统计学概论计算公式汇总
- 格式:doc
- 大小:342.00 KB
- 文档页数:6
回归方程
统计指数
公式名称
抽样元素计算
公式
样本均值标准误差(S)与总体均值标准差()的关系
抽样平均误差
参数估计
数学公式
G N
N!
n!(N n)!
G N N n
2
x
不重置
抽样
重置
抽样
不重置
抽样
说明
G N :可抽取的样本数
N :样本元素
n :容量样本数
N!:代表(例如4个样本元素其代表的意思
就是4*3*2*1)
n!:代表(例如抽取样本容量为2的样本其
意思是2*1)
重置
抽样
前提是在样本均值x为正态分布
或样本容量足够大(即n 30)
u
x
不重置
抽样
平均数:
成数:U p
.p(1 p)
i1n
重置
抽样
1、不重置抽样比重置抽样多加个
(1 -),此项为修正系数。
N
2、抽样平均数为样本标准差,抽样
成数为样本成数*(1-样本成数)。
(完整版)统计学公式大全统计学公式大全本文档旨在提供统计学领域常用的公式大全,便于大家在研究和实践中进行参考和应用。
描述统计学公式中心趋势度量1. 平均数(Mean):$\bar{x} =\frac{{\sum_{i=1}^{n}x_i}}{n}$2. 中位数(Median):若数据个数为奇数,中位数为排序后的中间值;若数据个数为偶数,中位数为排序后的中间两个值的平均值。
3. 众数(Mode):出现频率最高的数值。
离散趋势度量1. 方差(Variance):$Var(x) = \frac{{\sum_{i=1}^{n}(x_i - \bar{x})^2}}{n}$2. 标准差(Standard Deviation):$SD(x) = \sqrt{Var(x)}$3. 极差(Range):$Range(x) = \max(x) - \min(x)$分布形状度量1. 偏度(Skewness):$\text{Skewness} =\frac{{\sum_{i=1}^{n}(x_i - \bar{x})^3}}{n \cdot SD(x)^3}$2. 峰度(Kurtosis):$\text{Kurtosis} =\frac{{\sum_{i=1}^{n}(x_i - \bar{x})^4}}{n \cdot SD(x)^4}$ 推断统计学公式参数估计1. 样本均值的抽样分布标准差(Standard Error of the Mean):$SE(\bar{x}) = \frac{{SD(x)}}{\sqrt{n}}$2. 双侧置信区间公式(Confidence Interval):$\bar{x} \pm Z\cdot SE(\bar{x})$3. 样本比例的抽样分布标准差(Standard Error of Proportion):$SE(p) = \sqrt{\frac{{p(1-p)}}{n}}$4. 双侧置信区间公式(Confidence Interval):$p \pm Z \cdotSE(p)$假设检验1. 样本均值和总体均值的差异(t检验):$t = \frac{{\bar{x} -\mu}}{{SE(\bar{x})}}$2. 双侧拒绝域临界值(t分布):$t_{\text{critical}} = \pmt_{\alpha/2, df}$3. 样本比例和总体比例的差异(z检验):$z = \frac{{\hat{p} - p}}{{SE(p)}}$4. 双侧拒绝域临界值(z分布):$z_{\text{critical}} = \pmz_{\alpha/2}$回归分析公式简单线性回归模型1. 回归方程(Simple Linear Regression):$y = \beta_0 +\beta_1x + \epsilon$2. 线性预测公式(Simple Linear Regression):$\hat{y} =\hat{\beta}_0 + \hat{\beta}_1x$3. 斯皮尔曼秩相关系数(Spearman's Rank Correlation Coefficient):$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$4. 相关系数的显著性检验(t检验):$t = \frac{r}{\sqrt{\frac{1 - r^2}{n-2}}}$结论本文档列举了统计学领域常用的公式,包括描述统计学中的中心趋势度量、离散趋势度量和分布形状度量,推断统计学中的参数估计和假设检验,以及回归分析中的简单线性回归模型等相关公式。
统计学常用公式统计学是一门研究数据收集、分析、解释和表达的科学。
在统计学中,有许多常用的公式被广泛应用于数据处理和推断分析。
本文将介绍一些统计学常用公式,并对其进行说明和用途解释。
一、描述统计学公式1. 平均值(Mean)平均值是一组数据的总和除以数据的个数,即:$\bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$其中,$\bar{X}$表示平均值,$X_i$表示第i个数据,n表示数据的个数。
2. 中位数(Median)中位数是将一组数据按照大小排列后,处于中间位置的数值。
当数据个数为奇数时,中位数即为排列后正中间的数;当数据个数为偶数时,中位数为排列后中间两个数的平均值。
3. 众数(Mode)众数是一组数据中出现频率最高的数值。
4. 标准差(Standard Deviation)标准差衡量数据的离散程度,其计算公式为:$SD = \sqrt{\frac{(X_1 -\bar{X})^2 + (X_2 -\bar{X})^2 + \cdots + (X_n -\bar{X})^2}{n-1}}$5. 方差(Variance)方差是标准差的平方,即:$Var = SD^2$6. 百分位数(Percentile)百分位数是指一组数据中某个特定百分比处的数值。
比如,第25百分位数是将一组数据从小到大排列后,处于前25%位置的数值。
二、概率与统计公式1. 随机变量期望(Expectation)随机变量期望是描述随机变量平均值的指标,也称为均值。
对于离散型随机变量X,其期望计算公式为:$E(X) = \sum_{i=1}^{n} X_i \cdot P(X_i)$对于连续型随机变量X,其期望计算公式为:$E(X) = \int_{-\infty}^{\infty} x \cdot f(x)dx$其中,$X_i$表示随机变量X的取值,$P(X_i)$表示对应取值的概率,$f(x)$表示X的概率密度函数。
统计学公式汇总统计学是研究数据收集、分析、解释和预测的一门学科。
在统计学中,有许多重要的公式被广泛应用于数据的处理和分析过程中。
本文将汇总一些常见的统计学公式,并简要介绍其应用场景和使用方法。
1. 均值(Mean)均值是统计学中最常用的概念之一,用于衡量一组数据的集中趋势。
对于一个样本集合,均值可以通过将所有观测值相加,然后除以样本容量来计算。
其数学公式如下:均值= ∑(观测值) / 样本容量2. 方差(Variance)方差是用于衡量一组数据的离散程度的指标。
方差越大,表示数据的离散程度越高;方差越小,表示数据的离散程度越低。
方差的计算公式如下:方差= ∑((观测值-均值)^2) / 样本容量3. 标准差(Standard Deviation)标准差是方差的平方根,用于衡量数据的离散程度,并且具有和原始数据相同的单位。
标准差的计算公式如下:标准差 = 方差的平方根4. 相关系数(Correlation Coefficient)相关系数用于衡量两组变量之间的线性关系强度和方向。
相关系数的取值范围在-1到1之间,其中-1表示完全的负相关,1表示完全的正相关,0表示无相关。
相关系数的计算公式如下:r = Cov(X,Y) / (σX * σY)5. 回归方程(Regression Equation)回归方程用于建立一个或多个自变量与因变量之间的线性关系。
回归方程的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示模型的误差项。
6. 样本容量和置信水平(Sample Size and Confidence Level)在统计学中,样本容量和置信水平是决定实验或调查结果可靠性的重要因素。
样本容量是指从总体中抽取的样本大小,而置信水平是指对总体参数的估计值的信任程度。
统计学主要计算公式统计学是研究数据收集、整理、分析、解释和呈现的科学。
在统计学中,有许多重要的计算公式被广泛应用于统计分析和推断,以下是一些常见的计算公式:1.平均值:平均值是一组数据的总和除以数据的数量。
公式:平均值=总和/数据数量2.中位数:中位数是一组有序数据中的中间值,将数据从小到大排列,若数据的数量为奇数,则中位数为中间的数值;若数据的数量为偶数,则中位数为中间两个数值的平均值。
3.众数:众数是一组数据中出现最频繁的值。
4.方差:方差是一组数据与其平均值的差的平方的平均值。
公式: 方差= (∑(xi-平均值)^2) / 数据数量5.标准差:标准差是方差的平方根,用于衡量一组数据的离散程度。
公式:标准差=√方差6.相关系数:用于衡量两个变量之间线性相关程度的统计量。
公式: r = Cov(X,Y) / (SD(X) * SD(Y))其中,Cov(X,Y)表示X和Y的协方差,SD(X)和SD(Y)分别表示X和Y的标准差。
7.正态分布概率密度函数:正态分布是统计学中最重要的分布之一,其概率密度函数可以描述随机变量的分布。
公式:f(x)=(1/(σ*√(2π)))*e^(-(x-μ)^2/(2σ^2))其中,μ表示均值,σ表示标准差,e表示自然常数。
8.合并概率公式:用于计算多个事件同时发生的概率。
公式:P(A∩B)=P(A)*P(B,A)其中,P(A)表示A事件发生的概率,P(B,A)表示在A事件发生的条件下B事件发生的概率。
9.条件概率公式:用于计算在已知其中一事件发生的条件下另一事件发生的概率。
公式:P(A,B)=P(A∩B)/P(B)其中,P(A,B)表示在B事件发生的条件下A事件发生的概率。
10.抽样误差公式:用于计算样本估计值与总体参数之间的误差。
公式:误差=Z*(标准误差)其中,Z表示置信水平对应的标准正态分布的分位数,标准误差表示样本估计的标准差。
这些计算公式是统计学中非常重要的工具,用于帮助我们理解和解释数据的特征和关系。
《统计学原理》常用公式汇总(一)第三章统计整理a) 组距=上限-下限b) 组中值=(上限+下限)÷2c) 缺下限开口组组中值=上限-1/2邻组组距d) 缺上限开口组组中值=下限+1/2邻组组距第四章综合指标i. 相对指标1.结构相对指标=各组(或部分)总量/总体总量2.比例相对指标=总体中某一部分数值/总体中另一部分数值3.比较相对指标=甲单位某指标值/乙单位同类指标值4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象总量指标5.计划完成程度相对指标=实际数/计划数=实际完成程度(%)/计划规定的完成程度(%)ii.平均指标1.简单算术平均数:2.加权算术平均数或iii.变异指标1.全距=最大标志值-最小标志值2.差: 简单σ= ;加权σ=3.差系数:第五章抽样估计1.平均误差:重复抽样:不重复抽样:2.抽样极限误差3.重复抽样条件下:平均数抽样时必要的样本数目成数抽样时必要的样本数目4.不重复抽样条件下:平均数抽样时必要的样本数目第七章相关分析1.相关系数2.配合回归方程y=a+bx3.估计误:第八章指数分数一、综合指数的计算与分析(1)数量指标指数此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。
( - )此差额说明由于数量指标的变动对价值量指标影响的绝对额。
(2)质量指标指数此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。
( -)此差额说明由于质量指标的变动对价值量指标影响的绝对额。
加权算术平均数指数=加权调和平均数指数=(3)复杂现象总体总量指标变动的因素分析相对数变动分析:= ×绝对值变动分析:- = ( - )×( -)第九章动态数列分析一、平均发展水平的计算方法:(1)由总量指标动态数列计算序时平均数①由时期数列计算②由时点数列计算在间断时点数列的条件下计算:a.若间断的间隔相等,则采用“首末折半法”计算。
公式为:b.若间断的间隔不等,则应以间隔数为权数进行加权平均计算。
统计学原理常用公式1.样本均值公式:样本均值是用来估计总体均值的一种方法,公式为:\bar{x} = \frac{{\sum_{i=1}^n x_i}}{n}\]其中,\(\bar{x}\) 是样本均值,\(x_i\) 是第 \(i\) 个观察值,\(n\) 是样本容量。
2.样本方差公式:样本方差是用来估计总体方差的一种方法,公式为:s^2 = \frac{{\sum_{i=1}^n (x_i - \bar{x})^2}}{n-1}\]其中,\(s^2\) 是样本方差,\(x_i\) 是第 \(i\) 个观察值,\(\bar{x}\) 是样本均值,\(n\) 是样本容量。
计算样本方差时使用的是无偏估计公式。
3.标准差公式:标准差是样本方差的平方根,公式为:s = \sqrt{s^2}\]其中,\(s\)是样本标准差。
4.离差平方和公式:离差平方和是指每个观察值与均值之差的平方的总和,公式为:\sum_{i=1}^n (x_i - \bar{x})^2\]5.切比雪夫不等式:切比雪夫不等式给出了随机变量与其均值之间的关系,公式为:P(,X-\mu,\geq k\sigma) \leq \frac{1}{k^2}\]其中,\(X\) 是随机变量,\(\mu\) 是均值,\(\sigma\) 是标准差,\(k\) 是大于零的常数。
6.二项分布的期望值和方差公式:二项分布用于描述在\(n\)次独立重复试验中成功的次数的概率分布。
其期望值和方差分别为:E(X) = np\]Var(X) = np(1-p)\]其中,\(X\)是二项分布随机变量,\(n\)是试验次数,\(p\)是单次试验成功的概率。
7.正态分布的概率密度函数和累积分布函数公式:正态分布描述了大部分自然现象中的连续性随机变量的分布。
f(x) = \frac{1}{{\sqrt{2\pi}\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]F(x) = \frac{1}{2}\left[1 + \text{erf}\left(\frac{x -\mu}{\sqrt{2}\sigma}\right)\right]\]其中,\(x\) 是正态分布的随机变量,\(\mu\) 是均值,\(\sigma\) 是标准差,\(\text{erf}\) 是误差函数。
统计学公式汇总(1) αβδμσνπρυt u F X s 2χ(2) 均数(mean ):nX nX X X X n∑=+⋅⋅⋅++=21式中X 表示样本均数,X 1,X 2,Xn为各观察值。
(3) 几何均数(geometric mean, G ):)lg (lg )lg lg lg (lg 121121nX n X X X X X X G n nn ∑--=+⋅⋅⋅++=⋅⋅⋅∙=式中G 表示几何均数,X 1,X 2,X n 为各观察值。
(4) 中位数(median, M )n 为奇数时,)21(+=n X Mn 为偶数时,2/][)12()2(++=n n XX M式中n 为观察值的总个数。
(5) 百分位数 )%(L xx f x n f iL P ∑-⋅+= 式中L为Px 所在组段的下限,f x 为其频数,i 为其组距,L f ∑为小于L各组段的累计频数。
(6) 四分位数(quartile, Q ) 第25百分位数P 25,表示全部观察值中有25%(四分之一)的观察值比它小,为下四分位数,记作Q L;第75百分位数P 75,表示全部观察值中有25%(四分之一)的观察值比它大,为上四分位数,记作Q U。
(7) 四分位数间距 等于上、下四分位数之差。
(8) 总体方差 NX 22)(μσ-∑=(9) 总体标准差 NX 2)(μσ-∑=(10)样本标准差 1/)(1)(222-∑-∑=--∑=n nX X n X X s (11)变异系数(coefficient of variation, CV ) %100⨯=X sCV (12)样本均数的标准误 理论值nX σσ=估计值ns s X =式中σ为总体标准差,s为样本标准差,n 为样本含量。
(13)样本率的标准误 理论值np )1(ππσ-=估计值np p s p )1(-=式中π为总体率,p 为样本率,n 为样本含量。
(14)总体率的估计:正态分布法,(n p p u p n p p u p /)1(,/)1(-⋅+-⋅-αα) 式中p为样本均数,s 为样本标准差,n 为样本含量。
心理统计常用公式总结1 、组数 K(总体分布为正态)( N 为数据个数, K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中 W i 为权数,其中为各小组的平均数, n i 为各小组人数6 、几何平均数,其中 n 为数据个数, X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中 S 为标准差, M 为平均数10 、标准分数,其中 X 为原始数据,为平均数, S 为标准差11 、全距R=最大数-最小数12 、平均差13 、四分差,其中 L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数, i 为组距, N 为数据个数14 、积差相关基本公式:,其中N 为成对数据的数目, S x 、 S y 分别为 X 和 Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中 D 为各对偶等级之差直接用等级序数计算:,其中 R X 、 R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数, p 、 q 是二分变量各自所占的比率, p+q=1 , S t 是连续变量的标准差18 、二列相关,其中 S T 与是连续变量的标准差与平均数, y 为 P 的正态曲线的高度19 、多系列相关,其中 P i 为每系列的次数比率, y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数, S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。