:绝大多数的酶是蛋白质,少数的酶是RNA设计思路:通过对照,实验组若出现紫色,则证明待测酶溶液是蛋白质,否则不是蛋白质。
同理,也可用吡咯红来鉴定酶是RNA的实验。
对照组:标准蛋白质溶液+双缩脲溶液检测→出现紫色反应;实验组:待测酶溶液+双缩脲溶液检测→是否出现紫色。
②酶的催化作用:酶能降低化学反应的活化能,具有催化作用。
设计思路:对照组:反应物+清水检测→反应物不被分解;实验组:反应物+等量的相应酶溶液检测→反应物被分解。
2.酶的特性及实验验证设计思路⑴酶的专一性:每一种酶只能催化一种或一类化学反应,对其他的化学反应无催化效应。
实验设计:用同一种酶催化不同反应物的或用不同酶催化同一反应物,观察相应的反应物是否被分解。
设计思路一:用同一种酶催化不同的反应物。
实验组:反应物+相应酶溶液检测→反应物被分解;对照组:另一反应物+等量相同酶溶液检测→反应物不被分解。
设计思路二:换酶不换反应物。
实验组:反应物+相应酶溶液检测→反应物被分解;对照组:相同反应物+等量另一种酶溶液检测→反应物不被分解。
此实验过程中要注意:①选择好检测反应物的试剂。
如反应物选择淀粉和蔗糖,酶溶液为淀粉酶,验证酶的专一性,检测反应物是否被分解的试剂宜选用婓林试剂,不能选用碘液,因为碘液无法检测蔗糖是否被水解。
②要保证蔗糖的纯度和新鲜程度是做好实验的关键。
⑵酶的高效性:酶的催化效率很高,是普通无机催化剂的107-13倍。
设计思路:通过比较酶与无机催化剂的催化速度,证明酶的高效性对照组:反应物+无机催化剂检测→反应物分解速度;实验组:反应物+等量酶溶液检测→反应物分解速度。
实验中自变量是无机催化剂和酶,因变量是底物分解速度。
⑶酶的作用条件温和:①适宜的温度:通过比较酶在不同的温度下的催化效率,设计思路:反应物+ t1 +酶溶液,反应物 + t2 +酶溶液,反应物+ t3 +酶溶液,……,反应物+ t n +酶溶液检测→反应物分解的速度或存在的量在实验步骤中要注意:a.在酶溶液和反应物混合之前,需要把两者先分别放在各自所需温度下保温一段时间。
高中生物酶的知识点总结
酶是一类能够催化生化反应的蛋白质,常见于生物体内,具有高效、特异性和可逆性等特点。
下面是高中生物酶的知识点总结:
1. 酶的性质:
- 酶分子激活能较低,催化反应速度快。
- 酶可以选择性地促进某种底物的反应,也可以受到抑制剂的影响。
- 酶催化的反应通常是可逆的。
在反应达到一定平衡时,产物和底物的浓度不再改变。
2. 酶的分类:
- 按照反应类型:氧化还原酶、转移酶、水解酶、脱羧酶等。
- 按照反应底物:蛋白酶、脂肪酶、糖苷酶等。
- 按照反应条件:酸性酶、碱性酶等。
3. 酶的影响因素:
- pH值:不同的酶对pH值的适应范围不同,酶活性在特定pH值区间内最高。
- 温度:酶活性在一定温度范围内最高,但超过一定温度会导致酶失活。
- 底物浓度:当底物浓度高于一定值时,反应速率不再随着底物浓度的增加而增加,因为酶的催化位点已全部占满。
4. 酶在生物体内的作用:
- 帮助生物体进行代谢活动,例如消化食物、合成有机物质。
- 调节代谢反应的速率,维持代谢平衡。
- 参与抵御病原微生物的攻击,例如生物体内的酶可低温杀菌。
5. 酶在实际应用中的应用:
- 酶技术广泛应用于食品、医药、纺织、制浆造纸等领域。
- 酶制剂也可用于环境保护,例如处理废水、垃圾等。
有关酶的知识点总结一、酶的分类及结构1. 酶的分类按照酶作用的反应类型,酶可以分为氧化还原酶、氧合酶、缩合酶、水解酶等多种类型。
按照酶对底物的作用方式,酶可以分为催化酶、调控酶、结构酶等类型。
2. 酶的结构酶的结构复杂多样,通常由一部分蛋白质和一部分非蛋白质分子组成。
酶蛋白质部分由不同类型的氨基酸组成,并且其结构可以包括原核细胞的简单蛋白,也可以包括真核细胞的复合蛋白。
酶的非蛋白质部分通常称为辅因子,它们可以是离子、联合辅因子等。
二、酶的催化原理1. 酶的底物特异性酶对底物的特异性是一种选择性,它只作用于一种或少数几种相似的底物。
这是因为酶与底物之间通过氢键、离子键、范德华力、疏水效应等相互作用,从而形成酶底物复合物。
所以,酶只能催化与其底物特异相互作用的反应。
2. 酶的催化速率酶可以显著地提高化学反应的速率。
酶催化的速率一般为化学反应速率的百万到十亿倍。
这是由于酶能够降低反应物的活化能,提高反应速率。
3. 酶的活性酶的活性会受到多种因素的影响,如温度、pH、离子强度、底物浓度等。
一般来说,酶的活性会随着温度和pH的升高而增加,在适宜的温度和pH条件下酶表现出最佳的活性。
三、酶的生物学功能1. 营养代谢酶在生物体内参与了多种代谢反应,包括碳水化合物、脂肪、蛋白质等物质的分解和合成。
例如,淀粉酶、脂肪酶、蛋白酶等酶可以帮助生物体将复杂的有机物质分解为单体,以提供能量和营养。
2. 调节代谢酶还可以调节生物体内的代谢过程,保持生物体内环境的稳定和平衡。
例如,磷酸可逆性的磷酸化反应可以通过激酶和蛋白磷酸酶来进行反应的逆向和正向调节。
3. 免疫与防卫酶在免疫系统中也扮演着重要角色,如溶菌酶、抗菌肽等酶可以帮助生物体对抗外部病原体的侵袭。
四、酶在工业与医学中的应用1. 食品工业在食品工业中,酶可以用于改善食品质量和加工过程。
比如利用蛋白酶对面团中的蛋白质进行降解,使食品口感更加鲜嫩。
2. 制药工业在制药工业中,酶可以用于合成活性药物、检测生物标志物和治疗疾病。
酶知识点总结一、酶的分类根据酶的作用方式和反应类型,可以将酶分为六类:氧化还原酶、转移酶、水解酶、合成酶、异构酶和降解酶。
氧化还原酶是通过氧化还原反应来催化化学反应的酶,如过氧化物酶、还原酶等;转移酶是通过转移功能基团来催化化学反应的酶,如激酶、酯酶等;水解酶是通过水解反应来催化化学反应的酶,如葡萄糖苷酶、淀粉酶等;合成酶是通过合成反应来催化化学反应的酶,如聚合酶、缺氧酶等;异构酶是通过异构反应来催化化学反应的酶,如异构酶、畸形酶等;降解酶是通过降解反应来催化化学反应的酶,如蛋白酶、脂肪酶等。
二、酶的结构酶的结构通常由一个或多个蛋白质构成,如大肠杆菌在酶毒素设计中使用了一种特殊的蛋白酶以瞄准许多不同的靶标。
酶的结构通常由蛋白质的一级结构、二级结构、三级结构和四级结构组成。
蛋白质的一级结构是指氨基酸的线性排列顺序,如甘氨酸-丙氨酸-赖氨酸等;蛋白质的二级结构是指氨基酸间的氢键作用形成的结构,如α-螺旋和β-折叠等;蛋白质的三级结构是指蛋白质整体所呈现的立体构象,如酶的活性中心,金属离子的配位作用等;蛋白质的四级结构是指蛋白质与其他蛋白质或非蛋白质结合形成的复合物结构,如多酶复合体和酶-底物复合物等。
酶的结构决定了其功能和催化活性,因此对酶的结构进行研究对于理解酶的功能和机制具有非常重要的意义。
三、酶的作用机制酶的作用机制通常包括底物结合、酶-底物复合物形成、催化作用和产物释放等步骤。
底物结合是指底物与酶的活性中心结合形成酶-底物复合物;酶-底物复合物形成是指酶与底物形成一个稳定的复合物结构;催化作用是指酶通过降低反应的活化能,使反应更容易发生;产物释放是指底物被催化转化成产物后,产物从酶的活性中心释放出来。
酶的作用机制是非常复杂的,涉及到多种相互作用和调控,因此对酶的作用机制进行研究可以帮助我们深入理解酶的功能和活性。
四、酶的应用酶在生物技术、食品工业、医药保健和环境保护等领域有着广泛的应用。
在生物技术中,酶被广泛应用于DNA重组、蛋白质工程、酶工程等领域,如限制性内切酶、DNA连接酶、聚合酶等;在食品工业中,酶被广泛应用于面包、酒、奶制品等食品的生产过程中,如淀粉酶、葡萄糖氧化酶、纤维素酶等;在医药保健中,酶被广泛应用于药物的制备和诊断试剂的开发中,如蛋白酶、转移酶、酯酶等;在环境保护中,酶被广泛应用于废水处理、土壤修复和固体废物降解等领域,如脱氮酶、脱磷酶、脂肪酶等。
高三生物选修酶知识点总结高三生物选修课程中,酶是一个至关重要的知识点。
酶能够在生物体内催化化学反应,是生命活动必不可少的媒介物质。
本文将对高三生物选修酶知识点进行总结和分享。
一、酶的基本概念和分类酶是一种具有生物催化活性的蛋白质,可在生物体内催化化学反应。
酶可根据其作用的底物进行分类,常见的有氧化酶、水解酶、转移酶等。
二、酶的特点和催化机理1.酶具有高度的专一性。
每种酶只能催化特定的底物,这是由于酶的立体构象决定的。
2.酶的催化速率远远高于非酶催化的速率。
这是由于酶能够降低活化能,加速反应速率。
3.酶对环境条件敏感。
酶的活性受到温度、pH值等环境因素的影响。
过高或过低的温度、pH值都会降低酶的活性。
4.酶能够反复使用。
在反应完成后,酶可以继续催化其他底物的反应,不参与其中。
三、酶的调节机制1.反馈抑制:反馈抑制是指产物对初级酶进行抑制,从而调节酶的活性。
这有助于维持生物体内化学反应的平衡。
2.激活酶:某些酶在特定条件下可以被其他物质激活,增加酶的活性。
3.共价修饰:通过化学反应对酶进行改变,从而改变酶的活性。
例如,磷酸化作用可以激活或抑制酶的活性。
四、酶在生物体内的重要作用1.消化系统中的酶:胃液中的胃蛋白酶能够催化蛋白质的消化,胰蛋白酶能够催化蛋白质、碳水化合物和脂肪的消化。
2.呼吸系统中的酶:细胞呼吸中需要多种酶的参与,其中最为重要的是线粒体内的酶。
3.免疫系统中的酶:一些酶能够参与吞噬细胞的活化过程,帮助免疫系统正常运作。
4.遗传物质的复制和修复:DNA复制和修复过程中需要多种酶的参与,保证遗传信息的准确传递和修复。
五、酶的应用1.工业应用:酶可以用于食品工业、制药工业等领域,例如在面包制作中,面团中的酶可以加速发酵过程,提高面包品质。
2.生物技术应用:酶在基因工程、DNA重组等领域有着重要的应用,例如PCR技术中的DNA聚合酶能够帮助扩增特定DNA序列。
3.医学应用:酶在医学诊断、治疗等方面起着重要作用,例如血液酶学检查可以辅助诊断某些疾病。
关于酶的专题总结一、概述酶是一种生物催化剂,在生物体内广泛存在,参与各种生化反应过程。
与无机催化剂相比,酶具有高活性和高度特异性,能够加速许多化学反应并维持生命活动的正常进行。
本文将围绕酶的性质、作用机制和应用领域展开讨论。
二、性质和分类1. 酶是蛋白质的一种,由氨基酸等基本单位组成;2. 具有高活性和高度专一性等特点;3. 对温度和酸碱度敏感,不同的酶在不同的环境条件下活性不同。
根据分子结构和催化机制的不同,可将酶分为氧化还原酶类、转移酶类、裂合酶类等几大类别。
三、作用机制1. 酶通过与底物结合形成复合物,改变其构象和电子分布,从而使其更容易接受能量输入以产生反应;2. 在这一过程中,酶可以接受氢原子供能或作为传递氢原子的媒介;3. 产物的生成抑制酶的活性,防止循环反应的发生。
四、应用领域1. 食品工业:利用淀粉酶水解淀粉制备葡萄糖等糖类物质;2. 医药行业:用于治疗疾病的药物开发和研究;3. 化工生产:提高化学反应速度和质量纯度;4. 环境科学:处理废水废气中的有害物质;5. 农业科技:应用于育种改良和生物农药的生产等。
五、发展趋势与应用前景1. 随着基因组学的发展,我们可以更好地理解酶的来源、进化关系及调节机制,为其生产和应用提供理论支持;2. 利用纳米技术制造微型酶制剂有望解决传统酶制剂用量大、成本高等问题;3. 通过研究新型gao效环保的微生物酶系,可进一步拓展其在环境保护、能源转化等领域的应用空间;4. 与人工智能相结合,人工酶的研究成果有望在分析检测、药物设计等方面发挥更大的作用。
六、总结与展望通过对酶的专题学习,我们深入了解了这种生物催化剂的性质、作用机制及其在各个领域的应用。
酶的高活性和高度特异性使其成为许多化学反应的关键环节,为工业生产、医药研究、环境保护和农业科技等领域带来了革命性的改变。
未来,随着科研技术的不断进步,我们可以期待人工合成的新型gao效环保酶系将进一步拓展其在多个领域的广泛应用。
《酶》知识清单一、酶的定义酶是由活细胞产生的、对其底物具有高度特异性和高度催化效能的蛋白质或 RNA。
酶的化学本质是蛋白质或 RNA,这一特点决定了酶具有不同于一般催化剂的独特性质。
二、酶的作用酶在生物体内发挥着至关重要的作用,几乎参与了所有的生命活动过程。
1、催化代谢反应酶能够加速生物体内的化学反应,使得原本需要在苛刻条件下才能进行的反应在温和的生理条件下迅速完成。
例如,消化酶能够帮助我们分解食物中的大分子物质,使其变成能够被吸收的小分子。
2、调节生理功能通过调节酶的活性和含量,可以控制生物体内的各种生理过程。
比如,某些激素可以通过激活或抑制特定的酶来调节细胞的代谢和功能。
3、参与物质运输一些酶参与物质的跨膜运输,帮助细胞摄取或排出所需的物质。
4、维持细胞结构和功能某些酶参与细胞结构的构建和维护,保证细胞的正常形态和功能。
三、酶的特性1、高效性酶的催化效率极高,通常比非催化反应高 10⁸ 10²⁰倍。
这使得生物体内的各种代谢反应能够快速进行,以适应生命活动的需要。
2、特异性酶对底物具有严格的选择性,一种酶通常只能催化一种或一类特定的化学反应。
这种特异性分为绝对特异性和相对特异性。
绝对特异性是指酶只作用于一种底物,产生一定的反应;相对特异性则是指酶作用于一类底物或一种化学键。
3、可调节性细胞可以根据内外环境的变化,通过多种方式调节酶的活性和含量,从而改变代谢的速度和方向。
4、不稳定性大多数酶是蛋白质,其活性容易受到多种因素的影响,如温度、pH 值、抑制剂等。
在极端条件下,酶可能会变性失活。
四、酶的分类根据酶催化反应的类型,酶可以分为六大类:1、氧化还原酶类参与氧化还原反应,如细胞呼吸中的脱氢酶。
2、转移酶类催化基团转移反应,例如甲基转移酶、氨基转移酶等。
3、水解酶类催化水解反应,如蛋白酶、淀粉酶等。
4、裂解酶类催化从底物分子中移去一个基团或原子形成双键的反应或其逆反应。
5、异构酶类催化同分异构体之间的相互转化。
酶1.酶的概念的理解及实验验证设计思路⑴酶的概念:由活细胞产生的具有催化作用的有机物,其中绝大多数是蛋白质,少数是RNA。
⑵酶的化学本质和生理作用及其实验验证①酶是有机物:绝大多数的酶是蛋白质,少数的酶是RNA设计思路:通过对照,实验组若出现紫色,则证明待测酶溶液是蛋白质,否则不是蛋白质。
同理,也可用吡咯红来鉴定酶是RNA的实验。
对照组:标准蛋白质溶液+双缩脲溶液检测→出现紫色反应;实验组:待测酶溶液+双缩脲溶液检测→是否出现紫色。
②酶的催化作用:酶能降低化学反应的活化能,具有催化作用。
设计思路:对照组:反应物+清水检测→反应物不被分解;实验组:反应物+等量的相应酶溶液检测→反应物被分解。
2.酶的特性及实验验证设计思路⑴酶的专一性:每一种酶只能催化一种或一类化学反应,对其他的化学反应无催化效应。
实验设计:用同一种酶催化不同反应物的或用不同酶催化同一反应物,观察相应的反应物是否被分解。
设计思路一:用同一种酶催化不同的反应物。
实验组:反应物+相应酶溶液检测→反应物被分解;对照组:另一反应物+等量相同酶溶液检测→反应物不被分解。
设计思路二:换酶不换反应物。
实验组:反应物+相应酶溶液检测→反应物被分解;对照组:相同反应物+等量另一种酶溶液检测→反应物不被分解。
此实验过程中要注意:①选择好检测反应物的试剂。
如反应物选择淀粉和蔗糖,酶溶液为淀粉酶,验证酶的专一性,检测反应物是否被分解的试剂宜选用婓林试剂,不能选用碘液,因为碘液无法检测蔗糖是否被水解。
②要保证蔗糖的纯度和新鲜程度是做好实验的关键。
⑵酶的高效性:酶的催化效率很高,是普通无机催化剂的107-13倍。
设计思路:通过比较酶与无机催化剂的催化速度,证明酶的高效性对照组:反应物+无机催化剂检测→反应物分解速度;实验组:反应物+等量酶溶液检测→反应物分解速度。
实验中自变量是无机催化剂和酶,因变量是底物分解速度。
⑶酶的作用条件温和:①适宜的温度:通过比较酶在不同的温度下的催化效率,设计思路:反应物+ t1 +酶溶液,反应物 + t2 +酶溶液,反应物+ t3 +酶溶液,……,反应物+ t n +酶溶液检测→反应物分解的速度或存在的量在实验步骤中要注意:a.在酶溶液和反应物混合之前,需要把两者先分别放在各自所需温度下保温一段时间。
b.若选择淀粉和淀粉酶探究酶的最适温度,检测反应物被分解的试剂宜选用碘液,不应该选用婓林试剂,因婓林试剂需水浴加热,而该实验中需严格控制温度。
②适宜的pH :设计思路:反应物+ pH1 +酶溶液,反应物+ pH 2 +酶溶液,反应物+ pH3 +酶溶液,……反应物+ pH n +酶溶液检测→反应物分解的速度或存在的量3.与酶有关的图表、曲线解读⑴表示酶的高效性的曲线①催化剂可加快化学反应速率,与无机催化剂相比,酶的催化效率更高。
②酶只能缩短达到化学平衡所需时间,不改变化学反应的平衡点。
⑵表示酶专一性的图解①图中A表示酶,B表示被催化的反应物。
②酶和被催化的反应物分子都有特定的结构。
⑶影响酶活性的曲线①在一定温度(pH)范围内,随着温度(pH)的升高,酶的催化作用增强;超过酶的最适温度(pH)后,随着温度(pH)的升高,酶的催化作用减弱。
②过酸、过碱、高温都会使酶的空间结构遭到破坏,使酶失去活性;而低温只是使酶的活性降低,酶的分子结构未遭到破坏,温度升高可恢复其活性。
⑷反应物浓度和酶浓度对酶促反应的影响①在其他条件适宜,酶浓度一定条件下,酶促反应速率随反应物浓度增加而加快;但当反应物达到一定浓度后,受酶数量和酶活性限制,酶促反应速率不再增加。
②在反应物充足,其他条件适宜的条件下,酶促反应的反应速率与酶浓度成正比。
4.教材中有关的酶⑴代谢中的酶①淀粉酶:主要有唾液淀粉酶、胰淀粉酶和肠淀粉酶。
可催化淀粉水解成麦芽糖;②麦芽糖酶:主要有胰麦芽糖酶和肠麦芽糖酶。
可催化麦芽糖水解成葡萄糖;③脂肪酶:主要有胰脂肪酶和肠脂肪酶。
可催化脂肪分解为脂肪酸和甘油;④蛋白酶:主要有胃蛋白酶和胰蛋白酶。
可催化蛋白质水解成多肽链;⑤肽酶:由肠腺分泌。
可催化多肽链水解成氨基酸;⑥过氧化氢酶:催化过氧化氢催化水解成氧气和过氧化氢;⑦DNA酶:催化DNA水解的酶。
除此之外,还有常见的光合作用酶、呼吸氧化酶、ATP合成酶、水解酶,酪氨酸酶、淀粉分支酶、溶菌酶等。
⑵遗传变异中的酶①解旋酶:在DNA复制或者转录时,解旋酶可以将DNA分子的两条多脱氧核苷酸链中配对的碱基从氢键处断裂,从而使两条螺旋的双链解开。
②DNA聚合酶和RNA聚合酶:分别催化脱氧核苷酸聚合成DNA链以及核糖核苷酸聚合成RNA链的反应。
③逆转录酶:催化以RNA为模板、以脱氧核糖核苷酸为原料合成DNA的过程。
⑶生物工程中的酶①限制核酸内切酶:主要存在于微生物中。
一种限制酶只能识别一种特定的核苷酸序列,并且能在特定的位点上切割DNA 分子。
在基因工程中可用限制酶可切割获得所需要的目的基因或运载体。
②DNA连接酶:是在两个DNA片段之间形成磷酸二酯键,不是在单个核苷酸与DNA片段之间形成磷酸二酯键。
可以在基因工程中用以连接目的基因和运载体。
③纤维素酶和果胶酶:在植物细胞工程中植物体细胞杂交时,需用纤维素酶和果胶酶去除植物细胞的细胞壁,从而获得有活力的原生质体。
④胰蛋白酶或胶原蛋白酶:在动物细胞培养中,需要用胰蛋白酶或胶原蛋白酶将取自动物胚胎或幼龄动物的器官和组织分散成单个的细胞,然后配制成细胞悬浮液进行原代培养。
当细胞贴满瓶壁后,要重新用胰蛋白酶等处理让细胞从甁壁上脱落下来分散成单个细胞,继续进行细胞培养。
5. 酶的分布、分类、合成和分泌过程⑴酶的分布:酶既可以在细胞内发挥作用,比如线粒体内的呼吸氧化酶和叶绿体中的光合作用酶等;也可以分泌到细胞外起作用,比如唾液淀粉酶、胃蛋白酶等各种消化酶。
不仅如此,在体外适宜的条件下酶也具有催化作用,比如可以把唾液淀粉酶加入到试管里,在适宜的条件下催化淀粉的水解反应。
⑵酶的分类:①根据酶在细胞中的分布可分为:胞外酶(如各种消化酶)、胞内酶(如呼吸酶、与光合作用有关的酶)。
②根据酶的作用反应物和产生器官分为:胃蛋白酶、胰蛋白酶、唾液淀粉酶、胰和肠麦芽糖酶、胰脂肪酶、肠脂肪酶等等。
③根据酶所催化的化学反应性质分为:水解酶、氧化酶、转录酶、逆转录酶、合成酶等。
⑶酶的合成过程:①遵循中心法则,②蛋白质类酶的合成包括转录和翻译,原料是氨基酸;而RNA酶的合成过程只有转录,原料是核糖核苷酸。
⑷酶的分泌过程:胞外酶合成之后要分泌到细胞外发挥催化作用,因此胞外酶的分泌过程也就是分泌蛋白的形成过程。
它的合成、加工和分泌过程,有核糖体、内质网、高尔基体、线粒体等的参与。
一、真题剖析考查点1:新陈代谢基础知识例1.(2009·重庆卷·1)下列有关酶的叙述,正确的是A.高温和低温均能破坏酶的结构使其失去活性 B.酶是活细胞产生并具有催化作用的蛋白质C.细胞质基质中有催化葡萄糖分解的酶 D.细胞质中没有作用于DNA 的解旋酶【解析】本题考查酶的相关知识。
酶是活细胞产生的具有催化作用的有机物,就其化学本质而言,包括蛋白质和RNA,B错;其活性受温度的影响,高温可使其变性失活,低温活性受抑制(未失活),A错;细胞质基质中有催化葡萄进行糖酵解的相关酶类,C正确;细胞质中的线粒体、叶绿体内有作用于DNA的解旋酶,D错。
【答案】C【易错警示】一是对酶的化学本质理解有误,认为酶都是蛋白质,其实有少数酶是RNA;二是对酶的分布不清楚,细胞质基质中有催化葡萄糖酵解的酶,DNA解旋酶分布在细胞核及其细胞质中的线粒体和叶绿体内;三是对温度和PH对酶影响不明确。
相对于最适温度而言,高温、低温都会影响酶的活性,但并不相同,过高温度会导致酶变性失活,低温则不会,酶的活性减弱在温度恢复适宜时可恢复;过高过低PH都会导致酶变性失活。
四是对酶的作用部位理解有误,以为酶只能在细胞中起作用,其实,只要条件适宜,酶在细胞外也能起作用。
例2.(2009·全国卷Ⅰ·32)(11分)已知2H2O2=2H2O+O2↑可以通过观察反应过程中O2的生成速度(即气泡从溶液中释放的速度)来判断H2O2分解反应的速度。
请用所给的实验材料和用具设计实验,使其能同时验证过氧化氢酶具有催化作用和高效性。
要求写出实验步骤、预测实验结果、得出结论,并回答问题。
实验材料与用具:适宜浓度的H2O2溶液,蒸馏水,3.5%FeCl3溶液,0.01%牛过氧化氢酶溶液,恒温水浴锅,试管。
⑴实验步骤:①……⑵实验结果预测及结论:整个实验中,不同处理的试管中O 2的释放速度从快到慢依次是:____。
由此可得出的结论是____。
⑶如果仅将实验中的恒温水浴改为80℃,重做上述实验,O 2释放的速度最快的是___。
原因是____。
【解析】一是要求同时验证酶具有催化作用和高效性,要验证酶具有催化作用需要在设置“在H 2O 2溶液中滴加0.01%牛过氧化氢酶”的实验组的同时,设置滴加“蒸馏水”的空白对照组,通过观察反应过程中O 2的生成速度,证明酶具有催化性;要证明酶具有高效性,可通过设置滴加“3.5%FeCl 3溶液”的对照组,比较实验现象来实现。
二是注意实验条件的有效且适宜(37℃恒温水浴锅中保温)。
三是完善实验步骤,应注意实验的原则,包括单一变量、对照、科学及可操作性原则等。
四是预测实验现象及分析实验结果时,应考虑实验条件对实验现象的影响:“仅将实验中的恒温水浴改为80℃”中,80℃会导致酶变性失活。
【答案】⑴①取3支试管,各加入等量且适量的H 2O 2溶液,放入37℃恒温水浴锅中保温适当时间②分别向上述3支试管加入等量且适量的蒸馏水、FeCl 3溶液和过氧化氢酶溶液③观察各试管中释放气泡的快慢⑵加酶溶液的试管、加FeCl 3溶液的试管、加蒸馏水的试管 酶具有催化作用和高效性⑶加FeCl3溶液的试管在此温度下,FeCl3催化作用加快,而过氧化氢酶因高温变性而失去了活性【技巧】一是认真审题,明确题目要求。
如同时验证酶具有催化作用和高效性、仅将实验中的恒温水浴改为80℃等。
二是理解实验原理,确定实验现象的观察方法。
如通过观察反应过程中O2的生成速度(即气泡从溶液中释放的速度)来判断H2O2分解反应的速度。
三是分析实验材料与用具的作用。
如恒温水浴锅的作用是保温,应思考在什么温度条件下?根据哺乳动物的体温为37℃左右,既可确定实验中的保温范围,也可解决⑶问中温度改变的影响。
四是实验步骤的设计,通常包括实验分组、实验条件控制、实验变量(自变量)的处理、实验现象的观察与记录等。
例3.(2009·全国理综Ⅰ·31)桃果实成熟后,如果软化快,耐贮运性就会差。
下图表示常温下A、B两个品种桃果实成熟后硬度等变化的实验结果。