控制系统频率特性实验
- 格式:pdf
- 大小:115.04 KB
- 文档页数:2
自动控制频率特性测试实验报告1. 引言在现代自动控制系统中,频率特性是一个重要的参数,对于系统的稳定性和性能起着决定性的作用。
频率特性测试实验旨在评估自动控制系统的频率响应,并分析系统在不同频率下的性能。
本实验报告将介绍自动控制频率特性测试实验的目的、实验器材、实验步骤和实验结果分析。
2. 实验目的本实验的主要目的是通过频率响应测试,评估自动控制系统的频率特性以及系统在不同频率下的性能。
具体目标包括:1.测试系统的幅频特性,即系统的增益与频率之间的关系;2.测试系统的相频特性,即系统的相移与频率之间的关系;3.分析系统的频率特性对系统的稳定性和性能的影响。
3. 实验器材本实验所需的器材包括:•信号发生器:用于产生不同频率的输入信号;•可变增益放大器:用于控制输入信号的幅度;•相位巡迥器:用于调节输入信号的相位;•示波器:用于观测输入信号和输出信号;•自动控制系统:接受输入信号并提供相应的控制输出。
4. 实验步骤4.1 准备工作1.确保实验器材连接正确,信号发生器连接到自动控制系统的输入端,示波器连接到自动控制系统的输出端。
2.将可变增益放大器和相位巡迥器分别接入信号发生器的输出端,用于调节输入信号的幅度和相位。
4.2 测试幅频特性1.设置信号发生器的频率为起始频率,将幅度设置为合适的值。
2.将相位巡迥器的相位设置为零,确保输入信号的相位与输出信号相位一致。
3.记录输入信号和输出信号的幅度,并计算增益。
4.逐渐增加信号发生器的频率,重复步骤3,直到达到结束频率。
4.3 测试相频特性1.设置信号发生器的频率为起始频率,将幅度和相位设置为合适的值。
2.记录输入信号和输出信号的相位差,并计算相移。
3.逐渐增加信号发生器的频率,重复步骤2,直到达到结束频率。
4.4 结果记录与分析1.将实验得到的数据记录下来,包括输入信号频率、幅度、输出信号频率、幅度、相位差等。
2.绘制幅频特性曲线图,分析系统的增益随频率变化的规律。
《自动控制原理》实践报告实验三系统频率特性曲线的绘制及系统分析熟悉利用计算机绘制系统伯德图、乃奎斯特曲线的方法,并利用所绘制图形分析系统性能。
一、实验目的1.熟练掌握使用MATLAB软件绘制Bode图及Nyquist曲线的方法;2.进一步加深对Bode图及Nyquist曲线的了解;3.利用所绘制Bode图及Nyquist曲线分析系统性能。
二、主要实验设备及仪器实验设备:每人一台计算机奔腾系列以上计算机,配置硬盘≥2G,内存≥64M。
实验软件:WINDOWS操作系统(WINDOWS XP 或WINDOWS 2000),并安装MATLAB 语言编程环境。
三、实验内容已知系统开环传递函数分别为如下形式, (1))2)(5(50)(++=s s s G (2))15)(5(250)(++=s s s s G(3)210()(21)s G s s s s +=++ (4))12.0)(12(8)(++=s s s s G (5)23221()0.21s s G s s s s ++=+++ (6))]105.0)125.0)[(12()15.0(4)(2++++=s s s s s s G 1.绘制其Nyquist 曲线和Bode 图,记录或拷贝所绘制系统的各种图形; 1、 程序代码: num=[50];den=conv([1 5],[1 2]); bode(num,den)num=[50];den=conv([1 5],[1 2]); nyquist(num,den)-80-60-40-20020M a g n i t u d e (d B)10-210-110101102103-180-135-90-450P h a s e (d e g )Bode DiagramFrequency (rad/sec)-1012345-4-3-2-11234Nyquist DiagramReal AxisI m a g i n a r y A x i s2、 程序代码: num=[250];den=conv(conv([1 0],[1 5]),[1 15]); bode(num,den)num=[250];den=conv(conv([1 0],[1 5]),[1 15]);-150-100-5050M a g n i t u d e (d B )10-110101102103-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)nyquist(num,den)3、 程序代码: num=[1 10];den=conv([1 0],[2 1 1]); bode(num,den)-150-100-50050100M a g n i t u d e (d B)10-210-110101102103-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)-1-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10-15-10-551015System: sys Real: -0.132Imag: -0.0124Frequency (rad/sec): -10.3Nyquist DiagramReal AxisI m a g i n a r y A x i snum=[1 10];den=conv([1 0],[2 1 1]); nyquist(num,den)-25-20-15-10-5-200-150-100-5050100150200Nyquist DiagramReal AxisI m a g i n a r y A x i s-100-5050100M a g n i t u d e (d B )10-210-110101102-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)4、 程序代码: num=[8];den=conv(conv([1 0],[2 1]),[0.2 1]); bode(num,den)-18-16-14-12-10-8-6-4-20-250-200-150-100-50050100150200250Nyquist DiagramReal AxisI m a g i n a r y A x i snum=[8];den=conv(conv([1 0],[2 1]),[0.2 1]); nyquist(num,den)5、 程序代码: num=[1 2 1]; den=[1 0.2 1 1]; bode(num,den)num=[1 2 1];den=[1 0.2 1 1]; nyquist(num,den)-40-30-20-10010M a g n i t u d e (d B )10-210-110101102-360-270-180-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)-2.5-2-1.5-1-0.500.51 1.5-3-2-1123Nyquist DiagramReal AxisI m a g i n a r y A x i s-100-5050100M a g n i t u d e (d B )10-210-110101102-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)6、 num=[2 4];den=conv(conv([1 0],[2 1]),[0.015625 0.05 1]); bode(num,den)num=[2 4];den=conv(conv([1 0],[2 1]),[0.015625 0.05 1]); nyquist(num,den)2.利用所绘制出的Nyquist 曲线及Bode 图对系统的性能进行分析:(1)利用以上任意一种方法绘制的图形判断系统的稳定性; 由Nyquist 曲线判断系统的稳定性,Z=P-2N 。
实验四控制系统频率特性的测试一.实验目的认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。
二.实验装置(1)微型计算机。
(2)自动控制实验教学系统软件。
三.实验原理及方法(1)基本概念一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下:幅频特性相频特性(2)实验方法设有两个正弦信号:若以)(y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以)(t化,)(y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和)(t曲线(通常是一个椭圆)。
这就是所谓“李沙育图形”。
由李沙育图形可求出Xm ,Ym,φ,四.实验步骤(1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。
(2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K(3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点五.数据处理(一)第一种处理方法:(1)得表格如下:(2)作图如下:(二)第二种方法:由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。
(三)误差分析两图形的大体趋势一直,从而验证了理论的正确性。
在拐点处有一定的差距,在某些点处也存在较大的误差。
分析:(1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。
(2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。
(3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异六.思考讨论(1)是否可以用“李沙育”图形同时测量幅频特性和想频特性答:可以。
在实验过程中一个频率可同时记录2Xm,2Ym,2y0。
(2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。
一、实验目的1. 理解频率特性的基本概念和测量方法。
2. 掌握使用Bode图和尼奎斯特图分析系统频率特性的方法。
3. 了解频率特性在系统设计和稳定性分析中的应用。
二、实验原理频率特性描述了系统对正弦输入信号的响应,通常用幅频特性和相频特性来表示。
幅频特性表示输出信号幅度与输入信号幅度之间的关系,相频特性表示输出信号相位与输入信号相位之间的关系。
频率特性的测量通常通过以下步骤进行:1. 使用正弦信号发生器产生不同频率的正弦信号。
2. 将信号输入被测系统,并测量输出信号的幅度和相位。
3. 根据测量数据绘制幅频特性和相频特性曲线。
三、实验设备1. 正弦信号发生器2. 示波器3. 信号分析仪4. 被测系统(如电路、控制系统等)四、实验步骤1. 准备实验设备,确保各设备连接正确。
2. 设置正弦信号发生器,产生一系列不同频率的正弦信号。
3. 将正弦信号输入被测系统,并使用示波器或信号分析仪测量输出信号的幅度和相位。
4. 记录不同频率下的幅度和相位数据。
5. 使用绘图软件绘制幅频特性和相频特性曲线。
五、实验结果与分析1. 幅频特性分析通过绘制幅频特性曲线,可以观察到系统对不同频率信号的衰减程度。
一般来说,低频信号的衰减较小,高频信号的衰减较大。
根据幅频特性,可以判断系统的带宽和稳定性。
2. 相频特性分析通过绘制相频特性曲线,可以观察到系统对不同频率信号的相位延迟。
相频特性曲线通常呈现出滞后或超前特性。
根据相频特性,可以判断系统的相位裕度和增益裕度。
3. 系统稳定性分析根据幅频特性和相频特性,可以判断系统的稳定性。
如果系统的相位裕度和增益裕度都大于零,则系统是稳定的。
否则,系统可能是不稳定的。
六、实验结论通过本次实验,我们成功地测量了被测系统的频率特性,并分析了其幅频特性和相频特性。
实验结果表明,被测系统在低频段表现出较小的衰减,而在高频段表现出较大的衰减。
相频特性曲线显示出系统在低频段滞后,在高频段超前。
根据频率特性分析,可以得出被测系统是稳定的。
一、实验目的1. 了解频率特性法的基本原理和测试方法。
2. 掌握用频率特性法分析系统性能的方法。
3. 熟悉实验仪器和实验步骤。
二、实验原理频率特性法是控制系统分析和设计的重要方法之一。
它通过研究系统在正弦信号作用下的稳态响应,来分析系统的动态性能和稳态性能。
频率特性主要包括幅频特性和相频特性,它们分别反映了系统在正弦信号作用下的幅值和相位变化规律。
三、实验仪器与设备1. 微型计算机2. 自动控制实验教学系统软件3. 超低频信号发生器4. 示波器5. 信号调理器6. 被测系统(如二阶系统、三阶系统等)四、实验内容与步骤1. 实验内容(1)测量被测系统的幅频特性(2)测量被测系统的相频特性(3)绘制幅频特性曲线和相频特性曲线(4)分析系统性能2. 实验步骤(1)连接实验电路,确保各设备正常工作。
(2)使用超低频信号发生器产生正弦信号,频率范围可根据被测系统特性选择。
(3)将信号发生器的输出信号送入被测系统,同时将信号发生器和被测系统的输出信号送入示波器。
(4)调整信号发生器的频率,记录不同频率下被测系统的输出幅值和相位。
(5)将实验数据输入计算机,利用自动控制实验教学系统软件进行数据处理和绘图。
(6)分析系统性能,包括系统稳定性、动态性能和稳态性能。
五、实验结果与分析1. 幅频特性曲线根据实验数据,绘制被测系统的幅频特性曲线。
从曲线中可以看出,随着频率的增加,系统的幅值逐渐减小,并在一定频率范围内出现峰值。
峰值频率对应系统的谐振频率,峰值幅度对应系统的谐振增益。
2. 相频特性曲线根据实验数据,绘制被测系统的相频特性曲线。
从曲线中可以看出,随着频率的增加,系统的相位逐渐变化,并在一定频率范围内出现相位滞后或相位超前。
3. 系统性能分析根据幅频特性和相频特性曲线,可以分析被测系统的性能。
(1)稳定性分析:通过分析相频特性曲线,可以判断系统是否稳定。
如果系统在所有频率范围内都满足相位裕度和幅值裕度要求,则系统稳定。
第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。
2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。
3. 分析测试结果,确定系统的主要频率成分和频率响应特性。
二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。
幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。
频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。
三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。
五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。
这些峰值和谷值可能对应系统中的谐振频率或截止频率。
通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。
2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。
相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。
通过分析相位特性,可以了解系统的相位稳定性。
六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。
2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。
3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。
控制系统的频域分析实验报告
摘要:
本实验旨在通过频域分析的方法来研究和评估控制系统的特性和性能。
在实验中,我们采用了频域分析的基本工具——Bode图和Nyquist图,通过对控制系统的幅频特性和相频特性进行分析,得出了系统的稳定性、干扰抑制能力和稳态性精度等方面的结论。
实验结果表明,频域分析是评估和优化控制系统的一种有效方法。
一、引言
频域分析是控制系统分析中常用的一种方法,通过对系统的频率响应进行研究,可以揭示系统的动态特性和性能,为控制系统的设计和优化提供指导。
在本实验中,我们将利用频域分析方法对一个具体的控制系统进行分析,通过实验验证频域分析的有效性。
二、实验装置和方法
实验所用控制系统包括一个控制对象(如电动机或水流系统)和一个控制器(如PID控制器)。
在实验中,我们将通过改变输入信号的频率来研究系统的频率响应。
实验步骤如下:
1. 连接实验装置,确保控制系统可正常工作。
2. 设计和设置适当的输入信号,包括常值信号、正弦信号和随
机信号等。
3. 改变输入信号的频率,记录系统的输出信号。
4. 利用实验记录的数据,绘制系统的幅频特性曲线和相频特性
曲线。
三、实验结果与讨论
根据实验记录的数据,我们绘制了控制系统的幅频特性曲线和
相频特性曲线,并对实验结果进行了分析和讨论。
1. 幅频特性分析
幅频特性曲线描述了控制系统对不同频率输入信号的增益特性。
在幅频特性曲线中,频率越高,输出信号的幅值越低,说明系统对
高频信号具有抑制作用。
【实验名称】控制系统的频率特性分析【实验目的】1) 掌握运用MATLAB 软件绘制控制系统波特图的方法; 2) 掌握MATLAB 软件绘制奈奎斯特图的方法; 3) 利用波特图和奈奎斯特图对控制系统性能进行分析。
【实验仪器】1) PC 机一台 2) MATLAB 软件【实验原理】1. 奈奎斯特稳定判据及稳定裕量(1)奈氏(Nyquist )判据:反馈控制系统稳定的充要条件是奈氏曲线逆时针包围临界点的圈数R 等于开环传递函数右半s 平面的极点数P , 即R=P ;否则闭环系统不稳定, 闭环正实部特征根个数Z 可按下式确定Z=P-R=P-2N (2)稳定裕量利用)()(ωωj H j G 轨迹上两个特殊点的位置来度量相角裕度和增益裕度。
其中)()(ωωj H j G 与单位圆的交点处的频率为c ω(截止频率);)()(ωωj H j G 与负实轴的交点频率为x ω(穿越频率)。
则相角裕度:)(180)()(180c c c j H j G ωϕωωγ+=∠+= 增益裕度:)(1)()(1x x x A j H j G h ωωω==(对数形式:)(lg 20)()(lg 20x x x A j H j G h ωωω-=-= 2. 对数频率稳定判据将系统开环频率特性曲线分为幅频特性和相频特性,分别画在两个坐标上,横轴都用频率ω,纵轴一个用对数幅值和相角,这两条曲线画成的图就是Bode 图,即对数频率特性图。
因为Bode 图与奈氏图有一一对应关系,因此,奈氏稳定判据就可描述为基于Bode 图的对数频率稳定判据:(1)开环系统稳定,即开环系统没有极点在正右半根平面,如果其对数幅频曲线大于0dB 的区域内,相频曲线对180-线正负穿越次数相等,那么闭环系统就是稳定的,否则是不稳定的。
(2)开环系统不稳定,有P 个极点在正右半平面,如果其对数幅频曲线大于0dB 的区域内,相频曲线对180-线正穿越次数大于负穿越次数P/2,闭环系统就是稳定的,否则是不稳定的。
自动控制原理实验报告(三)
频率特性测试
一.实验目的
1.了解线性系统频率特性的基本概念。
2.了解和掌握对数幅频曲线和相频曲线(波德图)的构造及绘制方法。
二.实验内容及步骤
被测系统是一阶惯性的模拟电路图见图3-2-1,观测被测系统的幅频特性和相频特性,填入实验报告。
本实验将正弦波发生器(B4)单元的正弦波加于被测系统的输入端,用虚拟示波器观测被测系统的幅频特性和相频特性,了解各种正弦波输入频率的被测系统的幅频特性和相频特性。
图3-2-1 被测系统的模拟电路图
实验步骤:
(1)将函数发生器(B5)单元的正弦波输出作为系统输入。
(2)构造模拟电路。
三.实验记录:
ω
ω=1
ω=1.6
ω=3.2
ω=4.5
ω=6.4
ω=8
ω=9.6
ω=16
实验分析:
实验中,一阶惯性环节的幅频特性)(ωL ,相频特性)(ωϕ随着输入频率的变化而变化。
惯性环节的时间常数T 是表征响应特性的唯一参数,系统时间常数越小,输出相应上升的越快,同时系统的调节时间越小。
课程名称: 控制理论乙 指导成绩:实验名称: 频率特性的测量 实验类型:同组学生__ 一、实验目的和要求〔必填〕二、实验内容和原理〔必填〕 三、主要仪器设备〔必填〕四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析〔必填〕 七、讨论、心得 一、实验目的和要求1.掌握用李沙育图形法,测量各典型环节的频率特性;2.根据所测得的频率特性,作出伯德图,据此求得环节的传递函数. 二、实验内容和原理1.实验内容〔1〕R-C 网络的频率特性.图5-2为滞后--超前校正网络的接线图,分别测试其幅频特性和相频特性. 〔2〕闭环频率特性的测试被测的二阶系统如图5-3所示,图5-4为它的模拟电路图. 取参考值051R K =,1R 接470K 的电位器,2510R K =,3200R K =2.实验原理对于稳定的线性定常系统或环节,当其输入端加入一正弦信号()sin m X t X t ω=,它的稳态输出是一与输入信号同频率的正弦信号,但其幅值和相位随着输入信号频率ω的改变而改变.输出信号为其中()mmY G j X ω=,()arg ()G j ϕωω= 只要改变输入信号的频率,就可以测得输出信号与输入信号的幅值比()G j ω和它们的相位差()ϕω.不断改变()x t 的频率,就可测得被测环节〔系统〕的幅频特性和相频特性. 本实验采用李沙育图形法,图5-1为测试的方框图在表〔1〕中列出了超前于滞后时相位的计算公式和光点的转向.表中 02Y 为椭圆与Y 轴交点之间的长度,02X 为椭圆与X 轴交点之间的距离,m X 和m Y 分别为()X t 和()Y t 的幅值.三、主要仪器设备1.控制理论电子模拟实验箱一台; 2.慢扫描示波器一台;3. 任意函数信号发生器一台; 4.万用表一只. 四、操作方法和实验步骤 1.实验一〔1〕根据连接图,将导线连接好〔2〕由于示波器的CH1已经与函数发生器的正极相连,所以接下来就要将CH2接在串联电阻电容上,将函数发生器的正极接入总电路两端,并且示波器和函数发生器的黑表笔连接在一起接地.〔3〕调整适当的扫描时间,将函数发生器的幅值定为5V 不变,然后摁下扫描时间框中的menu,点击从Y-t变为X-Y显示.〔4〕改变函数发生器的频率,记录数据与波形.2.实验二:基本与实验一的实验步骤相同.五、实验数据记录和处理1.实验结果分析〔1〕实验一根据测得的数据,并经过一系列计算之后,得到的实验一幅频相频特性曲线如图所示:实验一幅频特性曲线〔实验〕实验一相频特性曲线〔实验〕通过运用公式理论计算得到的曲线如下图所示:实验一幅频特性曲线〔计算〕实验一相频特性曲线〔计算〕通过matlab仿真所得实验一中的幅频相频特性曲线如下图所示:由此可以看出,所测并计算之后得到的幅频特性曲线与相频特性曲线和公式计算结果所得到的曲线非常相近,并且与通过matlab仿真得到的波特图之间的差距很小,但仍然存在一定误差.(2)实验二根据测得的实验结果,在matlab上绘制幅频特性曲线图如下图所示:实验二幅频特性曲线〔实验〕实验二相频特性曲线〔实验〕根据计算结果,在matlab上绘制幅频曲线如下图所示实验二幅频特性曲线〔计算〕实验二相频特性曲线〔计算〕通过matlab程序仿真得到的幅频与相频曲线如下图所示:由上图分析可以得到,实验所测得到的幅频特性曲线与计算结果得到的曲线几乎一样,并且与matlab仿真的波特图非常相近.但是实验所测得到的相频特性曲线虽然和计算结果得到的曲线较为温和,但是却与matlab 仿真得到的相频曲线有着非常大的差别.这一点的主要原因为:...2.实验误差分析本次实验的误差相对于其他实验的误差而言比较大,主要原因有以下几点:(1)示波器读取幅值的时候,由于是用光标测量,观测到的误差相对来说非常大,尤其是当李萨如图像与x 轴的交点接近于零的时候,示波器的光标测量读数就非常困难了.(2)在调整函数发生器的频率过程中,由于示波器的李萨如图像模型对于横坐标扫描时间的要求,导致当频率增加的时候,可观测的点寥寥无几.只能用display里面的连续记录显示功能来记录波形.这样记录下来的波形,由于本身点走动的时候带有一定厚度,导致记录波形的宽度非常大,并且亮度基本一致,无法判断曲线边界的具体值,造成的误差也是非常大的.(3)在绘制曲线过程中,由于测量数据点有限,而造成绘制曲线与计算值存在一定误差.(4)本次实验的计算量非常繁琐且冗杂,对于实验误差的影响也是非常大的.(5)电阻和电容等非理想元件造成的误差3.思考题(1)在实验中如何选择输入的正弦信号的幅值?解:先将频率调到很大,再是信号幅值应该调节信号发生器的信号增益按钮,令示波器显示方式为信号-时间模式,然后观测输出信号,调节频率,观察在各个频段是否失真.(2)测试频率特性时,示波器Y轴输入开关为什么选择直流?便于读取数据,使测量结果更加准确.(3)测试相频特性时,若把信号发生器的正弦信号送入Y轴,被测系统的输出信号送入X轴,则根据椭圆光点的转动方向,如何确定相位的超前和迟后?若将输入和输出信号所在的坐标轴变换,则判断超前和滞后的办法也要反过来,即顺时针为滞后,逆时针为超前.七、讨论、心得1.在实验过程中,一定要耐心仔细,因为可能会出现李萨如图像与光轴的两个交点非常接近于原点,由于曲线本身的宽度,造成的视觉误差会非常大.所以在用光标测量数据的时候,一定要非常仔细耐心,尽可能让误差降到最小.2.在实验过程中,随着频率的增加,李萨如图像的显示光点也会随之减少,这个时候一定要适当调节扫描时间,尽量往小调,让扫描光点增加,形成比较完整的曲线,以便于测量与观察.3.在做第二个实验的时候,即使扫描时间已经调到了最小,仍然无法看见完整的曲线,这时,需要摁下示波器上display按钮,然后点击是否记录轨迹,然后就可以让点完整清晰地将曲线还原回来,从而减小误差.4.在计算过程中,注意认真仔细.计算量繁杂,容易导致计算错误,可以多设几个变量来解决.5.在绘制曲线过程中,如果直接用角速度w的话,有可能会出现小频率的点比较密集,大频率的点比较疏松,得到的曲线误差比较大,并且并不美观.当数据相差较大时,我采用了将横坐标求对数之后,再将新得到的数据作为横坐标绘制图像,则实验图像变得非常美观和清晰,并且具有说服力.6.通过本次实验,我了解到了频率特性测量的方法以与怎样求幅频特性|G<w>|和相频特性φ<w>的值,并且通过将自己实验所得曲线、实际计算曲线与matlab仿真之间的对比,将理论、实践、仿真融为一体,使我更加加深了频率响应曲线的认识.这样的方法,在以后的学习过程中,会应用的更加广泛,并且具有非常深远的意义.。
实验四 控制系统频率特性的测试1、实验目的认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。
2、实验装置(1)PC586微型计算机。
(2)自动控制实验教学系统软件。
3、实验步骤及数据处理(1)首先确定被测对象模型的传递函数G (S ),根据具体情况,先自拟三阶系统的传递函数,)12)(1()(22221+++=s T s T s T K s G ξ,设置好参数K T T ,,,21ξ。
要求:1T 和2T 之间相差10倍左右,1T <2T 或2T <1T 均可,数值可在0.01秒和10秒之间选择,ξ取0.5左右,K ≤10。
设置T1=0.1,T2=1,ξ =0.5,K=5。
(3)设置好各项参数后,开始作仿真分析,首先作幅频特性测试。
①根据所设置的1T ,2T 的大小,确定出所需频率范围(低端低于转折频率小者10倍左右,高端高于转折频率高者10倍左右)。
所需频率范围是:0.1rad/s 到100rad/s 。
②参考实验模型窗口图,设置输入信号模块正弦信号的参数,首先设置正弦信号幅度Amplitude,例如设置Amplitude=1,然后设置正弦频率Frequency ,单位为rads/sec 。
再设置好X 偏移模块的参数,调节Y 示波器上Y 轴增益,使在所取信号幅度下,使图象达到满刻度。
③利用Y 示波器上的刻度(最好用XY 示波器上的刻度更清楚地观察),测试输入信号的幅值(用2m X 表示),也可以参考输入模块中设置的幅度,记录于表7--2中。
此后,应不再改变输入信号的幅度。
④依次改变输入信号的频率(按所得频率范围由低到高即ω由小到大慢慢改变,特别是在转折频率处更应多测试几点,注意:每次改变频率后要重新启动Simulation|Start 选项,观察“李沙育图形” 读出数据),利用Y 示波器上的刻度(也可以用XY 示波器上的刻度更清楚地观察,把示波器窗口最大化,此时格数增多更加便于观察),测试输出信号的幅值(用2m Y 表示),并记录于表7--2(本表格不够,可以增加)。
控制系统频率特性实验控制系统频率特性实验是一种较为常见的控制工程实验,其主要目的是探究不同频率下控制系统的性能表现,同时应用所学知识进行系统频率特性分析和设计。
下面将分为实验目的、实验内容、实验步骤及实验结果几个方面进行详细介绍。
实验目的:1. 探究不同频率下控制系统性能表现2. 进行频率特性分析,并了解控制系统中的稳态误差与阻尼比之间的关系3. 进行频率特性设计,并掌握控制器在频率特性中的应用实验内容:1. 频率响应性能测试2. 获取系统的幅频和相频特性曲线3. 根据幅频曲线分析系统稳态误差,根据相频曲线分析系统阻尼比4. 根据工程实际需要,设计相应的控制器并给出稳态误差和阻尼比的实验结果实验步骤:1. 建立试验系统,包括控制对象和控制器2. 调整测试样本的初始参数,保证系统的稳态3. 绘制系统幅频特性曲线,观察幅频曲线的变化情况并进行分析7. 对实验结果进行统计分析实验结果:通过实验,我们得到了不同频率下控制系统的性能表现,以及系统的幅频和相频特性曲线。
在此基础上,我们可以进行系统频率特性分析,掌握控制器在频率特性中的应用。
通过对幅频曲线的分析,我们可以了解系统的稳态误差情况。
同时可发现,随着频率增大,系统稳态误差逐渐增大,这是由于系统的惯性效应在高频率下更为明显导致的。
在此基础上,我们可以通过设计相应的控制器来减小系统稳态误差。
通过对相频曲线的分析,我们可以了解系统的阻尼比情况。
随着频率增大,我们可以观察到系统阻尼比逐渐降低,这是由于系统越接近临界系统,其阻尼比越小,因此在系统设计中需要注意避免系统过度激励的情况。
总的来说,控制系统频率特性实验是一种重要的控制工程实验,通过实验,我们可以深入了解系统在不同频率下的性能表现,为实际工程中的控制系统设计提供有力的支持和指导。
实验名称控制系统的频率特性
实验序号实验时间
学生姓名学号
专业班级年级
指导教师实验成绩
一、实验目的:
研究控制系统的频率特性,及频率的变化对被控系统的影响。
二、实验条件:
1、台式计算机
2、控制理论计算机控制技术实验箱系列
3、仿真软件
三、实验原理和内容:
.被测系统的方块图及原理被测系统的方块图及原理:
图—被测系统方块图
系统(或环节)的频率特性(ω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角。
本实验应用频率特性测试仪测量系统或环节的频率特性。
图—所示系统的开环频率特性为:
采用对数幅频特性和相频特性表示,则式(—)表示为:
将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施
加于被测系统的输入端[()],然后分别测量相应的反馈信号[()]和误差信号[()]的对数
幅值和相位。
频率特性测试仪测试数据经相关器件运算后在显示器中显示。
根据式(—)和式(—)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸
上作出实验曲线:开环对数幅频曲线和相频曲线。
根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。
所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的
频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。
如果测量所得的相位
在高频(相对于转角频率)时不等于-°(-)[式中和分别表示传递函数分子和分母
的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。
.被测系统的模拟电路图被测系统的模拟电路图:见图-
注意:所测点()、()由于反相器的作用,输出均为负值,若要测其正的输出点,
可分别在()、()之后串接一组的比例环节,比例环节的输出即为()、()的
正输出。
四、实验步骤:
在此实验中,利用型系统中的转换单元将提供频率和幅值均可调的基准正弦信
号源,作为被测对象的输入信号,而型系统中测量单元的通道用来观测被测环节的输出(本实验中请使用频率特性分析示波器),选择不同角频率及幅值的正弦信号源作
为对象的输入,可测得相应的环节输出,并在机屏幕上显示,我们可以根据所测得的
数据正确描述对象的幅频和相频特性图。
具体实验步骤如下:
()将转换单元的端接到对象的输入端。
()将测量单元的(必须拨为乘档)接至对象的输出端。
()将信号发生器单元的和端断开,用号实验导线将端接至单元中的。
(由于在每次测量前,应对对象进行一次回零操作,即为对象锁零控制端,在这里,我们用的口对进行程序控制)
()在机上输入相应的角频率,并输入合适的幅值,按键后,输入的角频率开始闪烁,直至测量完毕时停止,屏幕即显示所测对象的输出及信号源,移动游标,可得
到相应的幅值和相位。
()如需重新测试,则按“”键,系统会清除当前的测试结果,并等待输入新的角频率,准备开始进行下次测试。
()根据测量在不同频率和幅值的信号源作用下系统误差()及反馈()的幅值、相
对于信号源的相角差,用户可自行计算并画出闭环系统的开环幅频和相频曲线。
实验数据处理及被测系统的对数幅频曲线和相频曲线
表实验数据(ωπ)。