《1.3.1 有理数的加法》教学设计
- 格式:doc
- 大小:760.50 KB
- 文档页数:4
人教版七年级数学上册:1.3.1《有理数的加法》说课稿2一. 教材分析《有理数的加法》是人教版七年级数学上册第一章第三节第一小节的内容。
本节课的主要内容是让学生掌握有理数的加法法则,并能够熟练地进行有理数的加法运算。
这一内容在数学学习中占有重要的地位,因为有理数的加法是数学中基本的运算之一,也是学习更复杂数学知识的基础。
在教材中,首先通过实例引入有理数的加法,然后通过讲解和练习,让学生掌握有理数的加法法则,最后通过一些拓展练习,让学生能够灵活运用有理数的加法法则。
整个教学内容安排合理,由浅入深,有利于学生掌握有理数的加法。
二. 学情分析七年级的学生已经学习了有理数的基本概念,对于加法的概念也有了一定的了解。
但是,学生对于有理数的加法法则的理解和应用还不够熟练,需要通过本节课的学习,进一步加深对有理数加法的理解。
同时,学生在学习过程中,可能会对有理数加法的一些特殊情况进行困惑,比如相反数相加、同号数相加、异号数相加等。
这些情况需要通过实例和练习,让学生理解和掌握。
三. 说教学目标本节课的教学目标是让学生掌握有理数的加法法则,能够熟练地进行有理数的加法运算,并能够灵活运用有理数的加法法则解决实际问题。
四. 说教学重难点本节课的重难点是有理数的加法法则的理解和应用。
学生需要理解相反数相加、同号数相加、异号数相加的规则,并能够熟练地应用这些规则进行有理数的加法运算。
五. 说教学方法与手段本节课的教学方法主要是讲解法和练习法。
通过讲解有理数的加法法则,让学生理解并掌握有理数的加法。
通过练习,让学生熟练地应用有理数的加法法则进行计算。
同时,我会利用多媒体课件和黑板,进行直观的教学,让学生更好地理解有理数的加法。
六. 说教学过程1.导入:通过实例引入有理数的加法,让学生理解有理数加法的概念。
2.讲解:讲解有理数的加法法则,通过实例和练习,让学生理解和掌握有理数加法的规则。
3.练习:让学生进行有理数的加法运算,通过一些特殊情况的练习,让学生熟练地应用有理数的加法法则。
1.3有理数的加减法1.3.1有理数的加法◇教学目标◇【知识与技能】1.理解有理数加法的意义,初步掌握有理数加法法则;2.能准确地进行有理数的加法运算,并能运用其解决简单的实际问题.【过程与方法】经历由实际问题总结归纳出有理数加法法则,渗透数形结合思想.【情感、态度与价值观】通过学生自己动手操作、观察、思考,使学生亲身体验探索的乐趣,培养学生合作交流能力和观察、归纳、用数学语言表达数学规律的能力.◇教学重难点◇【教学重点】有理数的加法法则的理解和运用.【教学难点】异号的两数相加.◇教学过程◇一、情境导入小学已经学过,正有理数及0的加法运算,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进5个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为5+(-2),蓝队的净胜球数为1+(-1).这里用到正数和负数的加法.那么,怎样计算5+(-2)?二、合作探究探究点1有理数的加法法则典例1计算:(1)(-3)+(-9);(2)(-4.7)+3.9.[解析](1)(-3)+(-9)=-(3+9)=-12;.9=-(4.7-3.9)=-0.8.填空:(1)(-4)+(-6)=;(2)3+(-8)=;(3)7+(-7)=;(4)(-9)+1=.[答案](1)-10(2)-5(3)0(4)-8探究点2 有理数加法的运算律典例2 计算16+(-25)+24+(-35).[解析] 16+(-25)+24+(-35)=16+24+[(-25)+(-35)]=40+(-60)=-20.探究点3有理数加法的应用典例3 10袋小麦称后记录如图所示(单位:kg).10袋小麦一共多少千克?如果每袋小麦以90 kg 为标准,10袋小麦总计超过多少千克或不足多少千克?[解析] 每袋小麦超过90 kg 的千克数记作正数,不足的千克数记作负数.10袋小麦对应的数分别为+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1.1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1=[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8+1.1)=5.4.90×10+5.4=905.4.答:10袋小麦一共905.4 kg,总计超过5.4 kg.三、板书设计有理数的加法有理数的加法{加法法则运算律{交换律:a +b =b +a 结合律:(a +b )+c =a +(b +c )◇教学反思◇在本节教学中,要坚持以学生为主体,教师为主导,致力联系学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.在学生已有的知识经验上建构新知,主动探索有理数加法交换律和结合律,从而激发他们学习的兴趣,使他们由被动地接受学习变成一种主动探索获取知识.课堂中学生通过自主互助交流,不断地总结规律、方法和解题技巧.。
第一章有理数1.3 有理数的加减法1.3.1 有理数的加法第1课时(一)导入新课动物王国举办奥运会,蚂蚁当火炬手,它第一次从数轴上的原点向正方向跑一个单位,接着向负方向跑一个单位.蚂蚁经过两次运动后在哪里?如何列算式?(出示课件2)(二)探索新知1.师生互动,探究有理数的加法法则回顾用正负数表示数量的实际例子:教师问1:在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?学生回答:红队的胜球数为+4+(-2),蓝队的胜球数为-2+(+4).教师问2:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题.如果是球队在某场比赛中上半场失了两个球,下半场失了3个球,那么它的得胜球是几个呢?算式应该怎么列?学生回答:-2+(-3)教师问3:若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?学生回答:2+(-3)教师讲解:这些式子如何计算呢?我们可以借助数轴来计算,请看下面的问题:一只可爱的小狗,在一条东西走向的笔直公路上行走,现规定向东为正,向西为负.(出示课件4)教师问4:如果小狗先向东行走2米,再继续向东行走1米,则小狗两次一共向哪个方向行走了多少米?(出示课件5)学生回答:解:小狗一共向东行走了(2+1)米.写成算式为(+2)+(+1)= +(2+1)(米)教师问5:如果小狗先向西行走2米,再继续向西行走1米,则小狗两次一共向哪个方向行走了多少米?(出示课件6)学生回答:解:两次行走后,小狗向西走了(2+1)米.写成算式为(–2)+(– 1)= –(2 + 1)(米)出示课件7:看一看,想一想教师问6:你从上面两个式子中发现了什么?学生讨论后回答:同号两数相加,符号不变,数字相加.总结点拨:有理数加法法则一:同号两数相加,取相同的符号,并把绝对值相加.教师问7:如果小狗先向西行走3米,再继续向东行走2米,则小狗两次一共向哪个方向行走了多少米?(出示课件8)学生回答:解:小狗两次一共向西走了(3–2)米.用算式表示为–3+(+2)= –(3–2)(米)教师问8:如果小狗先向西行走2米,再继续向东行走3米,则小狗两次一共向哪个方向行走了多少米?(出示课件9)学生回答:解:小狗两次一共向东走了(3–2)米.用算式表示为–2 +(+3)= +(3–2)(米)教师问9:如果小狗先向西行走2米,再继续向东行走2米,则小狗两次一共向哪个方向行走了多少米?(出示课件10)学生回答:解:小狗一共行走了0米.写成算式为(–2)+(+2)= 0(米)出示课件11:想一想,比一比教师问10:你从上面三个式子中发现了什么?学生回答:符号不同的两个数相加,用数字大的数减去数字小的数,取数字大的数的符号.总结点拨:(出示课件12)有理数加法法则二:异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.教师问11:如果小狗先向西行走3米,然后在原地休息,则小狗向哪个方向行走了多少米?(出示课件13)学生回答:解:小狗向西行走了3米.写成算式为(–3)+0= –3(米)教师问12:同学们,你能说一下一个数同0相加如何计算吗?学生回答:一个数同0相加,还是这个数.总结点拨:有理数加法法则三:一个数同0相加,仍得这个数.归纳总结:(出示课件14)有理数加法法则1.同号两数相加,结果取相同符号,并把绝对值相加.2.绝对值不相等的异号两数相加,结果取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.例1:计算:(出示课件15)(1)(–4)+(–8);(2)(–5)+13;(3)0 +(–7);(4)(–4.7)+4.7.师生共同解答如下:解:(1)(–4)+(–8)=–(4+8)=–12(2)(–5)+13=+(13–5)=8(3)0 +(–7)=–7(4)(–4.7)+4.7=0总结点拨:(出示课件16)1.先判断类型(同号、异号等);2.再确定和的符号;3.最后进行绝对值的加减运算.例2:已知│a│= 8,│b│= 2;(出示课件18)(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.师生共同解答如下:分析:先根据的a、b符号,分类讨论,再计算a+b的值.解:因为│a│= 8,│b│= 2,所以a= ±8,b= ±2.(1)因为a、b同号,所以a= 8,b= 2或a= –8,b= –2.所以a+b= 8+2=10或a+b= – 8+(–2)= –10.(2)因为a、b异号,所以a= 8,b=– 2或a= –8,b= 2.所以a+b= 8+(–2)= 6或a+b= – 8+2= – 6.例3:足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.(出示课件20)师生共同解答如下:分析:解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(–2)=+(4–2)=2黄队共进2球,失4球,净胜球为(+2)+(–4)=–(4–2)=–2篮球共进1球,失1球,净胜球数为(+1)+(–1)=0(三)课堂练习(出示课件23-28)1. 计算–3+1的结果是()A.–2 B.–4 C.4 D.22. 计算:0 +(–2)=()A.–2 B.2 C.0 D.–203. 在1,–1,–2这三个数中,任意两数之和的最大值是()A.1B.0C.–1D.34.已知有理数a, b, c在数轴上的位置如图所示,则下列结论中错误的是()A. a+c<0B. b+c<0C. –b+a<0D.–a+b+c<05. 若│x│= 3,│y│= 2,且x>y,则x+y的值为()A.1B.–5C.–5或–1D.5或16. 计算:|–2+3|=_________.7. 计算:(1) (–0.6)+(–2.7);(2) 3.7+(–8.4);(3) 3.22+1.78;(4) 7+(–3.3).8. 某城市一天早晨的气温是–25℃,中午上升了11℃,夜间又下降了13℃,那么这天中午、夜间的气温分别是多少?9. 在某次抗洪抢险中,武警战士的冲锋舟沿东西方向的河流抢救灾民. 早晨从A地出发,晚上到达B地. 规定向东为正方向,出发地A记为0,当天航行记录如下(单位:千米):14, –9, 18, –7, 13, –6, 10, –5. 问B地在A地什么位置?参考答案:1.A 解析:–3+1= –2.2.A3.B4.C5.D6.1 解析:|–2+3|=1.7. 答案:(1) –3.3 ;(2) –4.7 ;(3) 5 ;(4) 3.78. 解:中午的气温为–25+11= –14(℃),夜间的气温为–14+(–13)= –27(℃).9. 解:14+(–9)+18+(–7)+13+(–6)+10+(–5)=28(千米).答:B地在A地正东28千米处.。
新人教版七年级数学上册 1.3.1《有理数的加法》教学设计一. 教材分析新人教版七年级数学上册1.3.1《有理数的加法》是学生在学习了有理数的概念之后,进一步学习有理数的运算。
本节内容主要介绍了有理数的加法法则,以及加法运算的应用。
通过本节课的学习,学生能够理解有理数加法的本质,掌握有理数加法的基本运算方法,并为后续学习其他有理数运算打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学概念和运算有一定的认识。
但是,对于有理数的加法,学生可能还存在一些模糊的认识,需要通过实例和练习来进一步理解和掌握。
此外,学生可能对有理数的加法法则理解不深,不能灵活运用到实际问题中。
三. 教学目标1.理解有理数加法的概念,掌握有理数加法的基本法则。
2.能够运用有理数加法法则,解决实际问题。
3.培养学生的运算能力,提高学生的数学思维能力。
四. 教学重难点1.有理数加法的概念和法则。
2.有理数加法在实际问题中的应用。
五. 教学方法采用启发式教学法,通过实例和练习,引导学生主动探究有理数加法的法则,培养学生的运算能力和数学思维能力。
同时,采用分组合作学习,让学生在交流和讨论中,进一步理解和掌握有理数加法。
六. 教学准备1.PPT课件。
2.实例和练习题。
3.分组合作学习的安排。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考有理数加法的意义,激发学生的学习兴趣。
例如:小明从家出发,先向正北方向走了5千米,然后又向正南方向走了3千米,他现在在哪里?2.呈现(10分钟)通过PPT课件,呈现有理数加法的定义和法则,引导学生直观地理解有理数加法。
同时,通过实例,讲解有理数加法的运算过程,让学生掌握有理数加法的基本方法。
3.操练(10分钟)让学生进行有理数加法的练习,巩固所学内容。
可以设置一些选择题和填空题,让学生在练习中,进一步理解和掌握有理数加法。
4.巩固(10分钟)通过一些实际问题,让学生运用有理数加法法则,解决问题。
§1.3.1——有理数的加法
授课对象:初一学生授课类型:新授课
一.教材分析:
“有理数的加法”是七年级数学上册第一章第三节的内容,本课设计主要是通过净胜球数的实例明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。
经历探索有理数加法法则和运算律(即加法交换律和结合律),使学生掌握并能灵活应用,从而解决实际问题。
二.教学目标:
1.知识与技能:经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算。
2.过程与方法:
①有理数加法法则的导出及运用过程中,训练学生独立分析问题的能力及口头表达能力。
②渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力。
3.情感、态度与价值观:
①通过观察、归纳、推断得到数学猜想,体验数学充满探索性和创造性。
②运用知识解决问题的成功体验。
三.教学重难点:
教学重点:有理数的加法法则的理解和运用。
教学难点:异号两数相加。
四.教学导图:
一﹑创设情境,导入新课
二﹑师生互动,探索新知
三﹑自我尝试,巩固双基
四﹑归纳小结,畅所欲言
五.教学过程:
六.板书设计。
人教版七年级数学上册:1.3.1《有理数的加法》说课稿一. 教材分析《有理数的加法》是人民教育出版社出版的七年级数学上册第一章第三节第一课时内容。
这一节主要介绍有理数的加法运算方法,是学生学习有理数运算的基础知识。
在本节课中,学生将学习如何利用数轴理解有理数的加法,掌握加法的运算律,并能够熟练地进行有理数的加法运算。
二. 学情分析七年级的学生已经具备了一定的数理基础,对数的运算有一定的了解。
但是,对于有理数的加法运算,学生可能还存在着一些困难,如对有理数的概念理解不深,对数轴的使用不熟练等。
因此,在教学过程中,需要注重对学生基础知识的巩固,以及对数轴使用的指导。
三. 说教学目标1.知识与技能目标:学生能够理解有理数的加法概念,掌握有理数的加法运算方法,能够熟练地进行有理数的加法运算。
2.过程与方法目标:通过数轴的使用,学生能够直观地理解有理数的加法,培养学生的数形结合思想。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生积极思考、合作探究的学习态度。
四. 说教学重难点1.教学重点:有理数的加法运算方法,加法的运算律。
2.教学难点:对有理数加法概念的理解,数轴的使用。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生通过数形结合的方式理解有理数的加法,培养学生的独立思考能力和合作探究能力。
2.教学手段:使用多媒体课件,辅助学生直观地理解有理数的加法,同时利用数轴帮助学生进行运算。
六. 说教学过程1.导入新课:通过简单的实例,引导学生复习已学的数的概念,为新课的学习做好铺垫。
2.探究新知:引导学生通过数轴观察,发现有理数加法的规律,引导学生总结出加法的运算律。
3.巩固新知:通过例题讲解,让学生动手练习,巩固对加法运算的理解。
4.拓展应用:引导学生将加法运算应用于实际问题中,培养学生的应用能力。
5.小结:对本节课的内容进行总结,强调重点知识。
6.布置作业:布置适量的作业,巩固所学知识。
人教版数学七年级上册1.3.1《有理数的加法》(第1课时)教学设计一. 教材分析《有理数的加法》是人教版数学七年级上册第一章第三节的第一课时,本节课主要介绍有理数的加法运算。
学生在学习这一节之前,已经掌握了有理数的概念、加法运算的法则,以及绝对值的概念。
本节课的内容为学生以后学习更高级的数学知识打下基础。
二. 学情分析面对刚从小学升入初中的学生,他们对数学知识有一定的了解,但还需要进一步的引导和培养。
在学习本节课之前,学生已经掌握了有理数的概念和加法运算的法则,但可能对有理数加法的实质理解不够深入,需要通过实例和练习来进一步巩固。
三. 教学目标1.让学生掌握有理数的加法运算方法,理解有理数加法的实质。
2.培养学生运用有理数加法解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.教学重点:有理数的加法运算方法,有理数加法的实质。
2.教学难点:有理数加法在实际问题中的应用。
五. 教学方法1.采用讲授法,讲解有理数加法的运算方法和实质。
2.采用案例分析法,分析实际问题中有理数加法的应用。
3.采用小组讨论法,培养学生的团队合作能力和逻辑思维能力。
六. 教学准备1.准备相关的教学案例和练习题,用于讲解和巩固有理数加法知识。
2.准备教学PPT,用于展示和讲解有理数加法的运算方法和实质。
3.准备黑板,用于板书和展示例题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生复习有理数的概念和加法运算的法则,为新课的学习做好铺垫。
2.呈现(10分钟)讲解有理数加法的运算方法和实质,结合PPT和板书,让学生清晰地理解有理数加法的运算过程。
3.操练(10分钟)让学生进行一些有关有理数加法的练习题,巩固所学知识。
教师在这个过程中要引导学生正确进行运算,并及时给予反馈。
4.巩固(10分钟)通过一些实际问题,让学生运用有理数加法知识解决问题。
教师要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
【人教版七年级数学上册第一章】1.3.1 第1课时《有理数的加法法则》教学设计1一. 教材分析人教版七年级数学上册第一章1.3.1节主要介绍了有理数的加法法则。
这部分内容是有理数运算的基础,对于学生理解和掌握有理数的概念、性质以及运算规律具有重要意义。
本节课的内容将为后续的乘法、除法、减法运算打下基础。
二. 学情分析七年级的学生已经初步掌握了有理数的概念和性质,对加法运算有一定的了解。
但学生在运算过程中,可能对符号的判断和运算顺序的掌握还不够熟练。
因此,在教学过程中,需要帮助学生巩固有理数的概念,提高运算速度和准确性。
三. 教学目标1.理解有理数的加法法则,能够熟练地进行有理数的加法运算。
2.培养学生的运算能力,提高学生解决实际问题的能力。
3.培养学生的合作交流意识,提高学生的逻辑思维能力。
四. 教学重难点1.教学重点:掌握有理数的加法法则,能熟练进行有理数的加法运算。
2.教学难点:符号的判断和运算顺序的掌握。
五. 教学方法采用情境教学法、合作学习法和激励评价法进行教学。
通过设置生活情境,激发学生的学习兴趣;学生进行小组讨论,培养学生的合作交流意识;运用激励评价,提高学生的自信心和积极性。
六. 教学准备1.准备教学课件,包括例题、练习题等。
2.准备黑板、粉笔等教学工具。
3.准备相关的生活情境案例。
七. 教学过程1.导入(5分钟)利用生活情境案例,引入本节课的主题。
例如,小红购买了3个苹果,小蓝购买了2个苹果,他们一共购买了多少个苹果?让学生思考并回答,引出有理数的加法运算。
2.呈现(10分钟)通过课件呈现有理数的加法法则,引导学生观察和思考。
讲解加法法则的内涵,让学生理解并掌握加法运算的规律。
3.操练(10分钟)让学生进行有理数的加法运算练习,教师及时给予指导和反馈。
可设置一些具有挑战性的题目,激发学生的学习兴趣。
4.巩固(10分钟)学生进行小组讨论,分享各自的解题心得。
教师引导学生总结加法运算的注意事项,巩固所学知识。
1.3.1 有理数的加法教学设计
镇宁寄中王世才
教学目标知识技能
通过实例,了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。
数学思考
1、正确地进行有理数的加法运算;
2、用数形结合的思想方法得出有理数加法法则。
解决问题能运用有理数加法解决实际问题。
情感态度
1、通过师生活动、学生自我探究、小组合作学习,让学生充分参与到数
学学习的过程中来。
2、让学生感知数学知识来源于生活,同时也服务于生活。
重点了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。
难点有理数加法中的异号两数如何进行加法运算。
关键有理数加法中结果符号的确定。
教学过程:
问题与情境师生行为设计意图一、提出问题、激活思维
在小学,我们尝过正数及0的加法运算. 引入负
数后,怎样进行加法运算呢?
问题:
在求“结余”时,需要计算 8.5 +(- 4.5),4 +(- 5.2)等. 你能用数学知识解决这个问题吗?
思考:小学学过的加法是正数与正数相加、正数与0相加.引入负数后,加法有哪几种情况?
教师出示问题:
正数与负数相加,如
何运算呢?激起学生
的学习兴趣。
学生说出加法的
情况,教师板书:
(+)+(+)
(+)+ 0
(+)+(-)
(-)+(-)
(-)+ 0
1、数学来源于生活和生
产的需要,激发学生的
数学学习热情。
2、由“思考”,调动
学生积极思考,促进学
生合作交流。
二、创设情境、探索新知、导出法则
下面借助具体情境和数轴来讨论有理数的加法.
一个物体作东西方向运动,我们规定向西为“- ”,向东为“ + ”.。