高一数学柱、锥、台的表面积与体积
- 格式:doc
- 大小:988.50 KB
- 文档页数:2
高中数学“圆柱、圆锥、圆台、球的表面积和体积”知识点详解一、引言在高中数学中,立体几何是一个非常重要的部分,它涉及到三维空间中图形的性质、度量以及变换等内容。
圆柱、圆锥、圆台和球是立体几何中最为常见的几何体,它们的表面积和体积计算是高中数学的重点和难点。
本文将详细介绍这些几何体的表面积和体积的计算方法,帮助同学们更好地掌握这一知识点。
二、圆柱的表面积和体积1.圆柱的表面积圆柱的表面积等于其侧面积与两个底面面积之和。
具体计算公式如下:表面积= 侧面积+ 2 ×底面面积= 2πrh + 2πr²= 2πr(h + r)其中,r为底面半径,h为高。
1.圆柱的体积圆柱的体积等于其底面面积与高的乘积。
具体计算公式如下:体积= 底面面积×高= πr²h三、圆锥的表面积和体积1.圆锥的表面积圆锥的表面积等于其侧面积与底面面积之和。
具体计算公式如下:表面积= 侧面积+ 底面面积= πrl + πr²= πr(l + r)其中,r为底面半径,l为母线长。
母线长l可以通过勾股定理求得:l = √(h² + r²),其中h为高。
1.圆锥的体积圆锥的体积等于其底面面积与高的乘积的三分之一。
具体计算公式如下:体积= (1/3) ×底面面积×高= (1/3) × πr²h四、圆台的表面积和体积1.圆台的表面积圆台的表面积等于其侧面积与上、下底面面积之和。
具体计算公式如下:表面积= 侧面积+ 上底面面积+ 下底面面积= π(R + r)l + πR² + πr²= π(R + r)(l + R + r)其中,R为上底面半径,r为下底面半径,l为母线长。
母线长l可以通过勾股定理求得:l = √[(R - r)² + h²],其中h为高。
1.圆台的体积圆台的体积可以使用以下公式计算:体积= (1/3) × (上底面面积+ 下底面面积+ √(上底面面积×下底面面积)) ×高= (1/3) × π(R² + r² + Rr) × h= (1/3) × π(R + r)(R² - Rr + r²)h / (R - r) (当R≠r时)= (1/3) × πh(R^2 + Rr + r^2) (当R=r时)五、球的表面积和体积1.球的表面积球的表面积等于其大圆的面积的4倍。
柱、锥、台的表面积与体积
要点1 柱体的表面积
棱柱的侧面是平行四边形;圆柱的侧面展开图是矩形. 设柱体的底面周长为c ,高为h ,则S 侧=c·h ,S 表=S 侧+2S 底. 要点2 锥体的表面积
棱锥的侧面展开图是由若干个三角形拼成的,因此侧面积为各三角形面积之和;圆锥的侧面展开图为扇形.表面积公式为:S 表=S 侧+S 底. 要点3 台体的表面积
棱台的侧面展开图为若干个梯形拼接而成,因此侧面积为各梯形的面积之和,而圆台的侧面展开图为扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,它们的表面积公式为:S 表=S 侧+S 上底+S 下底. 要点4 柱体、锥体与台体的体积公式
V 柱体=Sh ,(S 为底面积,h 为柱体的高). V 锥体=1
3Sh ,(S 为底面积,h 为锥体的高). V 台体=1
3(S +SS ′+S ′)h , V 柱――――→S ′=S V 台――――→S ′=0
V 锥
例1 (1)已知棱长为5的各侧面均为正三角形的四棱锥
S -ABCD ,求它的侧面积、表面积.
(2)一个正方体和一个圆柱等高,并且侧面面积相等,求这个正方体和圆柱的体积之比.
例2(1)已知一圆台上底面半径为2,下底面的半径为3,截得此圆台的圆锥的高为6,求此圆台的体积.
例3某几何体的三视图如图所示,该几何体的体积等于________,表面积等于________.
空间几何体体积计算的常见技巧
1.等积变换法
例如图所示,三棱锥的顶点为P,PA、PB、PC为三条侧棱,且PA、PB、PC两两互相垂直,又PA=2,PB=3,PC=4,求三棱锥P -ABC的体积V.。
柱、锥、台的表面积与体积【学习目标】1.通过对柱、锥、台体的研究,掌握柱、锥、台的表面积的求法。
2.通过对柱、锥、台体的研究,掌握柱、锥、台的体积的求法。
【学习重点】学习重点:柱体、锥体、台体的表面积和体积计算。
学习难点:台体体积公式的推导。
【自主学习】 正方体、长方体的表面积可以理解成各个面的面积之和,圆柱、圆锥的表面积可以理解成底面面积与侧面展开图的面积之和。
那么如何计算柱体、锥体、台体的表面积,进而去研究他们的体积问题呢?阅读课本23-27页回答下列问题:棱体、棱锥、棱台的表面积是如何求的呢?圆柱、圆锥、圆台的表面积公式是什么?你是如何得到的呢?柱体、锥体、台体的体积公式是什么?你是如何得到的呢?【典型例题】已知棱长为a ,各面均为等边三角形的正四面体S-ABC 的表面积.如图是一种机器零件,零件下面是六棱柱(底面是正六边形,侧面是全等的矩形)形,上面是圆柱(尺寸如图,单位:mm )形. 电镀这种零件需要用锌,已知每平方米用锌0.11kg ,问电镀10 000个零件需锌多少千克(结果精确到0.01kg )【基础题组】1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8 B.8π C.4π D.2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比为 ( )A.1+2π2πB.1+4π4πC.1+2ππD.1+4π2π3.若一个圆台的正视图如图所示,则其侧面积等于 ( )A .6B .6πC .35πD .65π4.三视图如图所示的几何体的全面积是 ( )A .7+ 2 B.112+ 2 C .7+ 3 D.325.如果一个空间几何体的正视图与侧视图均为全等的等边三角形, 俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( )A .33πB .332πC .π3D .3π6.三棱锥ABC V -的中截面是111C B A ∆,则三棱锥111C B A V -与三棱锥BC A A 1-的体积之比是( )A .1:2B .1:4C .1:6D .1:87.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________.8.一简单组合体的三视图及尺寸如下图所示(单位:cm ),则该组合体的表面积为________cm2.9.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.10.长方体ABCD —A1B1C1D1中,宽、长、高分别为3、4、5,现有一个小虫从A 出发沿长方体表面爬行到C1来获取食物,求其路程的最小值.【拓展题组】1.已知由半圆的四分之三截成的扇形的面积为B ,由这个扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( )A .11∶8B .3∶8C .8∶3D .13∶82.一个几何体的三视图如图,该几何体的表面积为( )A .372B .360C .292D .2803.一个几何体的三视图如图所示,则该几何体的表面积为________.4.有一根长为3π cm ,底面半径为1 cm 的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,求铁丝的最短长度.【探究题组】1.有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).2.右图是一个正方体,H 、G 、F 分别是棱AB 、AD 、1AA 的中点。
高一数学教案:柱体锥体台体的表面积与体积
【摘要】欢迎来到高一数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:“高一数学教案:柱体锥体台体的表面积与体积”希望能为您的提供到帮助。
本文题目:高一数学教案:柱体锥体台体的表面积与体积
学习目标
1. 了解柱、锥、台的体积计算公式;
2. 能运用柱、锥、台的体积公式进行计算和解决有关实际问题.
学习过程
一、课前准备
(预习教材P25~ P26,找出疑惑之处)
复习1:多面体的表面积就是___________________
加上___________.。
§1.3.1柱体、锥体、台体的表面积与体积
一、教学目标
1、知识与技能
(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。
(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。
(3)培养学生空间想象能力和思维能力。
2、过程与方法
(1)让学生经历几何全的侧面展一过程,感知几何体的形状。
(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。
3、情感与价值
通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。
从而增强学习的积极性。
二、教学重点、难点
重点:柱体、锥体、台体的表面积和体积计算
难点:台体体积公式的推导
三、学法与教学用具
1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。
2、教学用具:实物几何体,投影仪
四、教学设想
1、创设情境
(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。
(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。
2、探究新知
(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图
(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?
(3)教师对学生讨论归纳的结果进行点评。
3、质疑答辩、排难解惑、发展思维
(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:
)''22rl l r r r S +++=(圆台表面积π
r 1
为上底半径 r 为下底半径 l 为母线长
(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。
(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积
的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的
了解。
如图:
(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。
(s ’,s 分别我上下底面面积,h 为台柱高)
4、例题分析讲解
(课本)例1、 例2、 例3
5、巩固深化、反馈矫正
教师投影练习
1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为 。
(答案:m a ππ
332) 2、棱台的两个底面面积分别是245c ㎡和80c㎡,截得这个棱台的棱锥的高为35cm ,
求这个棱台的体积。
(答案:2325cm 3)
6、课堂小结
本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式。
用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握。
7、评价设计
习题1.3 A 组1.3。