算法思想之5回溯法
- 格式:pdf
- 大小:691.09 KB
- 文档页数:7
回溯法详解
回溯法是一种常用的算法思想,通常用于解决一些组合问题,如排列、组合、子集等。
回溯法的基本思想是从一组可能的解中逐一尝试,如果发现当前尝试的解不符合要求,则回溯到上一步继续尝试其他解。
回溯法可以看作是一种深度优先搜索算法,它的搜索过程类似于一棵树的遍历。
在搜索过程中,从根节点开始,逐层向下搜索,直到找到符合条件的解或者搜索完所有的可能情况。
回溯法的实现通常采用递归的方式,具体步骤如下:
1. 定义一个解空间,即所有可能的解的集合。
2. 逐步扩展解空间,直到找到符合条件的解或者搜索完所有可
能的情况。
3. 在扩展解空间的过程中,对于每个扩展的状态,检查它是否
符合要求,如果符合要求,则继续扩展;否则回溯到上一步。
回溯法的时间复杂度通常很高,因为它需要搜索所有的可能情况。
但是在实际应用中,回溯法的效率往往比暴力枚举要高,因为它能够利用一些剪枝策略,避免搜索无用的状态。
例如,在求解八皇后问题时,回溯法可以通过剪枝策略,避免搜索一些不可能的状态,从而大大缩短搜索时间。
回溯法也是一种非常灵活的算法思想,可以应用于各种问题的求解。
在实际应用中,需要根据具体问题的特点,设计合适的解空间和剪枝策略,以提高算法效率。
五⼤常见算法策略之——回溯策略回溯策略欢迎⼤家访问我的个⼈搭建的博客回溯是五⼤常⽤算法策略之⼀,它的核⼼思想其实就是将解空间看作是⼀棵树的结构,从树根到其中⼀个叶⼦节点的路径就是⼀个可能的解,根据约束条件,即可得到满⾜要求的解。
求解问题时,发现到某个节点⽽不满⾜求解的条件时,就“回溯”返回,尝试别的路径。
回溯法是⼀种选优搜索法,按选优条件向前搜索,以达到⽬标。
下⾯通过⼏个例⼦来讨论这个算法策略。
货郎问题有⼀个推销员,要到n个城市推销商品,他要找出⼀个包含所有n个城市的具有最短路程的环路。
(最后回到原来的城市),也就是说给⼀个⽆向带权图G<V,E>,⽤⼀个邻接矩阵来存储两城市之间的距离(即权值),要求⼀个最短的路径。
我们设置⼀组数据如下:4个城市,之间距离如下图所⽰,默认从0号城市出发由此我们可以画出⼀棵解空间树:(只画了⼀部分,右边同理)按照这个解空间树,对其进⾏深度优先搜索,通过⽐较即可得到最优结果(即最短路径)package BackTrack;//解法默认从第0个城市出发,减⼩了问题难度,主要⽬的在于理解回溯策略思想public class Saleman {//货郎问题的回溯解法static int[][] map = {{ 0,10,5,9},{10,0,6,9},{ 5,6,0,3},{ 9,9,3,0}}; //邻接矩阵public static final int N = 4; //城市数量static int Min = 10000; //记录最短的长度static int[] city = {1,0,0,0}; //默认第0个城市已经⾛过static int[] road = new int[N]; //路线,road[i] = j表⽰第i个城市是第j个经过的/**** @param city 保存城市是否被经过,0表⽰未被⾛过,1表⽰已经⾛过* @param j 上⼀层⾛的是第⼏个城市* @param len 此时在当前城市⾛过的距离总和* @param level 当前所在的层数,即第⼏个城市*/public static void travel(int[] city, int j, int len, int level) {if(level == N - 1) { //到达最后⼀个城市/*do something*/if(len+map[j][0] < Min) {Min = len + map[j][0];for (int i = 0; i < city.length; i++) {road[i] = city[i];}}return;}for(int i = 0; i < N; i++) {if(city[i] == 0 && map[j][i] != 0) { //第i个城市未被访问过,且上⼀层访问的城市并不是此城市city[i] = level+2; //将此城市置为已访问travel(city, i, len+map[j][i], level+1);city[i] = 0; //尝试完上⼀层的路径后,将城市⼜置为未访问,以免影响后⾯的尝试情况,避免了clone数组的情况,节省内存开销}}}public static void main(String[] args) {travel(city,0,0,0);System.out.println(Min);for (int i = 0; i < N; i++) {System.out.print(road[i]+" ");}System.out.println("1");}}⼋皇后问题要在n*n的国际象棋棋盘中放n个皇后,使任意两个皇后都不能互相吃掉。
回溯法的基本概念回溯法,也叫试探法,是一种基于深度优先搜索的算法。
它是一种非常实用的解决问题的方法,通常用来解决那些需要尝试许多可能性的问题。
在回溯法中,我们需要枚举所有的可能性,并根据条件进行深度搜索,直到找到所有的解或达到终止条件。
回溯法的基本思想是:将问题分成多个小问题来解决,每个小问题都需要尝试不同的解决方案,直到找到最优解或达到终止条件。
当我们尝试的方案不符合要求时,我们需要“回溯”(撤销上一步的操作),尝试其他解决方案。
回溯法的应用非常广泛,比如在图形学、人工智能、网络协议设计等领域都有广泛的应用。
在算法竞赛中,回溯法是一个非常重要的算法,也是我们必须要掌握的算法之一。
使用回溯法的关键在于如何组织搜索空间。
我们需要确定搜索树的遍历顺序和搜索深度,以及如何剪枝搜索空间。
通常情况下,我们可以使用递归函数来实现回溯算法。
这个递归函数需要接收状态参数,在每一次递归调用中,我们需要将状态参数进行更新,并考虑是否达到了终止条件。
在回溯算法的实现中,通常要注意以下几点:1. 前缀和预处理:如果我们需要快速传递状态信息,可以使用前缀和预处理技术。
2. 剪枝:剪枝是一种优化手段,可以在搜索中减少不必要的计算。
比如我们可以根据当前状态进行剪枝,减少搜索量。
3. 记忆化搜索:如果我们需要多次查询相同的状态,可以使用记忆化搜索来优化。
这样可以避免重复计算,提高算法效率。
4. 双向搜索:双向搜索可以从起点和终点同时进行搜索,这样可以减少搜索时间和空间复杂度。
总之,回溯法是一种非常实用的算法,在实际问题求解中具有广泛的应用。
要想掌握回溯法,需要多做题、多思考,掌握其基本原理和常见技巧,逐步提高自己的解题能力。
回溯法原理
回溯法是一种用于解决问题的算法,它的核心思想是在解空间中进行深度优先搜索,通过不断地试错和回溯,找到问题的解。
回溯法通常应用于求解组合优化问题、排列组合问题、图论问题等。
回溯法的具体实现过程,一般包括以下几个步骤:
1. 定义问题的解空间:首先需要明确问题的解空间,即指所有可能的解构成的空间。
2. 确定扩展解策略:在解空间中选择一个可行解作为起点,然后通过一定的扩展策略生成新的可行解,这些新的可行解将被加入到搜索树中。
3. 搜索解空间:从起点开始,按照扩展策略不断生成新的可行解,并将这些新的可行解加入到搜索树中,然后深入搜索直到找到问题的解或者搜索完整个解空间。
4. 回溯:如果某个可行解无法继续扩展,或者扩展后发现不合法,那么就需要回溯到上一个可行解,重新选择扩展策略,并继续搜索。
回溯法的优点在于能够找到所有解,但缺点也很明显,就是时间复杂度很高,因为需要搜索整个解空间。
为了减少搜索时间,可以采用一些剪枝技巧,如约束传播、可行性剪枝等。
总之,回溯法是一种通用的求解算法,它的基本思想和实现方式可以应用于各种类型的问题,但要注意在实际应用中需要根据具体问题进行合理的优化和改进。
第5章回溯法回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。
当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。
如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。
在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。
扩大当前候选解的规模,以继续试探的过程称为向前试探。
回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。
这个开始结点就成为一个活结点,同时也成为当前的扩展结点。
在当前的扩展结点处,搜索向纵深方向移至一个新结点。
这个新结点就成为一个新的活结点,并成为当前扩展结点。
如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。
换句话说,这个结点不再是一个活结点。
此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。
回溯法即·96· ACM 程序设计培训教程以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。
运用回溯法解题通常包含以下三个步骤: (1)针对所给问题,定义问题的解空间; (2)确定易于搜索的解空间结构;(3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;5.1〖案例1〗组合问题找出从自然数1、2、……、n 中任取r 个数的所有组合。
例如n=5,r=3的所有组合为:(1)1、2、3 (2)1、2、4 (3)1、2、5 (4)1、3、4 (5)1、3、5 (6)1、4、5 (7)2、3、4 (8)2、3、5 (9)2、4、5 (10)3、4、5则该问题的状态空间为:E={(x1,x2,x3)∣xi ∈S ,i=1,2,3},其中:S={1,2,3,4,5} 约束集为:x1<x2<x3显然该约束集具有完备性。
5 回溯法回朔法即是:若在当前位置探测到一条通路则继续向前,若在当前位置探测不到一条通路则回朔侄前一位置继续探测尚未探测的反向,直到找到一条通路或探测出无通路存在为止。
定义:也叫试探法,它是一种系统地搜索问题的解的方法。
回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。
用回溯算法解决问题的一般步骤为:一、定义一个解空间,它包含问题的解。
二、利用适于搜索的方法组织解空间。
三、利用深度优先法搜索解空间。
四、利用限界函数避免移动到不可能产生解的子空间。
问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。
回溯法是一个既带有系统性又带有跳跃性的的搜索算法。
它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。
否则,进入该子树,继续按深度优先的策略进行搜索。
回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。
而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。
这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。
例题:1、排列的实现,对于n个不同数的排列并输出。
定义一个数组a[n],开始从第一个元素填入1开始,每进一步都是从1开始,并检查是否把n个元素填完和n个元素都没有重复的,如果是则输出一个解。
如果欲填入的数与之前已经填入的数重复,则增加1再比较,直到没有重复(除非已到了上限),如果已经到达了上限n,否回朔回上一个元素,值到其值不为上限n,然后上一个元素,下一个元素从1重新开始。
C++程序1#include<stdio.h>void main(){int n,m,i=0,j=0,k=0,flag=0,f=0;static int a[40];printf("输入N:");scanf("%d",&n);a[1]=1;k=1;while(1){flag=1;for(i=1;i<k;i++)if(a[k]==a[i]){flag=0;break;}if(flag&&k==n){for(j=1;j<=n;j++)printf("%d",a[j]);printf("\n");}if(k<n&&flag) {k++;a[k]=1;continue;}while(a[k]==n&&k>1){k--;}if(a[k]==n&&k==1)break;else{a[k]++;}}}C++程序2、排列的算法差不多,为了不重复,加了一个条件,也就是递增数列#include<stdio.h>void main(){int n,m,i=0,j=0,k=0,flag=0,f=0;static int a[40];printf("输入N,M:");scanf("%d%d",&n,&m);a[1]=1;k=1;while(1){flag=1;for(i=1;i<k;i++)if(a[k]==a[i]||a[k]<a[i])//a[k]<a[i]条件为了限制递增{flag=0;break;}if(flag&&k==m){for(j=1;j<=m;j++)printf("%d",a[j]);printf("\n");}if(k<n&&flag){k++;a[k]=1;continue;}while(a[k]==n&&k>1){k--;}if(a[k]==n&&k==1)break;else{a[k]++;}}}C++程序3#include <stdio.h>#include <string.h>void main() {int n,i=1;printf("请输入N值=?");scanf("%d",&n);int a[30]={0}; //C语言中完成数组定义并初始化不能用变量N,只能用具体数字,这儿采用比较大的30a[1]=1;while(i<=n){if (i==n){for (int j=1;j<n;j++) printf("%d ",a[j]);printf("%d\n",a[n]); //输出一组解}if (i<n) {i++;a[i]=1;continue;}while (a[i]==n && i>1) i--; //向前回溯if (a[i]==n && i==1) break; //结束else a[i]=a[i]+1;}}JA V A程序用回溯法求任意1到N个数字的全排列。
算法——回溯法回溯法回溯法有“通⽤的解题法”之称。
⽤它可以系统地搜索⼀个问题的所有解或任⼀解。
回溯法是⼀种即带有系统性⼜带有跳跃性的搜索算法。
它在问题的解空间树中,按深度优先策略,从根节点出发搜索解空间树。
算法搜索⾄解空间树的任⼀结点时,先判断该节点是否包含问题的解。
如果不包含,则跳过对以该节点为根的⼦树的搜索,逐层向其它祖先节点回溯。
否则,进⼊该⼦树,继续按照深度优先策略搜索。
回溯法求问题的所有解时,要回溯到根,且根节点的所有⼦树都已被搜索遍才结束。
回溯法求问题的⼀个解时,只要搜索到问题的⼀个解就可结束。
这种以深度优先⽅式系统搜索问题的算法称为回溯法,它是⽤于解组合数⼤的问题。
问题的解空间⽤回溯法解问题时,应明确定义问题的解空间。
问题的解空间⾄少包含问题的⼀个(最优)解。
例如对于有n种可选择物品的0-1背包问题,其解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有可能的0-1赋值。
例如n=3时,其解空间是{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}定义了问题的解空间后,还应该将解空间很好地组织起来,使得能⽤回溯法⽅便地搜索整个解空间。
通常将解空间组织成树或者图的形式。
例如,对于n=3时的0-1背包问题,可⽤⼀颗完全的⼆叉树表⽰其解空间,如下图。
解空间树的第i层到第i+1层边上的标号给出了变量的值。
从树根到叶⼦的任⼀路径表⽰解空间中的⼀个元素。
例如,从根节点到节点H的路径相当与解空间中的元素(1,1,1)。
回溯法的基本思想确定了解空间的组织结构后,回溯法从根节点出发,以深度优先搜索⽅式搜索整个解空间。
回溯法以这种⼯作⽅式递归地在解空间中搜索,直到找到所要求的解或解空间所有解都被遍历过为⽌。
回溯法搜索解空间树时,通常采⽤两种策略避免⽆效搜索,提⾼回溯法的搜索效率。
其⼀是⽤约束函数在当前节点(扩展节点)处剪去不满⾜约束的⼦树;其⼆是⽤限界函数剪去得不到最优解的⼦树。