量子力学教学04
- 格式:ppt
- 大小:437.00 KB
- 文档页数:39
量子力学教案一、教学目标1. 了解量子力学的基本概念和原理。
2. 掌握波粒二象性的概念及其实验表现。
3. 理解量子力学中的不确定性原理及其应用。
4. 熟悉量子力学的基本数学形式。
5. 能够应用基本量子力学理论解决简单问题。
二、教学重点1. 量子力学基本概念和实验表现。
2. 不确定性原理的理解和应用。
3. 基本数学形式的掌握和应用。
三、教学难点1. 不确定性原理的理解。
2. 量子力学基本数学形式的应用。
3. 量子力学在实际问题中的运用。
四、教学内容及方法1. 教学内容:(1)量子力学基本概念和实验表现- 波粒二象性的概念及实验验证(双缝干涉实验等)。
- 波函数的概念和物理意义。
- 波函数的归一化和量子态的正交性。
(2)不确定性原理的理解和应用- 不确定性原理的概念和表述。
- 不确定性原理在实际问题中的应用。
(3)量子力学基本数学形式的掌握和应用- 时间演化方程及薛定谔方程的引出。
- 算符及其期望值的计算。
- 可观测量与本征值问题。
2. 教学方法:(1)讲授法:通过讲述基本概念和理论原理,引导学生理解量子力学的基本思想和数学形式。
(2)实验演示法:通过展示双缝干涉实验等经典实验,直观呈现波粒二象性现象。
(3)示例分析法:通过解析具体问题,引导学生掌握量子力学基本数学形式的应用。
五、教学步骤1. 导入环节通过提问方式引出波粒二象性的概念,并展示双缝干涉实验等相关实验现象。
2. 理论阐述(1)量子力学基本概念和实验表现讲解波粒二象性概念及实验验证,并引出波函数的概念和物理意义,讲解波函数的归一化和量子态的正交性。
(2)不确定性原理的理解和应用介绍不确定性原理的概念和表述,并结合实际问题进行应用示例分析。
(3)量子力学基本数学形式的掌握和应用讲解薛定谔方程的引出和时间演化方程,引导学生掌握算符及其期望值的计算方法,并介绍可观测量与本征值问题。
3. 实例讲解通过解析实例问题,引导学生应用所学的基本量子力学理论解决实际问题。
第四章 量子力学的表述形式(本章对初学者来讲是难点)表象:量子力学中态和力学量的具体表示形式。
为了便于理解本章内容,我们先进行一下类比:矢量(欧几里德空间) 量子力学的态(希尔伯特空间) 基矢),,(321e e e~三维 本征函数,...),...,,(21n ψψψ~无限维任意矢展开∑=ii i e A A任意态展开 ∑=nn n a ψψ),,(z y x e e e),...)(),...,(),((21x x x n ψψψ 取不同坐标系 ),,(ϕθe e e r取不同表象 ),...)(),...,(),((21p C p C p C n ………. ………. 不同坐标之间可以进行变换 不同表象之间可以进行变换由此可见,可以类似于矢量A,将量子力学“几何化”→在矢量空间中建立它的一般形式。
为此,我们将① 引进量子力学的矢量空间~希尔伯特空间; ② 给出态和力学量算符在该空间的表示; ③ 建立各种不同表示之间的变换关系。
最后介绍一个典型应用(谐振子的粒子数表象)和量子力学的三种绘景。
4.1希尔伯特空间 狄拉克符号狄拉克符号“”~类比:),,(z y x A A A欧氏空间的矢量 A→坐标系中的分量 ),,(ϕθA A A r……….)(rψ →表象下的表示)(p C……….引入狄拉克符号的优点:①运算简洁;②勿需采用具体表象讨论。
一、 希尔伯特空间的矢量定义:希尔伯特空间是定义在复数域上的、完备的、线性内积空间,并且一般是无限维的。
1、线性:①c b a =+;②a b λ=。
2、完备性:∑=nn n a a 。
3、内积空间:引入与右矢空间相互共轭的左矢空间∑==↔+nn n a a a a *;)(:。
定义内积:==*ab b a 复数,0≥a a 。
1=a a ~归一化;b a b a ,~0=正交;m n n m δ=~正交归一;)(x x x x '-='δ~连续谱的正交归一。
第4章三维空间中的量子力学4.1 球坐标系中的薛定谔方程向三维情况的推广是直截了当的。
薛定鄂方程为:;i H t∂ψ=ψ∂ [4.1] 由经典能量可以得出哈密顿算符H 1V p p p mV mv z y x +++=+)(21212222 通过标准方法(现在应用于y ,z 以及x ):,x p i x ∂→∂ ,y p i y∂→∂ ,z p i z ∂→∂ [4.2] 或者简洁地写为[4.3]这样[4.4]其中2222222zy x ∂∂+∂∂+∂∂≡∇ [4.5]是直角坐标系中的拉普拉斯算符。
势能V 和波函数ψ现在是(,,)x y z =r 和t 的函数。
在无穷小体元3d dxdydz =r 内发现粒子的几率为23(,)t d ψr r ,归一化条件是231,d ⎰ψ=r [4.6]其中积分是对整个空间进行。
如果势不显含时间,将有一组完备的定态/(,)(),n iE t n n t e ψ-ψ=r r [4.7]其中空间波函数n ψ满足定态薛定谔方程: [4.8]1当可能出现混淆时,我将在算符顶部放一个∧来区分它们与对应的经典力学量。
本章中不会有很多场合会出现这种混淆,用∧很麻烦,所以从现在起我不再用它。
(含时)薛定谔方程的一般解是/(,)(),n iE t n n t c e ψ-ψ=∑r r [4.9]其中常数n c 由初始波函数(,0)ψr 用通常的方法确定。
(假如势允许连续态,那么4.9式中的求和变为积分。
)*习题4.1(a ) 求出算符r 和p 的各分量之间的正则对易关系:[,]x y ,[,]y x p ,[,]x x p ,[,]y z p p 等等。
答案:[,][,]i j i j ij r p p r i δ=-= ,[,][,]0i j i j r r p p ==, [4.10]这里指标表示,,x y z , , , x y z r x r y r z ===。
(b ) 证明三维情况下的Ehrenfest 定理:1,d dt m =p 和 .d V dt=-∇p [4.11] (当然,上面每个式子表示三个方程—一个分量一个)。
量子力学教程课件1. 简介量子力学是一门研究微观粒子行为的物理学分支,描述了微观世界的基本原理和规律。
本教程课件旨在介绍量子力学的基本概念、数学描述和常见应用,帮助学生深入理解和应用量子力学知识。
2. 量子力学基础2.1 波粒二象性介绍波粒二象性的基本概念,包括波动性和粒子性的相互转化,以及双缝实验等经典实例。
2.2 不确定性原理解释不确定性原理的概念和意义,说明无法同时准确确定粒子的位置和动量的原理。
2.3 波函数和 Schrödinger 方程介绍波函数的概念,以及薛定谔方程的基本形式和求解方法,引导学生理解波函数描述微观粒子的性质和行为。
3. 定态量子力学3.1 定态和定态方程介绍定态的概念,以及定态方程的推导和求解方法,帮助学生理解波函数与能量之间的关系。
3.2 算符和本征值问题解释算符和本征值问题的基本概念,包括算符的作用和本征函数的定义,引导学生掌握本征值问题的求解方法。
3.3 动量和位置算符介绍动量和位置算符的定义和性质,解释它们对应的本征函数和本征值,讨论动量-位置不确定性关系。
4. 哈密顿力学和波函数演化4.1 哈密顿量和状态演化解释哈密顿量的概念和物理意义,讨论波函数演化的基本原理,引导学生理解时间演化和态矢量的变化关系。
4.2 边界条件和量子力学稳定态探讨边界条件对量子力学系统稳定态的影响,以及波函数在无穷深势阱等特定势场中的求解。
4.3 时间演化和量子力学测量介绍时间演化算符的定义和性质,讨论量子力学测量的基本原理和微扰态的提取方法。
5. 特殊系统和量子力学应用5.1 含时量子力学引入含时量子力学的概念,解释含时薛定谔方程的物理意义,介绍准确求解和近似求解的方法。
5.2 简谐振子讨论简谐振子的基本性质和量子化过程,引导学生理解能级和激发态的概念。
5.3 氢原子和多电子系统介绍氢原子的量子力学描述和能级结构,讨论多电子系统的波函数形式和近似求解方法。
5.4 量子力学与量子信息探索量子力学与量子信息科学的联系,简要介绍量子计算、量子通信和量子加密等前沿应用。
【关键字】精品第四章:力学量用算符表示P186 15.设与为厄米算符,则和也是厄米算符。
由此证明,任何一个算符均可分解为,与均为厄米算符,且证:ⅰ)为厄米算符。
ⅱ)也为厄米算符。
ⅲ)令,则,且定义(1)由ⅰ),ⅱ)得,即和皆为厄米算符。
则由(1)式,不难解得4.1证(An是实数)是厄密算符证明:此算符不能简化,可以用多次运算证明,首先假定已经证明动量是厄密算符,则运用这个关系于下面的计算:满足厄密算符的定义。
4.2证明(实数)是厄密算符。
(证明)方法同前题,假定已经证明,都是厄密算符,即:又按题意得证算符是一维的这证明不是厄密算符,但满足同理可证明将前二式相加除2,得因此是厄密算符,因此也是。
又假定用作为厄密算符的定义,并设则本题可用较简方式来证明如下:因为所以有同理有相加除2,得:这证明右方一式是厄密算符。
4.3 设是的可微函数,证明下述各式:[一维算符](1)(证明)根据题给的对易式及(2)(证明)同前一论题(3)[证明]同前一题论据:(4) [证明]根据题给对易式外,另外应用对易式 (5) (证明)论据同(4): (6) (证明)论据同(4):4.4 设算符A ,B 与它们的对易式[A ,B]都对易。
证明(甲法)递推法,对第一公式左方,先将原来两项设法分裂成四项,分解出一个因式,再次分裂成六项,依次类推,可得待证式右方,步骤如下: 按题目假设重复运算n-1次以后,得(乙法)数学归纳法,待证一式当n=1时,是明显成立的,假设当m=k 时该式成立 现在计算有: 利用前述的假设 但又按题目假设用于前一式得待证一式。
关于第二个公式也可按相同的步骤证明,不另列述。
但若第一式证实,则亦可从第一式推第二式,注意 将第一式对易式中两算符对易得 再将文字A ,B 对易得 4.5 证明(证明)本题的证法与题四的第一法完全相同,只是条件A ,B 与[A ,B]对易一点不能使用,即 从原来的对易式经过总数n-1次运算后,得取A=q ,B=p ,注意[q ,p]=ih 代入前一式后,有 4.6设),(p x F 是p x ,的整函数,证明 整函数是指),(p x F 可以展开成∑∞==,),(n m n m mnp x Cp x F 。