mocvd外延生长步骤
- 格式:docx
- 大小:11.62 KB
- 文档页数:2
MOCVD概述一、MOCVD的基本概述金属有机化合物气相沉积技术(MOCVD):金属有机化学气相沉积(MOCVD)又叫金属有机化学气相外延(MOVPE),是目前应用十分广泛的气相外延生长技术。
它是马纳斯维特(Manasevit)于1968年提出来的一种制备化合物半导体薄膜单晶的方法。
80年代以来得到了迅速的发展,日益显示出在制备薄层异质材料,特别是生长量子阱和超晶格方面的优越性。
MOCVD采用Ⅲ族,Ⅱ族元素的有机化合物和Ⅴ族,Ⅵ族元素的氢化物作为源材料,以热分解反应方式在衬底上进行气相外延,生长Ⅲ-Ⅴ族,Ⅱ-Ⅵ族化合物半导体及其多元固溶体的薄层单晶。
金属有机化合物大多是具有高蒸汽压的液体。
用氢气,氮气或惰性气体作载气,通过装有该液体的鼓泡器,将其携带与Ⅴ族,Ⅵ族的氢化物(PH3,AsH3,NH3等)混合,通入反应室。
当它们流经加热衬底表面时,就在上面发生热分解反应,并外延生成化合物晶体薄膜。
对于Ⅲ-Ⅴ族氮化物材料的生长,MOCVD扮演了极为重要的角色,可以说MOCVD技术推动了氮化物半导体的产业化发展。
早在1971年,Manasevit 报道了用MOCVD技术在蓝宝石衬底上外延GaN薄膜,由于GaN与蓝宝石衬底的晶格失配和热失配都很大,早期生长的样品表面形貌很差,外延薄膜存在裂纹,n型背底浓度通常在1018cm-3以上。
此后的十几年的时间里,对Ⅲ-Ⅴ族氮化物材料的研究进展不大。
直到1986年,Akasaki首先引入低温AIN作为缓冲层,用MOCVD生长得到了高质量的GaN薄膜单晶。
两步生长法即首先在较低的温度下(500~600℃)生长一层很薄的GaN或AIN作为缓冲层(buffer),经高温退火后,再将温度升高到1000℃以上生长GaN外延层。
这种方法的实质是在外延薄膜层和大失配的衬底之间插入一层“软”的薄层,以降低界面自由能。
实验结果表明,引入低温缓冲层后,外延薄膜的表面形貌和晶体质量显著提高,材料的n型背底浓度下降两个数量级以上,并且材料的光学性能(PL)也有提高。
MOCVD外延生长技术简介摘要:MOCVD外延技术是国内目前刚起步的技术,本文主要介绍外延的基本原理以及目前世界上主要外延生产系统的设计原理及基本构造。
外延生长的基本原理是,在一块加热至适当温度的衬底基片(主要有红宝石和SiC两种)上,气态物质In,Ga,Al,P有控制的输送到衬底表面,生长出特定单晶薄膜。
目前LED外延片生长技术主要采用有机金属化学气相沉积方法。
MOCVD金属有机物化学气相淀积(Metal-OrganicChemicalVaporDeposition,简称MOCVD),1968年由美国洛克威尔公司提出来的一项制备化合物半导体单品薄膜的新技术。
该设备集精密机械、半导体材料、真空电子、流体力学、光学、化学、计算机多学科为一体,是一种自动化程度高、价格昂贵、技术集成度高的尖端光电子专用设备,主要用于GaN(氮化镓)系半导体材料的外延生长和蓝色、绿色或紫外发光二极管芯片的制造,也是光电子行业最有发展前途的专用设备之一。
第一章外延在光电产业角色近十几年来为了开发蓝色高亮度发光二极管,世界各地相关研究的人员无不全力投入。
而商业化的产品如蓝光及绿光发光二级管LED及激光二级管LD的应用无不说明了Ⅲ-Ⅴ族元素所蕴藏的潜能,表1-1为目前商品化LED之材料及其外延技术,红色及绿色发光二极管之外延技术大多为液相外延成长法为主,而黄色、橙色发光二极管目前仍以气相外延成长法成长磷砷化镓GaAsP材料为主。
MOCVD机台是众多机台中最常被使用来制造LED之机台。
而LED或是LD亮度及特性的好坏主要是在于其发光层品质及材料的好坏,发光层主要的组成不外乎是单层的InGaN/GaN量子井SingleQuantumWell或是多层的量子井MultipleQuantumWell,而尽管制造LED的技术一直在进步但其发光层MQW的品质并没有成正比成长,其原是发光层中铟Indium的高挥发性和氨NH3的热裂解效率低是MOCVD机台所难于克服的难题,氨气NH3与铟Indium的裂解须要很高的裂解温度和极佳的方向性才能顺利的沉积在InGaN的表面。
MOCVDMOCVDMOCVD是金属有机化合物化学气相淀积(Metal-organic Chemical Vapor DePosition)的英文缩写。
MOCVD是在气相外延生长(VPE)的基础上发展起来的一种新型气相外延生长技术.它以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V族、Ⅱ-Ⅵ族化合物半导体以及它们的多元固溶体的薄层单晶材料。
通常MOCVD系统中的晶体生长都是在常压或低压(10-100Torr)下通H2的冷壁石英(不锈钢)反应室中进行,衬底温度为500-1200℃,用射频感应加热石墨基座(衬底基片在石墨基座上方),H2通过温度可控的液体源鼓泡携带金属有机物到生长区。
MOCVD技术具有下列优点:(l)适用范围广泛,几乎可以生长所有化合物及合金半导体;(2)非常适合于生长各种异质结构材料;(3)可以生长超薄外延层,并能获得很陡的界面过渡;(4)生长易于控制;(5)可以生长纯度很高的材料;(6)外延层大面积均匀性良好;(7)可以进行大规模生产。
MOCVD系统组成因为MOCVD生长使用的源是易燃、易爆、毒性很大的物质,并且要生长多组分、大面积、薄层和超薄层异质材料。
因此在MOCVD系统的设计思想上,通常要考虑系统密封性,流量、温度控制要精确,组分变换要迅速,系统要紧凑等。
不同厂家和研究者所产生或组装的MOCVD设备是不同的,但一般来说,MOCVD设备是由源供给系统、气体输运和流量控制系统、反应室及温度控制系统、尾气处理及安全防护报警系统、自动操作及电控系统等组成。
l)源供给系统包括Ⅲ族金属有机化合物、V族氢化物及掺杂源的供给。
金属有机化合物装在特制的不锈刚的鼓泡器中,由通入的高纯H2携带输运到反应室。
为了保证金属有机化合物有恒定的蒸汽压,源瓶置入电子恒温器中,温度控制精度可达0.2℃以下。
氢化物一般是经高纯H2稀释到浓度5%一10%后,装入钢瓶中,使用时再用高纯H2稀释到所需浓度后,输运到反应室。
mocvd外延生长步骤
金属有机化学气相沉积(MOCVD)是一种常用于外延生长半导体材料的方法,特别是在制备光电子器件和集成电路中。
以下是MOCVD外延生长的一般步骤:
1.底片准备:
在开始MOCVD外延生长之前,需要准备一个基础底片,通常是单晶衬底,以提供一个有序的晶格结构。
2.清洗底片:
底片表面需要彻底清洗,以去除任何可能影响外延生长的杂质或表面污染物。
3.底片预处理:
可能需要进行一些预处理步骤,例如氧化、脱氢或其他表面处理,以提高外延层的质量和附着性。
4.装载底片:
将经过处理的底片放置在MOCVD反应室中,并确保它们被安置在适当的位置以进行生长。
5.反应室抽真空:
在进行外延生长之前,通常需要将反应室抽真空,以减少气体中的杂质,确保生长环境的洁净度。
6.气体进入和预热:
引入金属有机化学气体前体(例如金属有机化合物)和载气气体,然后对系统进行预热,以确保气体混合物的稳定性。
7.外延层生长:
在预定的温度和气体流量条件下,通过化学反应在底片表面逐层生长半导体外延层。
外延层的材料和性质取决于所选择的前体。
8.冷却和清理:
生长完成后,底片需要缓慢冷却,以防止材料的非均匀结晶。
此后可能需要进行清理步骤,以去除任何残留的气体或杂质。
9.取出生长样品:
生长完毕后,取出外延生长的样品,准备进行后续的制备工作,如器件加工或表征分析。
请注意,这只是一般性的MOCVD外延生长步骤,具体的实验条件和步骤可能会因材料系统和实验目的而有所不同。
mocvd外延原理MOCVD外延原理MOCVD外延技术是一种常用于半导体材料生长的方法,它基于化学气相沉积的原理。
MOCVD是金属有机化合物化学气相沉积的缩写,其中"M"代表金属,"O"代表有机,"CVD"代表化学气相沉积。
该技术被广泛应用于生长III-V族化合物半导体材料,如GaN、InP 和GaAs等。
MOCVD外延技术的原理是通过控制金属有机化合物在高温条件下的热分解来实现材料的生长。
具体来说,外延生长的过程主要包括以下几个步骤:1. 基底准备:在开始外延生长之前,需要对基底进行准备。
通常,基底是由单晶衬底材料制成的,如蓝宝石、硅、石英等。
基底表面的清洁度对外延生长的质量有很大影响,因此在生长之前需要经过一系列的清洗和处理步骤。
2. 反应室设置:MOCVD外延生长通常在反应室中进行。
反应室内有一个加热器,用于提供所需的高温条件。
此外,还需要一个气体供应系统,用于供应金属有机化合物和其他反应气体。
3. 材料供应:在外延生长过程中,金属有机化合物和其他反应气体被输入到反应室中。
金属有机化合物通过喷射、液体蒸发或气体蒸发等方式供应。
这些金属有机化合物在高温下热分解,释放出金属原子和有机基团。
4. 气相反应:在反应室中,金属原子和有机基团与其他反应气体发生气相反应。
这些反应可以是氧化、硫化、氮化等。
通过控制反应气体的流量和温度,可以调节反应的速率和材料的组分。
5. 外延生长:在气相反应的条件下,材料以晶体的形式沉积在基底上。
沉积的速率和形貌可以通过调节反应气体的流量、温度和反应时间来控制。
材料沉积的过程是一个动态平衡的过程,其中材料的沉积速率等于材料的脱附速率。
MOCVD外延技术的主要优点是可以实现高质量、大面积的半导体材料生长。
它具有较高的生长速率、较好的均匀性和较低的缺陷密度。
此外,MOCVD外延技术还具有较好的可控性,可以通过调节反应条件来实现所需的材料组分和结构。
同质衬底制备及MOCVD外延生长1.概述同质衬底是一种在外延生长过程中用于提供晶格匹配的基底材料,对于高品质薄膜的生长具有至关重要的作用。
MOCVD(金属有机化学气相沉积)外延生长技术则是一种常用的材料生长方法,通过MOCVD外延生长可以获得高质量、高晶质度的薄膜材料。
同质衬底制备及MOCVD外延生长技术的研究具有重要的理论和应用价值。
2.同质衬底制备同质衬底制备的关键在于选择合适的基底材料,并进行相应的前处理工艺,以确保获得高质量的衬底。
常见的同质衬底材料包括氧化镁、氧化铝、氧化锆等。
制备同质衬底的工艺包括材料粉末的制备、坯料的烧结、晶体生长等步骤,其中烧结工艺对于提高衬底的结晶质量至关重要。
3. MOCVD外延生长MOCVD外延生长是一种常用的薄膜生长技术,它通过将金属有机化合物和载气输送到衬底表面,利用化学气相反应形成所需材料的薄膜。
MOCVD外延生长技术具有高生长速率、高晶质度、成膜均匀性好等优点,并且适用于多种材料的生长。
在MOCVD外延生长过程中,反应温度、反应压力、外延速率、反应气氛等参数对生长薄膜的质量有着重要的影响。
4. MOCVD外延生长中的同质衬底应用在MOCVD外延生长过程中,同质衬底的选择对于提高薄膜的结晶质量和降低缺陷密度具有重要作用。
合适的同质衬底可以提供良好的晶格匹配,减小晶格失配引起的位错和应变,从而提高外延薄膜的质量。
同质衬底的表面形貌和化学性质对于外延薄膜的成核和生长也有着直接的影响。
5. 结论同质衬底制备及MOCVD外延生长技术是一项重要的研究课题,在新材料的开发和应用中具有广阔的前景。
未来的研究可以进一步探索改进同质衬底制备工艺,提高衬底的结晶质量和生长均匀性,优化MOCVD外延生长的参数和工艺,以满足对高质量薄膜材料的需求。
还可以开展同质衬底在其他生长技术中的应用研究,拓展同质衬底在材料生长中的应用领域。
希望该研究能够为新材料的研发和应用提供有益的参考。
MOCVD工艺简介MOCVD设备将Ⅱ或Ⅲ族金属有机化合物与Ⅳ或Ⅴ族元素的氢化物相混合后通入反应腔,混合气体流经加热的衬底表面时,在衬底表面发生热分解反应,并外延生长成化合物单晶薄膜。
与其他外延生长技术相比,MOCVD技术有着如下优点:(1)用于生长化合物半导体材料的各组分和掺杂剂都是以气态的方式通入反应室,因此,可以通过精确控制气态源的流量和通断时间来控制外延层的组分、掺杂浓度、厚度等。
可以用于生长薄层和超薄层材料。
金属有机化学气相淀积法(MOCVD)是以挥发性金属有机物和气态的非金属氢化物作原材料,用与硅外延淀积相类似的生长装置,进行化合物半导体的外延淀积。
MOCVD工艺中用作原材料(反应剂)和掺杂剂的特气有砷烷、磷烷、硫化氢、硒化氢、锑化氢、碲化氢、二硼烷、硅烷和锗烷等,用氢和氦作载气。
这些气体的纯度对淀积薄膜的质量有很大影响,是MOCVD法能否得到广泛应用的关键因素。
必须控制气体中的氧和金属杂质含量。
使用气体,必须严防泄漏。
(2)反应室中气体流速较快。
因此,在需要改变多元化合物的组分和掺杂浓度时,可以迅速进行改变,减小记忆效应发生的可能性。
这有利于获得陡峭的界面,适于进行异质结构和超晶格、量子阱材料的生长。
(3)晶体生长是以热解化学反应的方式进行的,是单温区外延生长。
只要控制好反应源气流和温度分布的均匀性,就可以保证外延材料的均匀性。
因此,适于多片和大片的外延生长,便于工业化大批量生产。
(4)通常情况下,晶体生长速率与Ⅲ族源的流量成正比,因此,生长速率调节范围较广。
较快的生长速率适用于批量生长。
(5)使用较灵活。
原则上只要能够选择合适的原材料就可以进行包含该元素的材料的MOCVD生长。
而可供选择作为反应源的金属有机化合物种类较多,性质也有一定的差别。
(6)由于对真空度的要求较低,反应室的结构较简单。
(7)随着检测技术的发展,可以对MOCVD的生长过程进行在位监测。
实际上,对于MOCVD和MBE技术来说,采用它们所制备的外延结构和器件的性能没有很大的差别。
LED结构生长原理以及MOCVD外延系统的介绍LED结构生长原理以及MOCVD外延系统的介绍2012-2-22 10:02:33摘要:MOCVD外延技术是国内目前刚起步的技术,本文主要介绍外延的基本原理以及目前世界上主要外延生产系统的设计原理及基本构造。
第一章外延在光电产业角色近十几年来为了开发蓝色高亮度发光二极管,世界各地相关研究的人员无不全力投入。
而商业化的产品如蓝光及绿光发光二级管LED及激光二级管LD的应用无不说明了Ⅲ-Ⅴ族元素所蕴藏的潜能,表1-1为目前商品化LED之材料及其外延技术,红色及绿色发光二极管之外延技术大多为液相外延成长法为主,而黄色、橙色发光二极管目前仍以气相外延成长法成长磷砷化镓GaAsP材料为主。
MOCVD机台是众多机台中最常被使用来制造LED之机台。
而LED或是LD亮度及特性的好坏主要是在于其发光层品质及材料的好坏,发光层主要的组成不外乎是单层的InGaN/GaN量子井SingleQuantumWell或是多层的量子井MultipleQuantumWell,而尽管制造LED的技术一直在进步但其发光层MQW的品质并没有成正比成长,其原是发光层中铟Indium的高挥发性和氨NH3的热裂解效率低是MOCVD机台所难于克服的难题,氨气NH3与铟Indium的裂解须要很高的裂解温度和极佳的方向性才能顺利的沉积在InGaN的表面。
但要如何来设计适当的MOCVD机台为一首要的问题而解决此问题须要考虑下列因素:) u9 S- o4 T4 d/ [4 M1要能克服GaN成长所须的高温2要能避免MOGas金属有机蒸发源与NH3在预热区就先进行反应3进料流速与薄膜长成厚度均。
一般来说GaN的成长须要很高的温度来打断NH3之N-H的键解,另外一方面由动力学仿真也得知NH3和MOGas会进行反应产生没有挥发性的副产物。
了解这些问题之后要设计适当的MOCVD外延机台的最主要前题是要先了解GaN的成长机构,且又能降低生产成本为一重要发展趋势。
MOCVD外延生长步骤
简介
MOCVD(Metal-Organic Chemical Vapor Deposition)是一种常用的半导体外延生长技术,广泛应用于半导体器件制造中。
本文将详细介绍MOCVD外延生长的步骤和相关原理。
基本原理
MOCVD是一种化学气相沉积技术,通过在高温下将金属有机化合物和载气反应,从
而在衬底上沉积出所需的材料。
整个过程可以分为以下几个步骤:
1.衬底预处理:在进行外延生长之前,需要对衬底进行预处理,以去除表面
的杂质和氧化物,并提供一个干净平整的基础。
2.加载衬底:将经过预处理的衬底放置在反应室中,并通过真空系统排除其
中的空气和水分。
3.加热:使用加热装置将反应室升温至所需温度。
温度通常在500°C到
1200°C之间,具体取决于要生长的材料。
4.载气流入:引入适当的载气(如氢气或氮气)到反应室中,以稀释金属有
机化合物的浓度,并提供反应所需的气氛。
5.金属有机化合物进入:将金属有机化合物(如三甲基镓、三乙基铝等)通
过气体进料系统引入反应室。
这些化合物会在高温下分解,释放出所需的金
属元素。
6.生长反应:金属元素与载气中的氢原子发生反应,形成所需材料的沉积物。
反应过程中需要控制温度、压力和流量等参数,以获得理想的生长速率和材
料质量。
7.冷却:在完成生长后,将反应室冷却至室温,停止外延生长过程。
8.取出衬底:将外延生长后的衬底从反应室中取出,并进行后续处理和测试。
过程优化
为了获得高质量的外延薄膜,需要对MOCVD过程进行优化。
以下是一些常用的优化方法:
1.材料选择:选择适当的金属有机化合物和载气组合,以获得所需材料的最
佳生长条件。
2.温度控制:通过精确控制反应室的温度,可以调节外延生长速率和材料品
质。
温度过高可能导致材料熔化或不稳定,而温度过低则可能影响生长速率
和结晶质量。
3.气氛控制:合理选择和调节载气的流量和压力,以提供适当的反应气氛。
过高的压力可能导致材料堆积过厚或形成颗粒,而过低的压力则可能影响生
长速率和均匀性。
4.反应时间:根据所需薄膜厚度和生长速率,确定合适的反应时间。
过短的
反应时间可能导致薄膜较薄或不完整,而过长的反应时间则可能导致堆积过
厚或杂质掺入。
5.后处理:在完成外延生长后,可以进行一些后处理步骤,如退火、退磁等,
以进一步改善材料的性能和结构。
应用领域
MOCVD外延生长技术广泛应用于半导体器件制造中。
以下是一些常见的应用领域:1.LED制造:LED(Light Emitting Diode)是一种重要的光电器件,MOCVD
外延生长可以用于制备LED的发光层和其他关键部件。
2.激光器制造:MOCVD外延生长也可以用于制备激光器的活性层和波导结构,
为激光器提供必要的材料基础。
3.太阳能电池:MOCVD外延生长可用于太阳能电池中的薄膜材料的制备,提高
太阳能转换效率。
4.功率器件:MOCVD外延生长还可用于制备功率器件中的材料,如功率
MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等。
结论
MOCVD外延生长是一种重要的半导体材料制备技术,通过控制温度、压力和流量等
参数,可以实现高质量、均匀性好的外延薄膜。
该技术在LED、激光器、太阳能电
池等领域有广泛应用,并不断得到改进和优化。
随着半导体行业的发展,MOCVD外
延生长技术将继续发挥重要作用,并为新型器件和应用提供支持。