4、有理数的加法_教案3
- 格式:doc
- 大小:36.00 KB
- 文档页数:3
“有理数的加法”教案一.教学目标1.知识与技能(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;2.数学思考通过观察,比较,归纳等得出有理数加法法则。
3.解决问题能运用有理数加法法则解决实际问题。
4.情感与态度认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
5.重点会用有理数加法法则进行运算.6.难点异号两数相加的法则.二.教材分析“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
三.学校与学生情况分析双溪中学是靖安县的一所完全中学,在新的教学理念的指导下,旧的教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。
现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。
四.教学过程五.教学反思“有理数的加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(30分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.现在,试比较这两类教学设计的得失利弊.第一种方案,教学的重点偏重于让学生通过练习,熟悉法则的应用,这种教法近期效果较好.第二种方案,注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.这种方案减少了应用法则进行计算的练习,所以学生掌握法则的熟练程度可能稍差,这是教学中应当注意的问题.但是,在后续的教学中学生将千万次应用“有理数加法法则”进行计算,故这种缺陷是可以得到弥补的.第一种方案削弱了得出结论的“过程”,失去了培养学生观察、比较、归纳能力的一次机会.权衡利弊,我们主张采用第二种教学方法。
有理数的加减混合运算教案有理数的加减混合运算教案作为一位优秀的人民教师,就不得不需要编写教案,教案是教学活动的依据,有着重要的地位。
我们该怎么去写教案呢?以下是小编为大家整理的有理数的加减混合运算教案,希望对大家有所帮助。
有理数的加减混合运算教案篇1一、素质教育目标(一)知识教学点1.了解:代数和的概念。
2.理解:有理数加减法可以互相转化。
3.应用:会进行加减混合运算。
(二)能力训练点培养学生的口头表达能力及计算的准确能力。
(三)德育渗透点通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。
(四)美育渗透点学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美。
二、学法引导1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题。
2.学生写法:练习→寻找简单的一般性的方法→练习巩固。
三、重点、难点、疑点及解决办法1.重点:把加减混合运算算式理解为加法算式。
2.难点:把省略括号和的形式直接按有理数加法进行计算。
四、课时安排1课时五、教具学具准备投影仪或电脑、自制胶片。
六、师生互动活动设计教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈。
七、教学步骤(一)创设情境,复习引入师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:-9+(+6);(-11)-7师:(1)读出这两个算式。
(2)“+、-”读作什么?是哪种符号?“+、-”又读作什么?是什么符号?学生活动:口答教师提出的问题。
师继续提问:(1)这两个题目运算结果是多少?(2)(-11)-7这题你根据什么运算法则计算的?学生活动:口答以上两题(教师订正)。
师小结:减法往往通过转化成加法后来运算。
【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作。
《有理数的加法》教案一、教学目标:1. 让学生理解有理数的加法概念,掌握有理数加法的基本运算方法。
2. 能够正确进行有理数的加法运算,解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学重点:1. 有理数加法的基本运算方法。
2. 能够正确进行有理数的加法运算。
三、教学难点:1. 有理数加法的运算规律。
2. 不同符号有理数加法的运算方法。
四、教学方法:1. 采用讲解法,讲解有理数加法的基本概念和运算方法。
2. 采用例题演示法,展示不同类型的有理数加法运算。
3. 采用练习法,让学生通过练习巩固所学知识。
五、教学内容:1. 有理数加法的概念:两个有理数相加的运算称为有理数加法。
2. 有理数加法的运算方法:(1)同号有理数相加:取相同符号,并把绝对值相加。
(2)异号有理数相加:取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
3. 练习题:(1)同号有理数相加:23 + 17 = 40(2)异号有理数相加:-5 + 7 = 2(3)混合运算:34 15 + 26 = 45六、教学步骤:1. 引入新课:讲解有理数加法的概念和意义。
2. 讲解有理数加法的运算方法,并通过例题展示。
3. 让学生进行练习,巩固所学知识。
4. 总结本节课的主要内容和知识点。
七、课后作业:1. 完成练习册上的相关题目。
2. 找一些实际问题,运用有理数加法解决。
八、教学反思:通过本节课的教学,学生应该能够掌握有理数加法的基本概念和运算方法,能够正确进行有理数的加法运算。
在教学过程中,要注意引导学生理解有理数加法的运算规律,并通过练习让学生熟练掌握。
要关注学生的学习情况,及时解答学生的疑问,提高教学效果。
六、教学评价:1. 通过课堂讲解、练习和课后作业,评估学生对有理数加法的理解和掌握程度。
2. 观察学生在解决问题时的思路和方法,评估其应用能力和创新意识。
3. 收集学生反馈意见,了解教学方法的适用性和改进方向。
七、教学拓展:1. 引导学生探索有理数加法的运算规律,例如:a + (-a) = 0,a + b = b + a 等。
数学有理数的加法教案精选8篇有理数的加法教案篇一(一)知识与技能目标1、经历探索有理数加法法则的过程,理解有理数的加法法则。
2、运用有理数加法法则熟练进行整数加法运算。
(二)过程与方法目标1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
3、渗透由特殊到一般的唯物辩证法思想(三)情感态度与价值观目标(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
(2)让学生体会到数学知识于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。
(3)培养学生合作意识,体验成功,树立学习自信心。
二、教学重点、难点:重点:理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则三、教学组织与教材处理:在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。
新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。
信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)=+5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。
又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误等等)。
同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。
有理数的加法的教学设计(精选11篇)有理数的加法的教学设计第1篇《有理数加法法则》是华东师大版教材七年级上册第二章第六节第一课时内容,主要是通过问题情境理解有理数加法的意义,探究、总结、归纳有理数的加法法则,并能根据有理数加法法则进行有理数加法运算,它是有理数运算的基础,也是实数运算的基础,也就是一切运算的基础。
教法:以学生为主体创设问题情境,通过设计问题串,诱导学生探究、总结、归纳有理数的加法法则,并能自主运用法则进行计算。
重点突出异号两数相加,明确有理数的加法,名义上是加,但实际上同号是加,异号则要转化成减法。
最后将巩固法则融入游戏中,并将法则编成顺口溜,活跃课堂气氛,让学生学得轻松。
学法:认真听讲,积极思考回答老师提出的问题,自主分类归纳有理数的加法法则,通过将法则巩固融入游戏、顺口溜中,让学生学得轻松,乐于学习,并提高学习的兴趣。
教学目标:1、理解加法的意义。
2、总结归纳有理数的加法法则,并能运用法则进行有理数的加法运算。
3、通过法则的探索,向学生渗透分类、归纳、转化的数学思想。
教学重点:法则的探索与应用教学难点:异号两数相加教学准备:预习教材,填上相应的空白,思考并举出运用有理数加法的实例。
教学过程:一、复习回顾1、一个不为零的有理数可以看做是由哪两部分组成的?2、比较下列各组数绝对值哪个大?①-22与30;②-与;③-4.5和63、小学里学过哪类数的加法?引入负数后又该如何进行有理数的加法运算呢?(建立在学生已有知识的基础之上复习回顾与本节课相关的旧知识。
)二、新知探究1、打开教材,请一位学生将他通过预习得到的加法算式说出来写在黑板上,并说出该式子表示的实际意义。
2、你还能举出类似用加法运算的实例吗?3、观察这些算式,从加数上看你可以将它们分成几类?每一类和的符号与加数的符号有何关系?和的绝对值与加数的绝对值有何关系?4、总结归纳有理数的加法法则。
突破难点:异号相加好比正数和负数进行拔河比赛,谁的力量(绝对值)大,谁胜(用谁的符号),结果考察力量悬殊有多大(较大绝对值减较小绝对值)。
有理数加法教案一、教学目标:1. 让学生掌握有理数加法的概念和规则。
2. 培养学生运用有理数加法解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作精神。
二、教学内容:1. 有理数加法的定义和符号表示。
2. 同号有理数加法法则:两数相加,取其绝对值相加,符号与原数相同。
3. 异号有理数加法法则:两数相加,取其绝对值相减,符号与绝对值较大的数相同。
4. 零的加法法则:任何数与零相加,等于其本身。
5. 举例讲解有理数加法的实际应用问题。
三、教学重点与难点:1. 教学重点:有理数加法的概念、法则及实际应用。
2. 教学难点:异号有理数加法法则的运用。
四、教学方法:1. 采用讲授法,讲解有理数加法的概念和法则。
2. 采用案例分析法,讲解实际应用问题。
五、教学过程:1. 导入:引导学生回顾实数的概念,引入有理数加法的概念。
2. 讲解:讲解同号和异号有理数加法法则,并通过示例进行演示。
3. 练习:布置练习题,让学生运用有理数加法法则进行计算。
4. 应用:讲解有理数加法在实际问题中的应用,让学生举例并进行解答。
6. 作业:布置作业,巩固所学内容。
六、教学评估:1. 课堂练习:在学习过程中,穿插多个练习题,实时检测学生的学习效果。
2. 小组讨论:组织学生进行小组讨论,评估学生在团队合作中的表现和对知识的理解程度。
3. 课后作业:通过布置课后作业,评估学生对课堂所学知识的掌握情况。
4. 课堂问答:教师提问,学生回答,评估学生的参与度和思维能力。
七、教学反馈:1. 学生反馈:收集学生对课堂教学的反馈,了解学生的学习需求和困惑。
2. 家长反馈:与家长保持沟通,了解学生在家庭环境下的学习情况,促进家校合作。
3. 自我反馈:教师根据教学效果,进行自我反思,不断调整教学方法,提高教学质量。
八、拓展与延伸:1. 对比学习:引导学生探讨有理数减法、乘法和除法,发现它们与加法的联系和区别。
2. 实践项目:设计一些实际问题,让学生运用有理数加法解决,提高学生的应用能力。
人教版数学七年级上册《有理数的加法》教学设计3一. 教材分析《有理数的加法》是人教版数学七年级上册的教学内容,本节课主要让学生掌握有理数加法的基本运算方法,理解加法运算的性质,并能灵活运用加法运算解决实际问题。
教材通过例题和练习题,帮助学生巩固有理数加法的运算规则,培养学生的运算能力和逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的概念、加法的定义以及基本的运算规则。
但部分学生对于有理数加法的运算性质理解不够深入,运算速度和准确性有待提高。
此外,学生对于实际问题中涉及的有理数加法运算,尚缺乏解决能力。
三. 教学目标1.知识与技能目标:使学生掌握有理数加法的基本运算方法,理解加法运算的性质,能够熟练地进行有理数加法运算。
2.过程与方法目标:通过自主学习、合作交流,培养学生运算能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 教学重难点1.重点:有理数加法的基本运算方法,加法运算的性质。
2.难点:理解并运用加法运算解决实际问题。
五. 教学方法1.采用自主学习、合作交流的教学方法,让学生在探究中掌握知识,提高能力。
2.运用实例讲解,引导学生将理论知识与实际问题相结合,培养学生的应用能力。
3.通过练习题巩固所学知识,及时发现并解决问题。
六. 教学准备1.准备PPT,展示相关知识点、例题和练习题。
2.准备黑板、粉笔,用于板书。
3.准备相关教具,如计数器、算盘等,用于演示运算过程。
七. 教学过程1.导入(5分钟)利用复习提问的方式导入新课,回顾上节课所学的内容,如:有理数的定义、加法的定义等。
通过复习,激发学生的学习兴趣,为新课的学习做好铺垫。
2.呈现(10分钟)讲解有理数加法的基本运算方法,引导学生掌握加法运算的性质。
通过PPT展示例题,讲解解题过程,让学生在听课过程中,逐步掌握有理数加法的运算规则。
3.操练(10分钟)学生在课堂上独立完成PPT展示的练习题,教师巡回指导,及时发现并解决问题。
有理数的加法教案优秀15篇有理数的加法教案篇一一、教学目标(一)知识与技能1、使学生掌握有理数加法法则,并能运用法则进行计算;2、在有理数加法法则的教学过程中,注意培养学生的运算能力。
(二)过程与方法1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。
2、在探索过程中感受数形结合和分类讨论的数学思想。
(三)情感、态度与价值观1、认识到通过师生合作交流,学生主动参与探索获得数学知识,从而提高学生学习数学的积极性。
2、创设教学情境,使学生更好地体验教学内容中的情境,理解数学的意义与数学实际应用。
二、教学重点会用有理数加法法则进行运算。
三、教学难点异号两数相加的#39;法则。
四、教学方法探究法、引导发现法五、教具准备多媒体课件、导学案六、教学过程(一)创设情景,引入新课。
小明沿着一条直线,先走两米,又走了三米,能否确定小明现在位于原来位置的哪个方向,与原来位置相距多少米?请把�(二)探究新知1、大家开始画数轴,以原点为起点,规定向右的�(1)若两次都是向右走,很明显,一共向右走了5米。
记作:(+2)+(+3)= +5(2)若两次都是向左走,很明显,一共向左走了5米。
记作:(-2)+(-3)= -5(3)若第一次向右走2米,第二次向左走3米,在数轴上,我们可以看到,小明位于原来位置的左方1米处。
记作:(+2)+(-3)= -1(4)若第一次向左走2米,第二次向右走3米,在数轴上,我们可以看到,小明位于原来位置的右方1米处。
记作:(-2)+ (+3)= +12、从刚才画数轴的过程中,我们知道了加法实际上是相继活动的合并。
我们可以借助数轴来得知两个有理数相加的结果。
请模仿刚才演示的过程,向右表示加数中的正数,向左表示加数中的负数,在数轴上表示两个数相加的过程,得到结果。
1)(-4)+ (-1)2)(+5)+(-3)3)(-4)+(+7)4)(-6)+33、通过实践,我们发现,能借助数轴很方便地得知有理数加法结果。
有理数的加法教案(优秀7篇)有理数的加法公开课教案篇一一、学情及学习内容分析“有理数的加法与减法”是基于规则为主的新授课型有理数的加法与减法是在引入“负数”的基础上,将数的范围扩展到“有理数”范围内的加、减法运算。
本节课从学生的生活经历和经验出发,创设情境,通过分析生活情境中的事理和观察温度计刻度的操作,得到了一些有理数减法的算式,用“化归”的思想方法归纳出有理数减法法则,并应用所学的有理数减法解决实际问题,整节课的设计流程和总体思路可以用下图表示:生活情境,动手操作------有理数减法算式-------有理数减法法则-------有理数减法的应用二、教学目标及教学重(难)点教学目标:1、知识与技能:会根据减法的法则进行有理数减法的运算。
2、过程与方法:经历分析生活情境中的数学事例,提炼其中的数学算式,并从中归纳有理数减法法则;经历将法则应用于解题的这一由一般到特殊的过程。
3、情感态度与价值观:在由实际情境提炼数学算式的过程中,感受数学在我们的生活中;在这一过程中,渗透转化的思想方法,感受数学思想方法的导航作用。
教学重点:有理数减法法则与运用教学难点:从实际情境到数学算式,从数学算式到法则的提炼,在法则的总结中体现化的思想方法的渗透。
教学方法:观察探究、合作交流。
三、教学过程设计:在课前让学生玩有理数加法中的扑克牌游戏。
1、情境引入:师:同学们,大家都看过天气预报,有没有注意到里面有“温差”之说呢?有效性分析:通过设计“温差”这一问题情境,进而顺利的进入课题,并从列算式角度加以认识,得到一些有理数减法算式,为后面的化归思想方法归纳出有理数减法法则做好素材和算式上的准备。
2、建构活动活动1:计算温差师:有理数加减3_百度文库生1:利用温度计的刻度直观得到算式5 + 3 = 8生2:利用日温差的定义可得到算式:5 -(-3)= 8师:比较两式,我们有什么发现吗?生:“-”变“+”,(-3)变3。
活动2:通过举例子验证刚才的变化过程,加深对有理数减法算式的理解。
2.4有理数的加法(2)
教学目标
1.使学生掌握有理数加法的运算律,并能运用加法运算律简化运算;
2.培养学生观察、比较、归纳及运算能力.
教学重点和难点
1.重点:有理数加法运算律.
2.难点:灵活运用运算律使运算简便.
教学方法:三疑三探教学
教学过程
一、设疑自探
1.复习引入
①.叙述有理数的加法法则.
②.“有理数加法”与小学里学过的数的加法有什么区别和联系?
③.计算下列各题,并说明是根据哪一条运算法则?
(1)(-9.18)+6.18; (2)6.18+(-9.18); (3)(-2.37) +(-4.63);
2.计算下列各题:
(1)[8+(-5)]+(-4); (2)8+[(-5)+(-4)]; (3)[(-7)+(-10)]+(-11);
(4)(-7)+[(-10)+(-11)]; (5)[(-22)+(-27)]+(+27);
(6)(-22)+[(-27)+(+27)].
3、自探
通过上面练习,引导学生得出:
交换律——两个有理数相加,交换加数的位置,和不变.
用代数式表示上面一段话:
a+b=b+a.
运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数.
结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
用代数式表示上面一段话:
(a+b)+c=a+(b+c).
这里a,b,c表示任意三个有理数.
二.解疑合探
根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.
例1计算16+(-25) +24+(-32).
引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便.
解:16+(-25)+24+(-32)
=16+24+(-25)+(-32) (加法交换律)
=[16+24]+[(-25)+(-32)] (加法结合律)
=40+(-57) (同号相加法则) =-17. (异号相加法则)
本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数.例2、10袋小麦称重记录如图所示,以每袋90千克为准,超过的千克数记作正数,不足的千克数记作负数.
总计是超过多少千克或不足多少千克? 10袋小麦的总重量是多少?
教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便.
解:7+5+(-4)+6+4+3+(-3)+(-2)+8+1
=[(-4)+4]+[5+(-3)+(-2)]+(7+6+3+8+1)
=0+0+25=25.
90×10+25=925.
答:总计是超过25千克,总重量是925千克.
三.质疑再探:
说说你还有什么疑惑或问题(由学生或老师来解答所提出的问题)
四.运用拓展
1.计算:(要求注理由)
(1)23+(-17)+6+(-22); (2)(-2)+3+1+(-3)+2+(-4);
(3)(-7)+(-6.5)+(-3)+6.5.
2.计算:(要求注理由)
作业:P51 1、2、3、4
板书设计
教学后记。