控制系统频率特性实验
- 格式:doc
- 大小:286.50 KB
- 文档页数:8
自动控制频率特性测试实验报告1. 引言在现代自动控制系统中,频率特性是一个重要的参数,对于系统的稳定性和性能起着决定性的作用。
频率特性测试实验旨在评估自动控制系统的频率响应,并分析系统在不同频率下的性能。
本实验报告将介绍自动控制频率特性测试实验的目的、实验器材、实验步骤和实验结果分析。
2. 实验目的本实验的主要目的是通过频率响应测试,评估自动控制系统的频率特性以及系统在不同频率下的性能。
具体目标包括:1.测试系统的幅频特性,即系统的增益与频率之间的关系;2.测试系统的相频特性,即系统的相移与频率之间的关系;3.分析系统的频率特性对系统的稳定性和性能的影响。
3. 实验器材本实验所需的器材包括:•信号发生器:用于产生不同频率的输入信号;•可变增益放大器:用于控制输入信号的幅度;•相位巡迥器:用于调节输入信号的相位;•示波器:用于观测输入信号和输出信号;•自动控制系统:接受输入信号并提供相应的控制输出。
4. 实验步骤4.1 准备工作1.确保实验器材连接正确,信号发生器连接到自动控制系统的输入端,示波器连接到自动控制系统的输出端。
2.将可变增益放大器和相位巡迥器分别接入信号发生器的输出端,用于调节输入信号的幅度和相位。
4.2 测试幅频特性1.设置信号发生器的频率为起始频率,将幅度设置为合适的值。
2.将相位巡迥器的相位设置为零,确保输入信号的相位与输出信号相位一致。
3.记录输入信号和输出信号的幅度,并计算增益。
4.逐渐增加信号发生器的频率,重复步骤3,直到达到结束频率。
4.3 测试相频特性1.设置信号发生器的频率为起始频率,将幅度和相位设置为合适的值。
2.记录输入信号和输出信号的相位差,并计算相移。
3.逐渐增加信号发生器的频率,重复步骤2,直到达到结束频率。
4.4 结果记录与分析1.将实验得到的数据记录下来,包括输入信号频率、幅度、输出信号频率、幅度、相位差等。
2.绘制幅频特性曲线图,分析系统的增益随频率变化的规律。
《自动控制原理》实践报告实验三系统频率特性曲线的绘制及系统分析熟悉利用计算机绘制系统伯德图、乃奎斯特曲线的方法,并利用所绘制图形分析系统性能。
一、实验目的1.熟练掌握使用MATLAB软件绘制Bode图及Nyquist曲线的方法;2.进一步加深对Bode图及Nyquist曲线的了解;3.利用所绘制Bode图及Nyquist曲线分析系统性能。
二、主要实验设备及仪器实验设备:每人一台计算机奔腾系列以上计算机,配置硬盘≥2G,内存≥64M。
实验软件:WINDOWS操作系统(WINDOWS XP 或WINDOWS 2000),并安装MATLAB 语言编程环境。
三、实验内容已知系统开环传递函数分别为如下形式, (1))2)(5(50)(++=s s s G (2))15)(5(250)(++=s s s s G(3)210()(21)s G s s s s +=++ (4))12.0)(12(8)(++=s s s s G (5)23221()0.21s s G s s s s ++=+++ (6))]105.0)125.0)[(12()15.0(4)(2++++=s s s s s s G 1.绘制其Nyquist 曲线和Bode 图,记录或拷贝所绘制系统的各种图形; 1、 程序代码: num=[50];den=conv([1 5],[1 2]); bode(num,den)num=[50];den=conv([1 5],[1 2]); nyquist(num,den)-80-60-40-20020M a g n i t u d e (d B)10-210-110101102103-180-135-90-450P h a s e (d e g )Bode DiagramFrequency (rad/sec)-1012345-4-3-2-11234Nyquist DiagramReal AxisI m a g i n a r y A x i s2、 程序代码: num=[250];den=conv(conv([1 0],[1 5]),[1 15]); bode(num,den)num=[250];den=conv(conv([1 0],[1 5]),[1 15]);-150-100-5050M a g n i t u d e (d B )10-110101102103-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)nyquist(num,den)3、 程序代码: num=[1 10];den=conv([1 0],[2 1 1]); bode(num,den)-150-100-50050100M a g n i t u d e (d B)10-210-110101102103-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)-1-0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.10-15-10-551015System: sys Real: -0.132Imag: -0.0124Frequency (rad/sec): -10.3Nyquist DiagramReal AxisI m a g i n a r y A x i snum=[1 10];den=conv([1 0],[2 1 1]); nyquist(num,den)-25-20-15-10-5-200-150-100-5050100150200Nyquist DiagramReal AxisI m a g i n a r y A x i s-100-5050100M a g n i t u d e (d B )10-210-110101102-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)4、 程序代码: num=[8];den=conv(conv([1 0],[2 1]),[0.2 1]); bode(num,den)-18-16-14-12-10-8-6-4-20-250-200-150-100-50050100150200250Nyquist DiagramReal AxisI m a g i n a r y A x i snum=[8];den=conv(conv([1 0],[2 1]),[0.2 1]); nyquist(num,den)5、 程序代码: num=[1 2 1]; den=[1 0.2 1 1]; bode(num,den)num=[1 2 1];den=[1 0.2 1 1]; nyquist(num,den)-40-30-20-10010M a g n i t u d e (d B )10-210-110101102-360-270-180-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)-2.5-2-1.5-1-0.500.51 1.5-3-2-1123Nyquist DiagramReal AxisI m a g i n a r y A x i s-100-5050100M a g n i t u d e (d B )10-210-110101102-270-225-180-135-90P h a s e (d e g )Bode DiagramFrequency (rad/sec)6、 num=[2 4];den=conv(conv([1 0],[2 1]),[0.015625 0.05 1]); bode(num,den)num=[2 4];den=conv(conv([1 0],[2 1]),[0.015625 0.05 1]); nyquist(num,den)2.利用所绘制出的Nyquist 曲线及Bode 图对系统的性能进行分析:(1)利用以上任意一种方法绘制的图形判断系统的稳定性; 由Nyquist 曲线判断系统的稳定性,Z=P-2N 。
实验四控制系统频率特性的测试一.实验目的认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。
二.实验装置(1)微型计算机。
(2)自动控制实验教学系统软件。
三.实验原理及方法(1)基本概念一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下:幅频特性相频特性(2)实验方法设有两个正弦信号:若以)(y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以)(t化,)(y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和)(t曲线(通常是一个椭圆)。
这就是所谓“李沙育图形”。
由李沙育图形可求出Xm ,Ym,φ,四.实验步骤(1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。
(2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K(3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点五.数据处理(一)第一种处理方法:(1)得表格如下:(2)作图如下:(二)第二种方法:由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。
(三)误差分析两图形的大体趋势一直,从而验证了理论的正确性。
在拐点处有一定的差距,在某些点处也存在较大的误差。
分析:(1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。
(2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。
(3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异六.思考讨论(1)是否可以用“李沙育”图形同时测量幅频特性和想频特性答:可以。
在实验过程中一个频率可同时记录2Xm,2Ym,2y0。
(2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。
一、实验目的1. 理解频率特性的基本概念和测量方法。
2. 掌握使用Bode图和尼奎斯特图分析系统频率特性的方法。
3. 了解频率特性在系统设计和稳定性分析中的应用。
二、实验原理频率特性描述了系统对正弦输入信号的响应,通常用幅频特性和相频特性来表示。
幅频特性表示输出信号幅度与输入信号幅度之间的关系,相频特性表示输出信号相位与输入信号相位之间的关系。
频率特性的测量通常通过以下步骤进行:1. 使用正弦信号发生器产生不同频率的正弦信号。
2. 将信号输入被测系统,并测量输出信号的幅度和相位。
3. 根据测量数据绘制幅频特性和相频特性曲线。
三、实验设备1. 正弦信号发生器2. 示波器3. 信号分析仪4. 被测系统(如电路、控制系统等)四、实验步骤1. 准备实验设备,确保各设备连接正确。
2. 设置正弦信号发生器,产生一系列不同频率的正弦信号。
3. 将正弦信号输入被测系统,并使用示波器或信号分析仪测量输出信号的幅度和相位。
4. 记录不同频率下的幅度和相位数据。
5. 使用绘图软件绘制幅频特性和相频特性曲线。
五、实验结果与分析1. 幅频特性分析通过绘制幅频特性曲线,可以观察到系统对不同频率信号的衰减程度。
一般来说,低频信号的衰减较小,高频信号的衰减较大。
根据幅频特性,可以判断系统的带宽和稳定性。
2. 相频特性分析通过绘制相频特性曲线,可以观察到系统对不同频率信号的相位延迟。
相频特性曲线通常呈现出滞后或超前特性。
根据相频特性,可以判断系统的相位裕度和增益裕度。
3. 系统稳定性分析根据幅频特性和相频特性,可以判断系统的稳定性。
如果系统的相位裕度和增益裕度都大于零,则系统是稳定的。
否则,系统可能是不稳定的。
六、实验结论通过本次实验,我们成功地测量了被测系统的频率特性,并分析了其幅频特性和相频特性。
实验结果表明,被测系统在低频段表现出较小的衰减,而在高频段表现出较大的衰减。
相频特性曲线显示出系统在低频段滞后,在高频段超前。
根据频率特性分析,可以得出被测系统是稳定的。
一、实验目的1. 了解频率特性法的基本原理和测试方法。
2. 掌握用频率特性法分析系统性能的方法。
3. 熟悉实验仪器和实验步骤。
二、实验原理频率特性法是控制系统分析和设计的重要方法之一。
它通过研究系统在正弦信号作用下的稳态响应,来分析系统的动态性能和稳态性能。
频率特性主要包括幅频特性和相频特性,它们分别反映了系统在正弦信号作用下的幅值和相位变化规律。
三、实验仪器与设备1. 微型计算机2. 自动控制实验教学系统软件3. 超低频信号发生器4. 示波器5. 信号调理器6. 被测系统(如二阶系统、三阶系统等)四、实验内容与步骤1. 实验内容(1)测量被测系统的幅频特性(2)测量被测系统的相频特性(3)绘制幅频特性曲线和相频特性曲线(4)分析系统性能2. 实验步骤(1)连接实验电路,确保各设备正常工作。
(2)使用超低频信号发生器产生正弦信号,频率范围可根据被测系统特性选择。
(3)将信号发生器的输出信号送入被测系统,同时将信号发生器和被测系统的输出信号送入示波器。
(4)调整信号发生器的频率,记录不同频率下被测系统的输出幅值和相位。
(5)将实验数据输入计算机,利用自动控制实验教学系统软件进行数据处理和绘图。
(6)分析系统性能,包括系统稳定性、动态性能和稳态性能。
五、实验结果与分析1. 幅频特性曲线根据实验数据,绘制被测系统的幅频特性曲线。
从曲线中可以看出,随着频率的增加,系统的幅值逐渐减小,并在一定频率范围内出现峰值。
峰值频率对应系统的谐振频率,峰值幅度对应系统的谐振增益。
2. 相频特性曲线根据实验数据,绘制被测系统的相频特性曲线。
从曲线中可以看出,随着频率的增加,系统的相位逐渐变化,并在一定频率范围内出现相位滞后或相位超前。
3. 系统性能分析根据幅频特性和相频特性曲线,可以分析被测系统的性能。
(1)稳定性分析:通过分析相频特性曲线,可以判断系统是否稳定。
如果系统在所有频率范围内都满足相位裕度和幅值裕度要求,则系统稳定。
第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。
2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。
3. 分析测试结果,确定系统的主要频率成分和频率响应特性。
二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。
幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。
频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。
三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。
五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。
这些峰值和谷值可能对应系统中的谐振频率或截止频率。
通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。
2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。
相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。
通过分析相位特性,可以了解系统的相位稳定性。
六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。
2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。
3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。
控制系统的频域分析实验报告
摘要:
本实验旨在通过频域分析的方法来研究和评估控制系统的特性和性能。
在实验中,我们采用了频域分析的基本工具——Bode图和Nyquist图,通过对控制系统的幅频特性和相频特性进行分析,得出了系统的稳定性、干扰抑制能力和稳态性精度等方面的结论。
实验结果表明,频域分析是评估和优化控制系统的一种有效方法。
一、引言
频域分析是控制系统分析中常用的一种方法,通过对系统的频率响应进行研究,可以揭示系统的动态特性和性能,为控制系统的设计和优化提供指导。
在本实验中,我们将利用频域分析方法对一个具体的控制系统进行分析,通过实验验证频域分析的有效性。
二、实验装置和方法
实验所用控制系统包括一个控制对象(如电动机或水流系统)和一个控制器(如PID控制器)。
在实验中,我们将通过改变输入信号的频率来研究系统的频率响应。
实验步骤如下:
1. 连接实验装置,确保控制系统可正常工作。
2. 设计和设置适当的输入信号,包括常值信号、正弦信号和随
机信号等。
3. 改变输入信号的频率,记录系统的输出信号。
4. 利用实验记录的数据,绘制系统的幅频特性曲线和相频特性
曲线。
三、实验结果与讨论
根据实验记录的数据,我们绘制了控制系统的幅频特性曲线和
相频特性曲线,并对实验结果进行了分析和讨论。
1. 幅频特性分析
幅频特性曲线描述了控制系统对不同频率输入信号的增益特性。
在幅频特性曲线中,频率越高,输出信号的幅值越低,说明系统对
高频信号具有抑制作用。
【实验名称】控制系统的频率特性分析【实验目的】1) 掌握运用MATLAB 软件绘制控制系统波特图的方法; 2) 掌握MATLAB 软件绘制奈奎斯特图的方法; 3) 利用波特图和奈奎斯特图对控制系统性能进行分析。
【实验仪器】1) PC 机一台 2) MATLAB 软件【实验原理】1. 奈奎斯特稳定判据及稳定裕量(1)奈氏(Nyquist )判据:反馈控制系统稳定的充要条件是奈氏曲线逆时针包围临界点的圈数R 等于开环传递函数右半s 平面的极点数P , 即R=P ;否则闭环系统不稳定, 闭环正实部特征根个数Z 可按下式确定Z=P-R=P-2N (2)稳定裕量利用)()(ωωj H j G 轨迹上两个特殊点的位置来度量相角裕度和增益裕度。
其中)()(ωωj H j G 与单位圆的交点处的频率为c ω(截止频率);)()(ωωj H j G 与负实轴的交点频率为x ω(穿越频率)。
则相角裕度:)(180)()(180c c c j H j G ωϕωωγ+=∠+= 增益裕度:)(1)()(1x x x A j H j G h ωωω==(对数形式:)(lg 20)()(lg 20x x x A j H j G h ωωω-=-= 2. 对数频率稳定判据将系统开环频率特性曲线分为幅频特性和相频特性,分别画在两个坐标上,横轴都用频率ω,纵轴一个用对数幅值和相角,这两条曲线画成的图就是Bode 图,即对数频率特性图。
因为Bode 图与奈氏图有一一对应关系,因此,奈氏稳定判据就可描述为基于Bode 图的对数频率稳定判据:(1)开环系统稳定,即开环系统没有极点在正右半根平面,如果其对数幅频曲线大于0dB 的区域内,相频曲线对180-线正负穿越次数相等,那么闭环系统就是稳定的,否则是不稳定的。
(2)开环系统不稳定,有P 个极点在正右半平面,如果其对数幅频曲线大于0dB 的区域内,相频曲线对180-线正穿越次数大于负穿越次数P/2,闭环系统就是稳定的,否则是不稳定的。
控制系统频率特性实验
实验名称控制系统的频率特性
实验序号 3 实验时间
学生姓名学号
专业班级年级
指导教师实验成绩
一、实验目的:
研究控制系统的频率特性,及频率的变化对被控系统的影响。
二、实验条件:
1、台式计算机
2、控制理论&计算机控制技术实验箱
THKKL-4系列
3、THKKL仿真软件
三、实验原理和内容:
1.被测系统的方块图及原理被测系统的方块图及原理:
图3—1 被测系统方块图
系统(或环节)的频率特性G(jω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角。
本实验应用频率特性测试仪测量系统或环节的频率特性。
图4—1 所示系统的开环频率特性为:
采用对数幅频特性和相频特性表示,则式(3—2)表示为:
将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输入端[r(t)],然后分别测量相应的反馈信号[b(t)]和误差信号[e(t)]的对数
幅值和相位。
频率特性测试仪测试数据经相关器件运算后在显示器中显示。
根据式(3—3)和式(3—4)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸上作出实验曲线:开环对数幅频曲线和相频曲线。
根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。
所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。
如果测量所得的相位在高频(相对于转角频率)时不等于-90°(q-p)[式中p 和q 分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。
2.被测系统的模拟电路图被测系统的模拟电路图:见图3-2
注意:所测点-c(t)、-e(t)由于反相器的作用,输出均为负值,若要测其正的输出点,
可分别在-c(t)、-e(t)之后串接一组1/1 的比例环节,比例环节的输出即为c(t)、e(t)的
正输出。
四、实验步骤:
在此实验中,利用TKKL-4 型系统中的U15 D/A 转换单元将提供频率和幅值均可调的基准正弦信号源,作为被测对象的输入信号,而TKKL-4 型系统中测量单元的CH1 通道用来观测被测环节的输出(本实验中请使用频率特性分析示波器),选择不同角频率及幅值的正弦信号源作为对象的输入,可测得相应的环节输出,并在PC 机屏幕上显示,我们可以根据所测得的数据正确描述对象的幅频和相频特性图。
具体实验步骤如下:
(1)将U15 D/A 转换单元的OUT 端接到对象的输入端。
(2)将测量单元的CH1(必须拨为乘 1 档)
接至对象的输出端。
(3)将U1 信号发生器单元的ST 和S 端
断开,用 1 号实验导线将ST 端接至CPU 单元中的PB10。
(由于在每次测量前,应对对象进行一次回零操作,ST 即为对象锁零控制端,在这里,我们用8255 的PB10 口对ST 进行程序控制)
(4)在PC 机上输入相应的角频率,并输入
合适的幅值,按ENTER 键后,输入的角频率开始闪烁,直至测量完毕时停止,屏幕即显示所测对象的输出及信号源,移动游标,可得到相应的幅值和相位。
(5)如需重新测试,则按“New”键,系统
会清除当前的测试结果,并等待输入新的角频率,准备开始进行下次测试。
(6)根据测量在不同频率和幅值的信号源作
用下系统误差e(t)及反馈c(t)的幅值、相
对于信号源的相角差,用户可自行计算并画出闭环系统的开环幅频和相频曲线。
实验数据处理及被测系统的对数幅频曲线
和相频曲线
表3-1 实验数据
(ω=2πf)
五、实验记录结果:
六、实验讨论和总结:。