算法设计与分析-第8章-回溯法
- 格式:pptx
- 大小:1.28 MB
- 文档页数:81
算法设计与分析中的贪心算法与回溯法算法设计与分析领域中,贪心算法和回溯法是两种常用的解题方法。
本文将介绍这两种算法,并比较它们在不同场景下的优势和劣势。
一、贪心算法贪心算法是一种在每一步都选择当前最优解的策略,希望通过局部最优解的选择最终达到全局最优解。
贪心算法的实现较为简单,时间复杂度较低,适用于解决一些最优化问题。
贪心算法的基本思想是每次都选择当前状态下的最优解,并将其加入到解集中。
例如,在求解最小生成树的问题中,贪心算法会选择当前具有最小权值的边,并将其添加到最终结果中,直到生成树完成。
然而,贪心算法的局限性在于它只考虑了当前的最优解,无法保证找到全局最优解。
在某些问题中,贪心算法可能会陷入局部最优解而无法跳出。
因此,需要在具体问题中综合考虑问题的性质和约束条件来确定是否适合采用贪心算法。
二、回溯法回溯法是一种通过不断尝试可能的步骤来寻找问题解的方法。
它通常基于递归的思想,在每一步都尝试所有的可能选择,并逐步构建解空间,直到找到解或确定无解。
回溯法的核心思想是深度优先搜索,通过遍历解空间树来寻找解。
在每一步,回溯法都会考虑当前状态下的所有可能选择,并递归地进入下一步。
如果某一步的选择无法达到目标,回溯法会回退到上一步进行其他可能的选择。
回溯法常用于解决一些全排列、子集和组合等问题。
例如,在解决八皇后问题时,回溯法通过逐个放置皇后并进行合法性判断,直到找到所有解或遍历完所有可能的情况为止。
然而,回溯法的缺点在于其时间复杂度较高,其搜索过程包含了大量的重复计算。
因此,在使用回溯法解决问题时,需注意适当剪枝以减少搜索空间,提高算法效率。
三、贪心算法与回溯法的比较贪心算法和回溯法都是常用的算法设计与分析方法,但其适用场景和效果有所差异。
贪心算法在解决问题时能够快速找到局部最优解,并且具有较低的时间复杂度。
它适用于一些满足最优子结构性质的问题,例如最小生成树、单源最短路径等。
然而,贪心算法无法保证一定能找到全局最优解,因此需根据具体问题的特点来判断是否使用。
算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
沈阳理工大学算法实践与创新论文摘要对于计算机科学来说,算法的概念是至关重要的,算法是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。
为了更加的了解算法,本篇论文中,我们先研究一个算法---回溯法。
回溯法是一种常用的重要的基本设计方法。
它的基本做法是在可能的范围之内搜索,适于解一些组合数相当大的问题。
圆排列描述的是在给定n个大小不等的圆 C1,C2,…,Cn,现要将这n个圆排进一个矩形框中,且要求各圆与矩形框的底边相切。
圆排列问题要求从n个圆的所有排列中找出有最小长度的圆排列。
图着色问题用数学定义就是给定一个无向图G=(V, E),其中V为顶点集合,E为边集合,图着色问题即为将V分为K个颜色组,每个组形成一个独立集,即其中没有相邻的顶点。
其优化版本是希望获得最小的K值。
符号三角形问题要求对于给定的n,计算有多少个不同的符号三角形,使其所含的“+”和“-”的个数相同。
在本篇论文中,我们将运用回溯法来解决着图的着色问题,符号三角形问题,图排列问题,将此三个问题进行深入的探讨。
关键词: 回溯法图的着色问题符号三角形问题图排列问题目录第1章引言 (1)第2章回溯法的背景 (2)第3章图的着色问题 (4)3.1 问题描述 (4)3.2 四色猜想 (4)3.3 算法设计 (5)3.4 源代码 (6)3.5 运行结果图 (10)第4章符号三角形问题 (11)4.1 问题描述 (11)4.2 算法设计 (11)4.3 源代码 (12)4.4 运行结果图 (16)第5章圆的排列问题 (17)5.1 问题描述 (17)5.2 问题分析 (17)5.3 源代码 (18)5.4 运行结果图 (22)结论 (23)参考文献 (24)第1章引言在现实世界中,有相当一类问题试求问题的全部解或求问题的最优解。
最基本的方法是通过枚举法搜索问题的解空间。
但许多问题解空间的大小随问题规模n的增长呈指数规律增长,这就使问题理论上可解而实际不可行。
回溯算法的应用课程名称:算法设计与分析院系:学生姓名:学号:专业班级:指导教师:年月日回溯算法的应用摘要:回溯法是在包含问题的所有解的解空间树(或森林)中,按照深度优先的策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任一结点时,总是先判断该结点是否满足问题的约束条件。
如果满足进入该子树,继续按深度优先的策略进行搜索。
否则,不去搜索以该结点为根的子树,而是逐层向其祖先结点回溯。
其实回溯法就是对隐式图的深度优先搜索算法。
回溯法是一个既带有系统性又带有跳跃性的的搜索算法。
它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。
否则,进入该子树,继续按深度优先的策略进行搜索。
回溯法的优点在于其程序结构明确,可读性强,易于理解,而且通过对问题的分析可以大大提高运行效率。
回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。
而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。
这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。
这就是以深度优先的方式系统地搜索问题解的回溯算法,它适用于解决一些类似n皇后问题等求解方案问题,也可以解决一些最优化问题。
关键词:回溯法解空间树深度优先搜索目录第1章绪论 (1)1.1 回溯算法的背景知识 (1)1.2 回溯法的前景意义 (1)第2章回溯算法的理论知识 (2)2.1 回溯算法的基本思想 (2)2.2 回溯算法设计过程 (2)2.3回溯算法框架 (2)2.4 回溯算法的一般性描述 (4)第3章哈密尔顿问题 (5)3.1 问题描述 (5)3.2 问题分析 (5)3.3 算法设计 (5)3.4 测试结果与分析 (7)第4章结论 (11)参考文献 (12)第1章绪论1.1 回溯算法的背景知识回溯算法是尝试搜索算法中最为基本的算法,在递归算法中,其存在的意义是在递归知道可解的最小问题后,逐步返回原问题的过程。
算法——回溯法回溯法回溯法有“通⽤的解题法”之称。
⽤它可以系统地搜索⼀个问题的所有解或任⼀解。
回溯法是⼀种即带有系统性⼜带有跳跃性的搜索算法。
它在问题的解空间树中,按深度优先策略,从根节点出发搜索解空间树。
算法搜索⾄解空间树的任⼀结点时,先判断该节点是否包含问题的解。
如果不包含,则跳过对以该节点为根的⼦树的搜索,逐层向其它祖先节点回溯。
否则,进⼊该⼦树,继续按照深度优先策略搜索。
回溯法求问题的所有解时,要回溯到根,且根节点的所有⼦树都已被搜索遍才结束。
回溯法求问题的⼀个解时,只要搜索到问题的⼀个解就可结束。
这种以深度优先⽅式系统搜索问题的算法称为回溯法,它是⽤于解组合数⼤的问题。
问题的解空间⽤回溯法解问题时,应明确定义问题的解空间。
问题的解空间⾄少包含问题的⼀个(最优)解。
例如对于有n种可选择物品的0-1背包问题,其解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有可能的0-1赋值。
例如n=3时,其解空间是{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}定义了问题的解空间后,还应该将解空间很好地组织起来,使得能⽤回溯法⽅便地搜索整个解空间。
通常将解空间组织成树或者图的形式。
例如,对于n=3时的0-1背包问题,可⽤⼀颗完全的⼆叉树表⽰其解空间,如下图。
解空间树的第i层到第i+1层边上的标号给出了变量的值。
从树根到叶⼦的任⼀路径表⽰解空间中的⼀个元素。
例如,从根节点到节点H的路径相当与解空间中的元素(1,1,1)。
回溯法的基本思想确定了解空间的组织结构后,回溯法从根节点出发,以深度优先搜索⽅式搜索整个解空间。
回溯法以这种⼯作⽅式递归地在解空间中搜索,直到找到所要求的解或解空间所有解都被遍历过为⽌。
回溯法搜索解空间树时,通常采⽤两种策略避免⽆效搜索,提⾼回溯法的搜索效率。
其⼀是⽤约束函数在当前节点(扩展节点)处剪去不满⾜约束的⼦树;其⼆是⽤限界函数剪去得不到最优解的⼦树。