机动目标的追踪与反追踪的模型完整版
- 格式:doc
- 大小:2.11 MB
- 文档页数:20
参赛密码(由组委会填写)第十一届华为杯全国研究生数学建模竞赛学校东南大学参赛队号10286119队员姓名1.吕亮2.荆丽3.巨晓正参赛密码(由组委会填写)第十一届华为杯全国研究生数学建模竞赛题目机动目标的跟踪与反跟踪摘要:目标跟踪是指根据传感器(如雷达等)所获得的对目标的测量信息,连续地对目标的运动状态进行估计,进而获取目标的运动态势及意图。
目标跟踪理论在军、民用领域都有重要的应用价值。
目标机动是指目标的速度大小和方向在短时间内发生变化,通常采用加速度作为衡量指标。
机动目标跟踪的难点在于以下几个方面:(1) 描述目标运动的模型即目标的状态方程难于准确建立。
通常情况下跟踪的目标都是非合作目标,目标的速度大小和方向如何变化难于准确描述;(2) 传感器自身测量精度有限加之外界干扰,传感器获得的测量信息如距离、角度等包含一定的随机误差,用于描述传感器获得测量信息能力的测量方程难于完全准确反映真实目标的运动特征;(3) 当存在多个机动目标时,除了要解决(1)、(2)两个问题外,还需要解决测量信息属于哪个目标的问题,即数据关联。
本文主要对监测传感器的得到的目标数据进行分析,建立适当的跟踪模型,从而获取目标的运动态势及意图,达到跟踪的目的。
由于以上多个挑战因素以及目标机动在战术上主动的优势,机动目标跟踪已成为近年来跟踪理论研究的热点和难点。
关键词:单目标模型目标跟踪一、问题重述现有3组机动目标的测量数据,数据分别包含在Data1.txt,Data2.txt,Data3.txt文件中,其中Data1.txt为多个雷达站在不完全相同时刻获得的单个机动目标的测量数据,Data2.txt为某个雷达站获得的两个机动目标的测量数据,Data3.txt为某个雷达站获得的空间目标的测量数据。
数据文件中观测数据的数据结构如下:其中Data1.txt和Data2.txt数据的坐标系表示如下:原点O为传感器中心,传感器中心点与当地纬度切线方向指向东为x轴,传感器中心点与当地经度切线方向指向北为y轴,地心与传感器中心连线指向天向的为z轴,目标方位指北向顺时针夹角(从y轴正向向x轴正向的夹角,范围为0~360°),目标俯仰指传感器中心点与目标连线和地平面的夹角(即与xOy平面的夹角,通常范围-90°到90°)。
精编WORD版IBM system office room [ A0816H-A0912AAAHH-GX8Q8-GNTHHJ8 】参赛密码参赛密码(由组委会填写)第十一届华为杯全国研究生数学建模竞赛题目机动目标的跟踪与反跟踪摘要:目标跟踪理论在军事、民用领域都有重要的应用价值。
本文对机动目标的跟踪与反跟踪相关问题进行了研究,取得了以下几方面的成果。
1.建立了对机动目标的跟踪模型通过对原始数据进行处理,观察到目标运动模式大致为机动与非机动的混合模式,于是决定先采用基于卡尔曼滤波的多模滤波VD算法来建立跟踪模型。
当目标处于机动状态时采用普通卡尔曼滤波进行处理,机动模式采用非线性卡尔曼滤波处理。
滤波出来的航迹图和拟合岀来的航迹匹配很好。
然后利用Matlab的拟合工具cFzl对目标的各个轴向的运动进行了拟合,分析出了目标的运动方式,大致估计岀了目标的航迹。
对建立的航迹方程进行预测,成功的估计岀了目标的着落点。
2.实现了转换坐标卡尔曼滤波器实际情况下目标的状态往往是在极坐标或者球坐标情况下描述的。
状态方程和量测方程不可能同时为线性方程,本文把极坐标系下的测量宣经坐标转换到直角坐标系中,用统计方法求岀转换后的测量值误差的均值和方差,然后利用标准卡尔曼滤波器进行滤波,精度较髙。
3.完成了多目标的数据关联,区分出了相应的轨迹4.以最近邻法原理为基础,采用线性预估与距离比较的方法制定出了相应的区分规则,成功的将原始数据的两个目标轨迹区分出来。
5.分析各个目标的机动变化规律并成功识别了机动发生的时间利用得到的目标运动轨迹,对位置信息进行二次求导得岀了目标的加速度变化曲线,分析三个平面上的加速度变化趋势得到了目标在空间的机动情况,当位置与速度变化剧烈的时候也是机动发生的时候,于是通过对加速度随时间变化的分析,合理的设定加速度变化率的门限,当加速度变化率超过门限即认为目标处于机动状态并通过程序算法对机动点进行标记,结果和对目标的经验判断相符合。
特⼯跟踪技巧之——反跟踪⽤⼀个⽐喻:跟踪和反跟踪,就是⽭和盾的关系。
间谍与反间谍,也是如此。
教头在之前的⽂章⾥也提到过,没有最强的⽭,也没有所谓最强的盾,在某⼀个场合,某⼀个时间点,或许就会有⾼下之分。
⽐如⼀个很⾼明的间谍,很多⼈抓了很久都没抓到,但是在⼀次⾏动中疏忽了,被⼀个菜鸟反间谍特⼯发现了,你说能够就凭借⼀次交⼿,说这个菜鸟就⽐这个间谍更厉害吗?没有绝对安全的反跟踪⼿法,也没有绝对保密的跟踪⼿法。
对于特⼯来说,所学到的知识都是⼀样的,关键是看在具体的场合和条件下,灵活地运⽤。
在这个场合下你运⽤得更好,那么就你就能在这次交⼿中获胜。
汽车反跟踪⽐较简单,例如闯红灯、突然变道等等,也没什么太多讲解的意义,在本章节,只讲如何徒步反跟踪。
在此之前,教头要说明清楚⼏点原则:⼀是反跟踪是特⼯必须要熟悉和使⽤的流程,但是⼀旦已经有⼈跟踪,说明处境已经很危险。
意思是,你的任务是潜伏好,如果已经被盯梢,就有暴露的可能。
希望每⼀次的⾏动,都没有发现有⼈跟踪,这样才是最好的。
⼆是跟踪的原则就是不暴露,宁愿跟丢也不暴露,因为暴露了,对⽅就会察觉,再继续跟可能也没有太多的意义,甚⾄给以后的⼯作带来更多的⿇烦。
三是跟踪不是抓捕,跟踪⼈员也不会因此采取暴⼒⼿段,这样就失去跟踪的意义了,跟踪的⽬的也是在于秘密地寻找线索和证据。
反跟踪,⽆⾮是两点:察觉是否有⼈跟踪,如果有,应该如何甩掉跟踪者。
⼀、如何察觉曾经有⼈总结就那么⼏个字,看、听、停、转、回,⼤家可以各⾃理解。
(⼀)出门之前,务必通过窗户观察四周环境,看是否有⼈在楼下盯梢。
(⼆)出门以后,左顾右盼,观察四周环境。
(三)⾛路时,假装系鞋带,但是应当是侧⾯位下蹲,即头部不是朝着前⽅,⽽是侧⽅,这样就能观察到左右的环境(就是⾛路时前后的环境)。
(四)到⼩摊位买东西,停顿,同上位置,观察环境。
如果有⼈不继续跟进(五)突然折返,看是否有之前看过的⾯孔。
往复⼏次,就会露陷。
(六)遇⼈少的弯道(有建筑物阻挡的转⾓)后快速转弯,再另⼀个转⾓处察看。
调查方法与技巧关于跟踪和反跟踪2007-07-28 23:32:50 作者:陈利发表评论(作者简介: 陈利,南昌市人民警察学校高级讲师、中国公安优秀教官、江西法制心理专业委员会委员、南昌市公安局特邀研究员,浙江万马公众事务调查中心总技术指导.)在人类社会中,一切事物都有其产生、存在和发展的客观条件和规律,都有它本身固有的特性,以区别于其他事物。
为此,我们研究调查业时,就必须探讨调查活动的方法和技巧。
一、徒步跟踪调查调查准备工作当调查人员使用常规的调查手段,得不到更多的资料时,就要考虑实施人员监视来获取材料。
实施人员监视时,调查人员将直接观察想要了解的情况,包括设法取得有关特定的证据;如有可能,要设法对调查对象正在进行的行为进行直接观察,使用任何种类的人员监视行动的真正目的,是取得有关材料或证据。
监视行动成功与否,主要是根据在实施监视行动之前,制定的预定行动计划的详尽和慎重的程度。
无论是刑事案件还是民事案件,无论当时的情况是需要运动监视、步行监视或乘车监视、还是定点监视,预定计划的重要性是无可非议的。
1、实施人员监视时,调查人员必须考虑到,在将要实施的实际监视工作中,调查工作本身和各种环境的特定要求。
为了获取一般需要的材料,例如对象的习惯、社会交往以及生活方式,是采取一般性尾随监视呢?还是因为案件性质的敏感性和需要时刻密切观察对象的活动,采用紧紧咬住的监视?如果要想保证监视行动有个令人满意的结果,调查人员要考虑到这些客观因素。
制定出的方案与实际情况不符合,要么导致监视行动失败,要么是在时间与经费上作出不必要的支出。
制定出的监视行动方案的范围包括:根据案情所需要的调查人员数量;整个监视过程中需要使用的技术装备;以及可能会出现的疵漏问题;实施运动监视时随身携带数量充足的现金,这包括小面额钞票和零钱,这样才能确保对象无论选用什么手段运动到任何地方,调查人员都能方便地尾随其后。
2、初步调查的重要性,再怎么强调也不过分。
机动目标跟踪机动目标跟踪是指在移动过程中对目标进行连续跟踪和监测,以提供实时信息和数据支持。
机动目标可以是运动中的车辆、船只、飞机等,也可以是行走的人员和动物。
机动目标跟踪的技术应用广泛,包括交通管理、安防监控、军事侦查等领域。
机动目标跟踪的关键是从图像或视频中提取目标的特征并进行有效的目标识别。
常用的目标特征包括颜色、形状、纹理和运动信息等。
在目标识别的基础上,可以利用物体的轨迹信息对目标进行跟踪。
目标跟踪的方法多种多样,包括基于视觉的方法和基于传感器的方法。
基于视觉的目标跟踪主要利用图像或视频中的像素信息来进行目标识别和跟踪。
常见的方法包括模板匹配、特征提取和目标检测等。
模板匹配是指通过与目标模板的像素值相似度来确定目标的位置。
特征提取是指从图像中提取目标的颜色、纹理和形状等特征,然后通过特征匹配来跟踪目标。
目标检测是指利用目标检测算法在图像中寻找目标的位置,然后通过跟踪算法进行目标跟踪。
基于传感器的目标跟踪则利用传感器获取的距离、速度和方位等信息进行目标识别和跟踪。
常见的传感器包括雷达、激光和红外传感器等。
利用雷达传感器可以获取目标的距离和方位信息,然后通过目标识别算法进行目标跟踪。
利用激光和红外传感器可以获取目标的距离和速度信息,然后通过跟踪算法进行目标跟踪。
机动目标跟踪的难点在于目标在移动过程中可能会发生模糊、遮挡和形变等变化。
为了解决这些问题,研究者们提出了许多改进的方法。
例如,利用多个传感器和多个视角来获取更全面的目标信息;利用深度学习和人工智能等技术对目标进行更准确的识别和跟踪。
总之,机动目标跟踪是一项具有挑战性的任务,但也是非常重要和有意义的。
通过有效的目标跟踪技术,可以提高交通管理的效率,增强安防监控的能力,提升军事侦查的水平,对于社会的发展和人类的福祉具有重要意义。
第一章目标跟踪基本原理与机动目标模型 1.1 引言目标跟踪问题作为科学技术发展的一个方面,设计的主要目的是可靠而精确的跟踪目标,其历史可以追溯到第二次世界大战前夕,即1937 年世界上出现第一部跟踪雷达站SCR-28 的时候、之后各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。
传统的跟踪系统是一对一系统,即一个探测器仅连续地瞄准和跟踪一个目标。
随着科学技术的进步和现代战略战术的发展,人们发现提出新的目标跟踪概念和体制是完全可能的,在过去20 多年中,多目标跟踪的理论和方法已经获得很大发展,并已成为当今国际上十分活跃的热门研究领域之一,有些成果也已付诸于工程实际。
简单地说,目标跟踪问题可以划分为下列四类:一个探测器跟踪一个目标(OTO)一个探测器跟踪多个目标(OTM)多个探测器跟踪一个目标(MTO)多个探测器跟踪多个目标(MTM)1.2 目标跟踪的基本原理1.2.1 单机动目标跟踪基本原理发展现代边扫描边跟踪(TWS)系统的目的是,仅在一个探测器条件下同时跟踪多个目标。
然而,为达此目的,边扫描边跟踪系统必须首先很好地跟踪单个目标。
一般地说,常速直线运动目标的跟踪与估计问题较为简单,而且易于处理。
困难的情况表现在被跟踪目标发生机动,即目标速度的大小和方向发生变化的场合。
图1.1 为单机动目标跟踪基本原理框图。
图中目标动态特性由包含位置、速度和加速度的状态向量X 表示,量测(观测)量Y 被假定为含有量测噪声V 的状态向量1的线性组合(HX+V);残差(新息)向量d 为量测(Y)与状态预测量H X k k之差。
我们约定,用大写字母XY 表示向量,小写字母xy 表示向量的分量。
一般情况下,单机动目标跟踪为一自适应滤波过程。
首先由量测(观测)量(Y)和状态预1测量H X k 构成残差(新息)向量d,然后根据d 的变化进行机动检测或者机k 动辨识.其次按照某一准则或逻辑调整滤波增益与协方差矩阵或者实时辨识出目标机动特性,最后由滤波算法得到目标的状态估计值和预测值,从而完成单机动目标跟踪功能。
机动目标的跟踪与反跟踪徐永【期刊名称】《工业控制计算机》【年(卷),期】2015(0)5【摘要】以WGS-84标准的地心坐标系作为统一坐标系,通过建立机动目标的跟踪模型,实时预测机动目标的轨迹,并提出了机动目标的跟踪与反跟踪策略。
首先考虑了单目标跟踪问题,提出了基于改进的MeanShift算法的目标跟踪模型,使用此模型提取聚类点,并对这些聚类点进行B样条曲线拟合,得到光滑的航迹。
其次考虑了两目标跟踪问题,建立了基于最近邻及改进MeanShift算法的目标跟踪模型,利用最小二乘法对航迹数据进行二次曲线拟合,分析机动目标加速度变化规律,并通过判断拟合曲线上的点与球面位置关系,提出了两种着落点预测方法。
最后分析了机动目标如何反雷达跟踪的问题,提出了反跟踪策略。
%This paper presents the model of target tracking based on improved MeanShift algorithm,using this model to extract clustering points,and these clustering points are b-spline curve fitting,get a smooth path.Secondly considering the two tar-get tracking problem,based on nearest neighbor and improve MeanShift algorithm of target tracking model,using the least square method to track is quadratic curve fitting,the data analysis of maneuvering target acceleration change rule,and by judging the points on the curve fitting and the position relations,spherical two landing point prediction method is proposed.【总页数】4页(P107-109,112)【作者】徐永【作者单位】浙江理工大学理学院,浙江杭州 310018【正文语种】中文【相关文献】1.改进的强跟踪容积卡尔曼滤波的机动目标跟踪 [J], 张恒;高敏;徐超2.基于类跟踪门的机动目标跟踪 [J], 顾国松3.反直升机雷群的机动目标跟踪 [J], 刘向东;张河;程翔4.强跟踪输入估计概率假设密度多机动目标跟踪算法 [J], 杨金龙;姬红兵;樊振华5.快速强跟踪UKF算法及其在机动目标跟踪中的应用 [J], 鲍水达;张安;毕文豪因版权原因,仅展示原文概要,查看原文内容请购买。
目标追踪模型
例5. 设位于坐标原点的甲舰向位于x 轴上点A (1,0)处的乙舰发射导弹,导弹始终对准乙舰.如果乙舰以最大的速度0v (0v 是常数)沿平行于y 轴的直线行驶,导弹的速度是50v ,求导弹运行的曲线.又乙舰行驶多远时,导弹将它击中?
解 设导弹的轨迹曲线为()x y y =,并设经过时间t ,导弹位于点()y x P ,,乙舰位于点()t v Q 0,1.由于导弹头始终对准乙舰,故此时直线PQ 就是导弹的轨迹曲线弧OP 在点P 处的切线,即有x
y t v y --='10,亦即 ()y y x t v +'-=10
又根据题意,弧OP 的长度为AQ 的5倍,即 t v dx y x 00251='+⎰
由此得
()dx y y y x x ⎰'+=
+'-0
21511 整理得
()21511y y x '+=''- 并有初值条件()()00,00='=y y ,解得 ()()24
511251855654+-+--=x x y 当1=x 时245=y ,即当乙舰航行到点⎪⎭
⎫ ⎝⎛245,1处时被导弹击中.被击中时间为0245v v y t o ==
.若1=o v ,则在21.0=t 时被击中.。
一种机动目标状态方程的多项式预测模型及跟踪方法
近年来,互联网技术发展迅速,广泛应用于多个领域,在特定应用领域中也取得了极大的成功。
其中,一种称为“机动目标状态方程的多项式预测模型及跟踪方法”的有效技术,可以有效地追踪人物、机器人和其他移动目标物体,使运动过程可被快速掌控。
这种模型可以有效地使用多项式预测方程来跟踪物体的运动状态,以精确地控制和优化实时跟踪的效果和准确性。
使用此模型的多种关键部件,能够有效地捕捉物体运动状态之间的关联性,进而精准预测物体运动的走向,从而大大提高物体追踪的速度和效率。
在使用此预测模型时,可以采用基于模式识别的优化技术,有效地识别出目标物体的开始及结束位置,并对移动目标物体的行驶状态进行实时监控。
此外,随着强大数据处理功能的不断完善,兼顾更多跟踪状态的精细特性,将能够更加准确地估计物体的位置和移动状态。
“机动目标状态方程的多项式预测模型及跟踪方法”是目前技术发展程度最高的跟踪技术,它将有效简化许多复杂而又繁琐的工作,为后续更先进的智能追踪技术提供可靠的基础平台。
相信未来,此预测模型将会更加智能化,加快训练曲线,以提升跟踪模型的准确性和可靠性,实现实现更高层次的动态追踪管控。
参赛密码(由组委会填写)第十一届华为杯全国研究生数学建模竞赛学校参赛队号队员XX 1. 2. 3.参赛密码(由组委会填写)第十一届华为杯全国研究生数学建模竞赛题目机动目标的跟踪与反跟踪摘要:目标跟踪理论在军事、民用领域都有重要的应用价值。
本文对机动目标的跟踪与反跟踪相关问题进行了研究,取得了以下几方面的成果。
1.建立了对机动目标的跟踪模型通过对原始数据进行处理,观察到目标运动模式大致为机动与非机动的混合模式,于是决定先采用基于卡尔曼滤波的多模滤波VD算法来建立跟踪模型。
当目标处于机动状态时采用普通卡尔曼滤波进行处理,机动模式采用非线性卡尔曼滤波处理。
滤波出来的航迹图和拟合出来的航迹匹配很好。
然后利用Matlab的拟合工具cftool对目标的各个轴向的运动进行了拟合,分析出了目标的运动方式,大致估计出了目标的航迹。
对建立的航迹方程进行预测,成功的估计出了目标的着落点。
2.实现了转换坐标卡尔曼滤波器实际情况下目标的状态往往是在极坐标或者球坐标情况下描述的。
状态方程和量测方程不可能同时为线性方程,本文把极坐标系下的测量值经坐标转换到直角坐标系中,用统计方法求出转换后的测量值误差的均值和方差,然后利用标准卡尔曼滤波器进行滤波,精度较高。
3.完成了多目标的数据关联,区分出了相应的轨迹4.以最近邻法原理为基础,采用线性预估与距离比较的方法制定出了相应的区分规则,成功的将原始数据的两个目标轨迹区分出来。
5.分析各个目标的机动变化规律并成功识别了机动发生的时间利用得到的目标运动轨迹,对位置信息进行二次求导得出了目标的加速度变化曲线,分析三个平面上的加速度变化趋势得到了目标在空间的机动情况,当位置与速度变化剧烈的时候也是机动发生的时候,于是通过对加速度随时间变化的分析,合理的设定加速度变化率的门限,当加速度变化率超过门限即认为目标处于机动状态并通过程序算法对机动点进行标记,结果和对目标的经验判断相符合。
在整个过程中对各个时间点目标的加速度大小和方向进行了统计并输出到txt文档中。
(由组委会填写)第十一届华为杯全国研究生数学建模竞赛学校大连理工大学参赛队号10141005队员姓名1.鲁欢2.候会敏3.程帅兵(由组委会填写)第十一届华为杯全国研究生数学建模竞赛题目机动目标的跟踪与反跟踪模型的建立及求解摘要:本文主要对机动目标追踪与反追踪模型的建立及求解问题进行了相关计算,讨论结果大致如下:问题一,根据附件中的数据,利用数值法求解各个时刻点处的加速度,挑出加速度数量较大的时刻,并绘出矩形图,以加速度持续较大的时刻点为机动时间范围,并进行统计其大小以及方向,追踪模型则是依据现时刻以及前一时刻估计出的的物理量如位置速度加速度等,并根据数据统计出目标的机动能力即两时刻加速度最大该变量作为下一时刻的加速度,来计算在这种极限状态下目标向四周逃离的最远边界,因而形成一个区域,其中心即为雷达天线下时刻所指方向。
航迹计算将三雷达测得的数据转换到同一坐标系中在进行拟合得到。
问题二,首先进行了航迹起始的确定。
采用联合概率数据关联(JPDA)算法,通过对确认矩阵拆分得到互联事件及互联矩阵,计算互联事件的概率来进行数据关联,然后按照确定航迹。
为避免雷达对于仅有一个回波信号的失跟情况,采取调动多种检测手段对目标密切关注,并改进雷达的内部控制计算算法。
问题三,我们建立了微分方程模型。
着重分析了在空间范围内的机动目标的切向加速度以及方向加速度随时间的变化规律。
通过运用Excel进行数据的处理计算得出切向加速度以及法向加速度的数值,利用Matlab编程得出其变化规律的轨迹图像。
再结合问题一中的追踪模型,得到在数据3情况下的变化规律。
通过对比,得出模型一的结论应用于问题三,其结果产生较大的偏差。
问题四,我们建立了卡尔曼滤波预测模型。
利用卡尔曼滤波对机动目标进行预测,经过多次循环得出200对的位置坐标,利用Matlab软件给出了模拟后的卡尔曼滤波波形图。
再进行对坐标的空间及时间复杂度进行分析,得出最终的结论。
问题五,目标在距雷达较远时,沿轴线方向逃离不论是靠近抑或远离都是无关痛痒的,因而需向圆锥底面的径向逃逸,目标不知雷达在何方因而水平方向逃离有些误撞意味,所以最好的逃离策略是上下飞行,靠近地面时屏障较多,会对雷达跟踪产生干扰,因此最好的方案是做俯冲动作,降低飞行高度。
针对上述策略,雷达天线不能指向可能逃离区域的中心,需要采用向目标逃离方向再作延长,已将目标的轨迹笼罩在锥体范围内。
关键词:机动目标,追踪模型,联合概率数据关联,数据关联1.问题重述目标追踪是传感器连续的对目标进行跟踪,得到目标状态的各种信息,而目标机动是目标为了摆脱这种追踪采用的躲避的手段,两者构成了一对矛盾,对于匀速运动以及匀加速运动已经有较为成熟的研究,对于目标机动问题则较为欠缺,目标机动问题较为复杂,分析起来难点较多,目标的主动地位决定了雷达的被动作用,而传感器精度有限,信息关联等问题使得机动追踪愈发困难。
航迹起始是某一目标在某段时间内首先被检测到的位置。
点迹航迹关联称为同一性识别,根据一定的模型分别挑选出同一目标的航迹。
航迹滤波是指利用关联上的点迹测量信息采用线性或者非线性估计方法提取所需目标状态信息,通常包括预测和更新两个步骤。
预测步骤主要采用目标的状态方程获得对应时刻目标状态和协方差预测信息,更新步骤则利用关联点迹的测量信息修正目标的预测状态和预测协方差。
目标跟踪的流程分为航迹起始点迹航迹关联航及滤波等,题中附件一给定了三个雷达测定空间某个目标的运动状况,包括距离,仰俯角以及方位角等等,附件二给定了某个雷达对两个目标的测量数据,附件三则是单个雷达对单个目标的运动状态的确定。
在数据给定的过程中,所建立的坐标系为,原点O 为传感器中心,传感器中心点与当地纬度切线方向指向东为x 轴,传感器中心点与当地经度切线方向指向北为y 轴,地心与传感器中心连线指向天向的为z 轴,目标方位指北向顺时针夹角。
根据附件一中给定的数据,分析目标机动发生的时间范围,即是分析加速度的变化情况,建立对该数据对应目标的追踪模型对目标进行追踪,数据中给定的是三个雷达不同时刻对同一目标的追踪,根据每个雷达不同的时间段测得的空间点迹在时间上衔接在一起,求解目标的航迹。
根据要求我们解决一下四个问题:问题(1)、根据附件中的Data1.txt 数据,分析目标机动发生的时间范围,并统计目标 加速度的大小和方向。
建立对该目标的跟踪模型,并利用多个雷达的测量数据估计出目标的航迹。
问题(2)、根据附件中的Data2.txt 数据,完成传感器对不同目标的数据的关联以及形成相应的轨迹。
问题(3)、根据附件中的Data3.txt 数据,分析空间目标的机动变化规律(目标加速度随时间变化)。
若采用第1问的跟踪模型进行处理,结果会有哪些变化。
问题(4)、请对第3问的目标轨迹进行实时预测,估计该目标的着落点的坐标,给出详细结果,并分析算法复杂度。
问题(5)、Data2.txt 数据中的两个目标已被雷达锁定跟踪,在条件改变的情况下,为了使目标逃离雷达的跟踪,目标应该采用怎样的有利于逃逸的策略与方案?反之,为了保持对目标的跟踪,跟踪策略又应该如何相应地变换?2.问题分析对于问题一,首先根据附件Data1.txt 中的数据,分析机动发生的时间范围,由题目中介绍而知,机动是目标为了躲避雷达的追踪而采取的规避性动作,其为速度的突变因而用加速度的大小进行衡量,所以在分析机动变化的时间范围时用加速度的大小来进行衡量,其步骤如下:(1)目标到雷达的距离d 雷达测定的方位角θ俯仰角ϕ可以确定空间中的某个点,定义一个向量r ,为该空间点的位置矢量即原点与该点构成的矢量表达式为:),,(ϕθd r = 。
在这里位置矢量是建立在某接收器为原点的坐标系中的,众所周知地球在进行自转,因而坐标系也进行转动这就给计算带来了很大的麻烦,因而我们可以考虑首先假定地球为静止的,目标相当于接收器有一个纬度切线方向的相对分力,即构成了空间目标的复合运动。
(2)空间点的坐标在移动,虽然雷达观测显示的为一个个离散点,但客观世界中物体的移动是连续的,因而其随时间进行变化,为时间的函数,上式向量中的各个分量分别对t求二阶导数可得到物体各点的加速度。
由于题目中的数据给定的是离散点,二阶导数即用其近似方法进行估算,不考虑接收器与目标运动的时间差即认为空间坐标点测量显示的数据和时间是同步的,接收器每隔一段时间就会发过来目标的位置坐标。
我们可以根据这些数据来近似求解各个时刻目标的加速度,其大致方法为:①雷达接收到的信号,为目标的位置俯仰角以及方位角,首先我们将后一时刻的距离,方位角,以及俯仰角减去前一时刻的相对应的数据,即得到相邻两时刻的数据差,再根据此方法求得两时刻的时刻差,由于两时刻之间的时间间隔很短,因此我们做以下假定,假定按此方法求出来的线速度以及角速度为初时刻的速度,这样就得到了各个时刻对应的速度值,同理,再用末时刻的速度值减去前一时刻的速度值,记得到了相邻两时刻的速度差,以此来除以相邻两时刻的时间差,即得到了各个时刻的加速度,此刻的加速度为矢量,即分为三个方向的加速度一是距离加速度,二是方位角加速度三是俯仰角加速度。
②得到加速度以后,对其进行分析,按上述方法将数据一代入即得到了各个时刻的加速度值,观察加速度的值,确定其一般情况下的大小,并据此来判断何为较大值即异常值。
③将上述的异常值摘抄下来,并列成表格,然后画成柱状图,观察其超常值出现时间频繁的时间段,即可得到目标机动的时间段。
(3)加速度的大小以及方向的确定,对于加速度的大小根据上述的计算来进行求解,即为向量的模,而对于其方向即为加速度方向对应的单位向量,进而即可计算各个时刻的加速度的大小以及方向,因为加速度的大小取遍其范围,因此没办法进行逐个统计,我们可以根据其加速度的数值变化,将其分成若干个区间段,然后统计落在各个区间段的时刻数即得到加速度的统计数目。
(4)跟踪模型分析,由于此问题不是直线运动亦不是匀加速直线运动,目标发生机动有很大的随机性,且目标处于主动地位,而雷达处于被动地位,因而我们没办法确切的表述目标下一时刻的空间位置,而是以概率较大的点作为目标下一时刻的位置,并给出目标可能出现的区域,因为雷达照射目标发射的电磁波为一锥体形状,因此我们尽可能的使目标可能出现的区域均出现在椎体结构之中,其实现方法是当目标发生机动时其机动加速度不可能无限大,目标突然加速,产生的及速度是有限的,我们根据问题二的数据可以统计出加速度最大能够变化多少,并将其最大状态下的加速度值作为下一次扫描前的平均加速度,三个方向的量分别进行改变,即得到八组数据,此八组数据为八个顶点,即目标逃逸的最远点,极限点。
八个极限点确定了,即大概确定了目标的边界,这些边界围成了空间中的某个区域,其形状不可准确确定,我们也不关心其形状大小仅需让此八个边界点均落在雷达的锥体之中,此做法是求得八个坐标点的中心求出,然后让雷达的天线方向对准区域的中心,这样即可得到下一时刻雷达的方位,此时刻在雷达的锥体中检测到了某个目标的位置,再根据以往检测到的位置来估计现时刻对应的速度加速度,然后根据目标机动能力的大小确定下一时刻内加速度的极限值,并假设作为下一时刻的加速度在该时刻内不再发生变化,根据加速度以及时间来确定下一时刻的位置,由于加速度的极限值可正可负因此有八个位置点,我们以八个极限点的中心点作为下一时刻的轨迹点,然后让雷达对准该方向,当然此为目标最有可能出现的方向,此时刻过去之后,目标又会出现在雷达的照射之中,以此类推即可刻在此时刻画出下一时刻的大概位置。
(5)航迹的确定,每个雷达在某一时刻显示了该时刻目标的方位角,距离,俯仰角等。
航迹为一系列的离散点,因此该问仅是将三个雷达之间的点迹转化到同一坐标系之下,即可得到该坐标系下的航迹,坐标变化为首先选择建立的坐标系,雷达的坐标系为以传感器为中心传感器中心点与当地纬度切线方向指向东为x轴,传感器中心点与当地经度切线方向指向北为y轴,天空方向为z轴。
假设地球为一球体,统一坐标系以地心为坐标原点指向北极为y轴,指向本初子午线与赤道的交点为x轴以x轴从上看逆时针旋转90度为z轴。
从而从雷达坐标系转化到上述坐标系,具体做法是先让x轴不动,y,z轴绕x轴旋转一个为纬度角,然后y轴不变,x和z轴绕y轴旋转一个经度角,这样即可得到在统一坐标系下的位置坐标点。
对于问题二:本题主要是确定雷达在不同状态下的航迹以及进行更为精确的算法。
本体的第(1)小问,对应两个目标的实际检飞考核的飞行包线,依据一定的准则确定雷达站多个回波数据(点迹)中哪几部分数据是来自同一个检测目标(航迹)。
首先应进行航迹起始的确定。
由于检飞是按照国家军标的规则设定特定的路线,故通过一定的逻辑快速确定单个或者多个离散点序列是某一目标在某段时间内首先被检测到的位置。