浙大《大学物理》第六章
- 格式:pdf
- 大小:863.64 KB
- 文档页数:99
第六章习题解答6-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s02.001.0ϕ=- 21cos 0-=ϕ,0s i n 00>-=ϕωυA 0sin 0<ϕ 即 πϕ320-=或π34 初始相位 πϕ320-=则 m t y s )32cos(02.0πω-=再建立如图题6-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: ux t =∆则该波的波动方程为:m u x t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0若坐标原点不选在S 点,如习题6-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uL x t -=∆则该波的波方程为:m uL x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0若P 点选在S 点左侧,P 点比S 点超前时间为ux L -,如习题6-1图(c)所示,则⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0uL x t y6-2 解(1)由习题6-2图可知, 波长 m 8.0=λ 振幅A=0.5m习题6-1图习题6-1图频率 Hz 125Hz 8.0100===λuv周期 s 10813-⨯==vT ππυω2502==(2)平面简谐波标准波动方程为: ⎥⎦⎤⎢⎣⎡+-=ϕω)(cos u xt A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。
将ϕπωω、、、u v A )2(=代入波动方程,得:m )100(250cos 5.0⎥⎦⎤⎢⎣⎡-=x t y π(3) x =0.4m 处质点振动方程.⎥⎦⎤⎢⎣⎡-=)1004.0(250cos 5.0t y π m )250cos(5.0ππ-=t6-3 解(1)由习题6-3图可知,对于O 点,t=0时,y=0,故2πϕ±=再由该列波的传播方向可知,00<υ取 2πϕ=由习题6-3图可知,,40.0m OP ==λ且u=0.08m/s ,则ππλππω52rad/s 40.008.0222====u v rad/s可得O 点振动表达式为:m t y )252cos(04.00ππ+=(2) 已知该波沿x 轴正方向传播,u=0.08m/s,以及O 点振动表达式,波动方程为:m x t y ⎥⎦⎤⎢⎣⎡+-=2)08.0(52cos 04.0ππ(3) 将40.0==λx 代入上式,即为P 点振动方程:m t y y p ⎥⎦⎤⎢⎣⎡+==ππ2152cos 04.00 (4)习题6-3图中虚线为下一时刻波形,由图可知,a 点向下运动,b 点向上运动。
第六章 磁场通过复习后,应该:1.掌握磁感应强度、毕奥-萨伐尔定律、洛伦兹力、霍尔效应、安培力、磁场对载流线圈的作用、物质的磁性和磁化、电磁感应定律;2.理解几种电流的磁场、安培环路定理、质谱仪、超导体及其抗磁性、感生电动势、自感现象;3.了解磁场中的高斯定理、电磁流量计、超导磁体、人体生物磁场、涡旋电场。
6-1 一个半径为0.2m 、阻值为200Ω的圆形电流回路,接12V 的电压,求回路中心处的磁感应强度。
解: 已知半径r =0.2m ,电源电压U =12V ,圆形回路的电阻R =200Ω,根据欧姆定律,可求得回路的电流为I =U / R =12/200 A=0.06 A由圆形电流磁场公式,可得回路中心处的磁感应强度为T 10881T 2020601042770--⨯=⨯⨯⨯==...r IB πμ6-2 一根长直导线上载有电流100A ,把它放在50G 的均匀外磁场之中,并使导线与外磁场正交,试确定合成磁场为零的点到导线的距离。
解: 长直载流导线产生的磁场,其磁感线是一些围绕导线的同心圆,在导线周围总有一点A ,其磁感强度与外磁场的磁感应强度大小相等、方向相反,该点的合磁场为零。
已知I =100A ,B = 50G = 5.0×10-3 T ,根据长直载流导线磁场公式aI B πμ20=,可得A 点离导线的距离a 为mm 04m 1004m 1005210010423370...B I a =⨯=⨯⨯⨯⨯==---πππμ6-3 0.4m 长的细管上绕有100匝导线,其电阻为3.14Ω,欲在螺线管内获得200G 的磁感应强度,需外加电压多少伏?解: 已知螺线管单位长度上的线圈匝数n =100/0.4=250匝·米-1,B =200G =2×10-2 T ,根据螺线管电流磁场公式B = μ0nI ,可得螺线管通过的电流为A 763A 102A 2501041022720.nB I ≈⨯=⨯⨯⨯==--ππμ 已知线圈电阻R =3.14Ω,根据欧姆定律可计算出需加的外电压为U =IR =2/π×102×3.14V=200V6-4 一平面上有两个同心的圆形回路,用相同电动势的电池(内阻忽略不计),通过相反方向的电流,使在中心处产生的磁感应强度为零,已知外圆用铜线,其电阻率为1.7×10-6Ω·cm ,内圆用铝线,电阻率为2.8×10-6Ω·cm ,这些导线的截面积相同,外圆直径为200cm ,求内圆的直径。
第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )R εq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。