博弈论第四讲
- 格式:ppt
- 大小:2.39 MB
- 文档页数:43
第四章动态不完全信息博弈第一节. 序贯均衡的内涵一.问题的提出1.序贯理性2.一致信念二.序贯均衡的内涵1.例子2.定义a.行为战略b.序贯理性c.一致信念3.存在性三.序贯均衡的计算1.例子:一般计算2.例子:分析应用第二节. 序贯均衡的应用一.教育和信号传递1.假设2.分析二.垄断限价模型1.假设2.分析三.声誉模型1.假设2.分析四.序贯均衡之再精炼1.剔除劣弱战略2.直观标准3.垄断限价模型第四章不完全信息动态博弈第一节.序贯均衡的内涵一.问题的提出1.序贯理性——参与人在所有情况决策都是理性的,即在给定信念的条件下,以及其他参与人的选择条件下,自身选择是最优的例1:子博弈最优——纳什均衡(,)L l是否合理?——如果参与人2有机会选择,肯定选r而不是l;——(,)L l不是子博弈精炼纳什均衡。
例2:单点信息集最优——纳什均衡(,,)D a l是子博弈纳什均衡;——但如果参与人2有机会选择,但肯定选择d;——(,,)D a l不满足单点信息集理性。
例3:多点信息集最优——纳什均衡(,)A r是子博弈精炼纳什均衡;——(,)A r不满足多点信息集理性。
2.一致信念例1:与客观事实一致u=是否合理?——参与人2的信念2/3——2/3u=是不合理的,因为任何到达参与人2信息集都不可能产生此后验概率;——后验信念必须与先念信念保持一致。
例2:前后信念一致——参与人2的第2个信息集上的信念,是否合理?——不合理,给定参与人战略和第1个信息集的信念,利用贝叶斯法则计算信念与此不一致;——参与人前后信念保持一致。
例3:独立偏离——参与人3的信念0.9u =是否合理?——参与人1和参与人3的偏离是独立的,所以参与人3的合理信念为0.1u =;——不同参与人之间的偏离是独立的总结,一致信念要求:参与人偏离最小化,,参与人之间偏离是独立的;二.序贯均衡的定义1.例子——定义参与人1在信息集1.1和1.3以及参与人2在2.2上的序贯理性;——定义信息集1.3和2.2的信念?2.定义a.行为战略:参与人在某个信息集到行动集映射,——如果某个状态真正发生,参与人如何决策;——序贯理性是否满足?b.序贯理性:在任何信息集上,参与人在给定信念和所有后续行为战略,选择自身行为战略最大化预期效用。
博弈论(课一)课程内容和时光支配第一讲:概述(第一、二章)其次讲:术语解读和基本假设(第三、四章)第三讲:囚犯逆境和破解之道(第五、六、七章)第四讲:万元陷阱和智猪博弈(第八、九章)第五讲:懦夫博弈和性别战(第十、十一章)博弈学-----博览全局对弈棋局课一博弈在中国的理解--略观围棋,法于用兵,怯者无功,贪者先亡。
西方国家的理解--Game fair play。
(中国人在博弈中关注的是获胜,西方人在博弈中关注的是怎么玩的愉快。
)博弈可以在工作领域,可以在社交往来,可以在家庭相处,无处不在,博大精深。
知人者智,自知者明;胜人者力,自胜者强;小胜者术,大胜者德。
推举书刊1、蒋文华:《用博弈的思维看世界》,浙江高校出版社,2022年。
2、张维迎:《博弈论与信息经济学》,上海三联书店,上海人民出版社,1996年。
3、詹姆斯·米勒:《活学活用博弈论-如何利用博弈论在竞争中取胜》,中国财政经济出版社,2022年。
4、阿维纳什·K ·迪克西特、巴里·J ·奈尔伯夫:《策略思维》,中国人民高校出版社,2022年。
5、阿维纳什·K ·迪克西特、巴里·J ·奈尔伯夫:《妙趣横生博弈论》,机械工业出版社,2022年。
博弈指在一定的嬉戏规章约束下,基于直接互相作用的环境条件,各参加人依据所把握的信息,挑选各自的策略(行动),以实现利益最大化的过程。
故事1,两人同行打猎,忽遇一猛狮。
一人卸下身上物品狂奔,同伴不解,问道:“汝能胜狮?”答曰:“非需胜狮,只需胜汝!” (博弈既可以是竞争,也可以是合作!)嬉戏1,每位学生写1个介于1与100之间的自然数(整数,包括1与100在内),然后求出全部数字的平均数,假如你所写的数字最临近该平均数的二分之一,那么你将在嬉戏中胜出。
(博弈,必需学会换位思量!)博弈只需率先一步,高人一筹!大智若愚假如由于对方眼中的你的傻,而让对方更情愿和你合作,何乐而不为呢?嬉戏2,每位学生写5个大于0的自然数,假如你所写的5个数字中有一个是全部学生中所写的数字中最小的(在没有重合的状况下),那么你将在该嬉戏中胜出。