冷冲压模具
- 格式:doc
- 大小:439.00 KB
- 文档页数:21
绪论1冷冲压常温下利用安装在压力机上的模具对材料施加压力,使其产生分离、成形或者接合,从而获得一定形状、尺寸和性能零件叫冷冲压。
2.学生分析冲压件特点1)薄板件2)生产批量大3)形状和尺寸精度方面互换性较好3.学生讨论完成冲压件制造的特点归纳总结:冷冲压与传统的金属切削加工方式相比具有以下一些特点:(1)冷冲压是少、无切屑的高效加工方法(2)冷冲压零件在形状和尺寸精度方面互换性较好(3)冷冲压零件经过塑性变形,金属内部组织得到改善,机械强度有所提高。
(4)冷冲压操作简单,易于实现机械化和自动化,生产效率高4.本课程内容、目的和学习方法(1)有意识地培养较强的识读模具图纸的能力:(2)坚持理论与实践相结合:(3)学会查找资料、手册以及参考书籍;注重本专业知识的长期积累。
(4)掌握好基础知识和重要冷冲压工序的工艺与模具设计重点、要点。
(5)通过各种途径广泛获取本专业的相关知识,做好现场教学和课件教学等;不断培养和提高学习兴趣;兴趣是我们学好本专业课程最好的老师。
课题一冷冲压基本工序与冷冲模一、冲压基本工序工序是指一个或一组工人,在一个工作地点对同一个或时对几个冲压件所连续完成的那一部分冲压工艺过程。
就材料的变形性质而言,可以将冷冲压工序划分为分离工序和变形工序。
二、冷冲模三、模具标准化课题二金属塑性变形基本知识一、主应力与主应变图1-1 主应变图二、塑性及与变形抗力1. 塑性及塑性变形塑性是固体材料在外力作用下发生永久变形,而不破坏其完整性的能力;影响金属塑性的因素主要包括金属本身的晶格类型、化学成分和金相组织等以及变形时的外部条件,如变形温度、变形速度和变形方式等。
2.变形抗力金属在变形时反作用于运动着的工具之力称为变形抗力。
3.变形温度对塑性变形的影响随着金属加工温度的升高金属塑性增加,变形抗力降低,柔软性增加。
比如在板料成形加工中,就可以采取加热使板料软化,增加板料的变形程度,降低板料的变形抗力,提高工件的成形精确度的措施。
冷冲压模具的基本结构冷冲压模具是一种用于金属冷加工的工具,它的基本结构包括模架、上模、下模、顶针和导柱等部分。
一、模架模架是冷冲压模具的主要支撑部分,通常由上座板、下座板、立柱和横梁等组成。
上座板和下座板分别固定在冲床的上、下工作台上,起到支撑模具和工件的作用。
立柱和横梁则连接上座板和下座板,使模具具有足够的刚性和稳定性。
二、上模上模是冷冲压模具中的一部分,也称为凸模。
它通常由模座、模块和模板等组成。
模座用于固定上模到模架上,模块则是上模的主要工作部分,其上有可更换的模板,用于冷冲压工序。
上模的设计和制造要考虑到模具使用过程中的载荷、摩擦和磨损等因素。
三、下模下模是冷冲压模具中的另一部分,也称为凹模。
它通常由模座、模块和模板等组成。
模座用于固定下模到模架上,模块则是下模的主要工作部分,其上有可更换的模板,用于冷冲压工序。
下模的设计和制造也需要考虑到模具使用过程中的载荷、摩擦和磨损等因素。
四、顶针顶针是冷冲压模具中的一个重要组成部分,通常由顶针座和顶针杆组成。
顶针座用于固定顶针杆到模架上,顶针杆则是顶针的工作部分,用于在冷冲压过程中对工件进行定位和成形。
顶针的设计和制造要考虑到模具使用过程中的载荷、精度和耐磨性等要求。
五、导柱导柱是冷冲压模具中的重要组成部分,用于引导模具在冷冲压过程中的上下运动。
导柱通常由导柱座和导柱柱体组成,导柱座用于固定导柱到模架上,导柱柱体则起到支撑和引导的作用。
导柱的设计和制造要考虑到导向精度、耐磨性和稳定性等因素。
冷冲压模具的基本结构就是由模架、上模、下模、顶针和导柱等部分组成。
模架起到支撑和固定模具的作用,上模和下模是冷冲压工序中的工作部分,顶针用于定位和成形工件,导柱则用于引导模具的上下运动。
这些组成部分相互配合,共同完成冷冲压加工的任务。
在设计和制造冷冲压模具时,需要考虑到各部分的功能和使用要求,以确保模具的性能和寿命。
同时,在使用过程中还需要进行定期的维护和保养,以延长模具的使用寿命和保证加工质量。
冷冲压模具设计讲解冷冲压模具是一种常用的金属加工工艺,广泛应用于汽车、家电、电子、航空航天等领域。
它可以用于制造各种零部件,如车身件、发动机罩、门板等。
冷冲压模具设计是冷冲压工艺中至关重要的一环,其设计质量直接影响产品的加工质量,生产效率以及成本。
本文将从冷冲压模具设计的基本原理、设计要点和注意事项等方面进行详细讲解。
一、冷冲压模具设计的基本原理1.合理性原则:冷冲压模具的设计应该符合工艺要求和产品设计要求,具有合理的结构和尺寸,能够保证产品的质量和加工效率。
同时,还需要考虑模具的使用寿命和维修保养方便性。
2.可靠性原则:冷冲压模具设计必须具有良好的稳定性和可靠性,能够保证生产过程中的安全和稳定性,避免因模具失效而造成生产事故。
3.高效性原则:冷冲压模具设计应该尽可能提高生产效率,减少加工成本,提高产品的质量和竞争力。
因此,在设计过程中需要考虑如何降低模具的制造成本和加工时间,提高模具的使用效率。
4.可维护性原则:冷压模具在使用过程中难免会出现磨损和故障问题,因此必须考虑模具的维护保养性,使模具更容易维修和更换零部件,延长模具的使用寿命。
以上是冷冲压模具设计的基本原理,了解这些原理对于冷冲压模具设计者来说十分重要,可以指导设计过程并提高设计质量。
二、冷冲压模具设计的要点1.模具结构设计:冷冲压模具结构设计应该合理,包括上模、下模、导柱、导套等各部分之间的配合精度和间隙,以确保加工精度和产品质量。
同时,还需要考虑模具的装配和拆卸方便性,以及模具操作人员的安全。
2.模具材料选择:冷冲压模具通常使用的材料有工具钢、合金钢等,这些材料具有高硬度、高强度和抗磨损性能,能够满足冷冲压工艺的要求。
在选择模具材料时需要根据产品的要求和生产环境等因素进行综合考虑。
3.模具表面处理:模具表面处理是冷冲压模具设计中至关重要的一环,它直接影响产品的加工质量和模具的使用寿命。
常用的模具表面处理方法有热处理、镀硬铬、氮化等,这些处理可以提高模具的硬度和耐磨性能,延长模具的使用寿命。
冷冲压模具实验报告冷冲压模具实验报告引言:冷冲压技术是一种先进的金属成形工艺,具有高效、高精度和高质量的特点。
在冷冲压过程中,模具起着至关重要的作用。
本实验旨在通过对冷冲压模具的设计和制造,以及模具在实际应用中的性能评估,探讨冷冲压模具的特点和优势。
1. 模具设计与制造在冷冲压模具的设计与制造过程中,需要考虑多个因素,如材料选择、模具结构设计、工艺参数等。
首先,材料选择方面,模具应具有足够的硬度和耐磨性,以承受高速冲击和摩擦。
常用的材料包括合金工具钢和硬质合金。
其次,模具结构设计应考虑到产品的形状和尺寸要求,以及冷冲压工艺的特点。
模具应具备良好的刚性和稳定性,以确保冷冲压过程的准确性和一致性。
最后,工艺参数的选择对于冷冲压模具的性能和效果也至关重要。
合理的冲击力、冲击速度和冷却方式可以提高模具的寿命和生产效率。
2. 模具性能评估为了评估冷冲压模具的性能,我们进行了一系列实验。
首先,我们测试了模具的硬度和耐磨性。
通过硬度测试,我们可以了解模具材料的硬度水平,以及其是否符合设计要求。
耐磨性测试则可以评估模具在长时间使用过程中的耐久性。
其次,我们进行了冷冲压工艺试验。
在试验中,我们使用了不同的冷冲压参数,如冲击力、冲击速度和冷却方式,以评估模具的稳定性和准确性。
最后,我们对模具的寿命进行了评估。
通过观察模具的磨损情况和变形程度,我们可以推断模具的寿命和使用效果。
3. 结果与讨论根据实验结果,我们可以得出以下结论:首先,模具的硬度和耐磨性对于冷冲压模具的性能至关重要。
较高的硬度和良好的耐磨性可以提高模具的使用寿命和生产效率。
其次,合理的冷冲压工艺参数可以提高模具的稳定性和准确性。
通过调整冲击力、冲击速度和冷却方式,可以获得更好的冷冲压效果。
最后,模具的寿命受到多种因素的影响,如材料选择、工艺参数和使用环境等。
因此,在实际应用中,需要定期检查和维护模具,以延长其使用寿命和保证生产质量。
结论:冷冲压模具是冷冲压技术的重要组成部分,对于提高产品质量和生产效率具有重要意义。
冷冲模具的制造要求及制造过程冷冲模具是一种用于冷冲压工艺的模具,在汽车、电子、家电等行业广泛应用。
冷冲模具的制造要求和制造过程非常重要,直接影响到产品的质量和效率。
以下将从这两方面进行详细介绍。
一、冷冲模具的制造要求1. 高强度和硬度冷冲模具在使用过程中需要承受较大的冲击和摩擦力,因此对模具的材质要求非常高。
通常情况下,冷冲模具需要采用优质的合金钢材料制造,确保模具具有足够的强度和硬度。
2. 高精度和稳定性冷冲模具的制造需要保证其具有高精度和稳定性,以确保冷冲压工艺的精准性和一致性。
在制造过程中,需要采用先进的加工设备和精密的加工工艺,确保模具的加工精度在允许范围内。
3. 耐磨性和耐久性冷冲模具在长时间的使用过程中会受到严重的磨损,因此需要具有良好的耐磨性和耐久性。
在材料选择和热处理过程中需要特别注意,确保模具具有良好的耐磨性和耐久性。
4. 合理的结构设计冷冲模具的结构设计需要考虑到产品的形状和尺寸,以及冷冲压工艺的要求。
合理的结构设计能够减少模具的磨损和变形,延长模具的使用寿命。
5. 完善的冷却系统在冷冲压工艺中,模具需要长时间进行高频次的冷却,因此需要具备完善的冷却系统,以确保模具在工作过程中能够保持合适的工作温度,防止模具变形和损坏。
二、冷冲模具的制造过程冷冲模具的制造过程通常包括材料选择、模具设计、加工制造、热处理和装配等环节。
1. 材料选择冷冲模具通常采用优质的合金钢材料制造,如Cr12MoV、Cr12和9SiCr等。
在材料选择时需要考虑模具的使用环境和工艺要求,选择合适的材料。
3. 加工制造在模具加工制造过程中,需要采用先进的加工设备和精密的加工工艺,确保模具的加工精度和表面质量。
通常情况下,需要采用CNC加工中心、线切割机等设备进行加工。
4. 热处理模具的热处理过程非常重要,可以有效提高模具的硬度、强度和耐磨性。
常用的热处理工艺包括淬火、回火、渗碳等,需要根据模具的材料和使用要求进行合理选择。
冷冲压模具设计与制造1. 引言冷冲压模具是冷冲压工艺的关键部件,用于在金属材料加工过程中对其进行塑性变形。
冷冲压技术具有高效、高精度、低能耗等优点,广泛应用于汽车、电子、家电等行业。
本文将介绍冷冲压模具的设计与制造方法。
2. 冷冲压模具设计冷冲压模具设计最重要的是确定模具的结构和尺寸。
以下是冷冲压模具设计的几个关键步骤:2.1 确定模具结构冷冲压模具通常由上模、下模、导向机构、定位机构等组成。
在设计模具结构时,需要考虑加工工件的形状和尺寸,以及冷冲压机的型号和性能。
2.2 确定模具尺寸模具尺寸的确定与工件的形状、尺寸和厚度有关。
需要考虑到材料的强度和可加工性,在满足工件要求的前提下,尽量减小模具的尺寸。
2.3 设计模具零件根据模具结构和尺寸,设计各个零部件的形状和尺寸。
主要包括上模、下模、导柱、导套、顶杆等零件。
在设计过程中,需要考虑零件的材料选择、工艺性能和加工精度。
2.4 确定模具的工装冷冲压模具的工装通常包括导向套、切断装置、定位装置等。
根据工件的特点和加工要求,选择合适的工装,并合理布置在模具上。
3. 冷冲压模具制造冷冲压模具的制造需要经过以下几个步骤:3.1 材料准备选择适合的模具材料,通常使用优质合金工具钢。
根据模具的使用要求,选择合适的材料硬度和韧性。
3.2 切削加工根据模具设计的零部件图纸,进行车、铣、磨等切削加工。
确保模具的尺寸和形状符合设计要求。
3.3 加工热处理通过热处理过程,提高模具材料的硬度和耐磨性。
常见的热处理方法包括淬火、回火等。
3.4 组装和调试将各个零部件按照设计要求组装成完整的模具,并进行调试。
确保模具的各个部位协调运动,完成工件的加工过程。
3.5 表面处理对模具进行表面处理,提高模具的耐磨性和表面光洁度。
常见的表面处理方法包括硬质激光熔覆、电火花加工等。
4. 模具试产与调试完成冷冲压模具的制造后,需要进行试产和调试。
通过试产,测试模具的性能和质量,同时对模具进行优化和调整,以满足工艺要求和工件质量要求。
冷冲压模具设计要点
1.材料选择:冷冲压模具所使用的材料应具有高强度、耐磨损和耐腐
蚀的特性,一般常用于模具制作的材料有工具钢、硬质合金、高速钢等。
2.结构设计:冷冲压模具的结构设计应考虑到模具的强度、刚性和稳
定性,以保证模具在使用过程中能够承受大的载荷和高频的工作循环,同
时也要考虑到模具的拆卸和维护方便。
3.设计尺寸:模具设计的尺寸应根据产品的形状、尺寸和要求来确定,其中应考虑到材料的伸缩性、弹性以及工艺的要求等因素,确保成形后的
产品尺寸精度和表面质量。
4.几何形状:冷冲压模具的几何形状应符合产品的要求,具有合理的
结构,以利于金属材料在成形过程中的流动和填充,同时也要避免产生应
力集中和变形等问题。
5.寿命和耐磨性:冷冲压模具在使用过程中会受到金属材料的冲击和
磨损,因此需要具备良好的耐磨性和长寿命,可以通过表面涂层、热处理
以及硬质合金加工等方式来提高模具的寿命。
6.润滑和冷却:在冷冲压过程中,为了减少摩擦和热量的产生,需要
对冷冲压模具进行润滑和冷却处理,以保证模具的正常工作和生产效率。
7.精度和控制:冷冲压模具的设计要考虑到产品的精度和控制要求,
包括成形厚度、尺寸公差、直角度、表面平整度等,以保证产品的质量和
性能。
8.模具标准和规范:对于冷冲压模具的设计,应按照相关的标准和规
范进行设计,以确保模具的质量和安全性。
冷冲压模具设计的要点主要包括材料选择、结构设计、设计尺寸、几何形状、寿命和耐磨性、润滑和冷却、精度和控制,以及模具标准和规范等方面。
只有综合考虑以上要点并灵活运用,才能设计出高质量、高效率的冷冲压模具。
当代冷冲压模具技术发展现状引言随着制造业的快速发展,冷冲压模具技术作为一种先进的制造工艺逐渐得到推广和应用。
本文将探讨当代冷冲压模具技术的发展现状,包括其定义、特点、应用领域以及未来的发展趋势。
希望通过本文的介绍,读者能更好地了解冷冲压模具技术,并为相关行业的技术提升提供参考。
什么是冷冲压模具技术冷冲压模具技术,简称冷冲模技术,是一种利用模具将板材加工成零件的先进制造技术。
与传统的热冲压模具技术相比,冷冲模技术在生产过程中不需要进行加热处理,因而能够节省能源、减少环境污染,并提高零件的精度和质量。
冷冲压模具技术的特点冷冲压模具技术具有以下几个显著的特点:1.高精度:冷冲模技术采用较高精度的模具,能够生产出更精密、更复杂的零件。
2.低能耗:由于无需进行加热处理,冷冲模技术能够显著降低能源消耗,减少生产成本。
3.环保:冷冲模技术无废气、无废液排放,对环境污染较小。
4.高效率:冷冲模技术具有高效率的特点,能够大幅提高生产效率和产能。
冷冲压模具技术的应用领域冷冲压模具技术广泛应用于以下领域:汽车制造汽车制造是冷冲模技术的主要应用领域之一。
由于汽车零部件通常需要具备较高的精度和质量要求,而且需要大批量生产,因此冷冲模技术尤为适用。
冷冲压模具技术在汽车制造领域能够实现零部件的高精度、高效率生产,并能够提高汽车的整体性能。
家电制造家电制造也是冷冲模技术的重要应用领域。
冷冲模技术能够生产出各类家电零部件,如冰箱壁板、洗衣机外壳等。
相比传统的加工方法,冷冲模技术能够提高零件的精度和质量,并且在生产过程中能够减少能源消耗。
电子设备制造随着电子设备的普及和更新换代的加速,冷冲压模具技术在电子设备制造领域的应用也日益增多。
冷冲模技术能够生产出电子设备的外壳、连接器等零部件,并且能够满足不同电子设备的尺寸要求和外观要求。
其他行业冷冲压模具技术还可应用于航空航天、建筑、通信设备等各个行业。
由于冷冲模技术的高精度和高效率特点,使其在生产过程中能够保证零件的质量和准确性,得到各行业的广泛应用。
冷冲压模具设计标准
冷冲压模具是一种用于金属材料成形加工的工具,其设计标准对于产品质量和
生产效率具有重要的影响。
在进行冷冲压模具设计时,需要考虑多种因素,包括材料选择、结构设计、加工工艺等方面。
本文将从这些方面对冷冲压模具的设计标准进行详细介绍。
首先,材料选择是冷冲压模具设计的关键。
模具的材料需要具有足够的硬度和
耐磨性,以保证长时间的使用寿命。
同时,材料还需要具有较高的强度和韧性,以承受冲击和挤压的力量。
常见的冷冲压模具材料包括工具钢、硬质合金等,设计者需要根据具体的工件材料和加工工艺来选择合适的模具材料。
其次,结构设计是冷冲压模具设计的重要环节。
模具的结构需要合理布局,以
确保工件的成形精度和表面质量。
在设计模具结构时,需要考虑到模具的开合方式、导向装置、顶出装置等,以及模具的冷却系统和润滑系统。
合理的结构设计可以提高模具的使用寿命,减少维护成本,提高生产效率。
另外,加工工艺也是冷冲压模具设计的重要内容。
模具的加工工艺需要考虑到
模具的制造成本、加工难度和加工精度。
在进行模具加工时,需要选择合适的加工设备和工艺,保证模具的尺寸精度和表面质量。
同时,还需要进行模具的热处理和表面处理,以提高模具的硬度和耐磨性。
综上所述,冷冲压模具设计标准涉及到材料选择、结构设计和加工工艺等多个
方面。
设计者需要综合考虑这些因素,以确保模具具有良好的使用性能和经济性。
只有在严格遵循设计标准的基础上,才能设计出高质量、高效率的冷冲压模具,满足不同工件的加工需求。
冷冲压模具的热处理工艺冷冲压模具是制造冲压零件必不可少的工具,其质量的好坏直接影响到零件的质量。
其中,热处理工艺对冷冲压模具的质量起着至关重要的作用。
本文将详细探讨冷冲压模具的热处理工艺。
1. 热处理工艺的作用冷冲压模具的热处理工艺的主要作用是增强材料的机械性能,提高材料的硬度、强度、韧性和耐磨性,以达到提高模具使用寿命的目的。
由于冷冲压模具的使用环境非常恶劣,面临着高温、高压等极端条件,所以在制造过程中必须对模具进行热处理,从而使其具有较好的耐热、耐腐蚀和耐磨损的性能。
2. 热处理工艺的种类冷冲压模具的热处理工艺主要有淬火、回火、正火、表面强化等。
下面将分别介绍各种工艺的作用和适用范围。
2.1 淬火淬火是在高温下迅速冷却,将钢件的组织转变为马氏体的一种工艺。
淬火能使模具的硬度、强度和耐磨性得到较大的提高,但其韧性却降低了。
因此,淬火工艺适用于冷冲压模具的切断刀具、切割机、成型模等较为坚硬的零件。
2.2 回火回火是在淬火后再加热处理,使钢件经过适当的保温时间后,使马氏体产生一定的分解,得到较为均匀的组织和机械性能。
回火能增强模具的韧性,减轻其脆性,同时保留一定的硬度和强度。
因此,适用于一些对模具韧性要求较高而强度和硬度要求适中的零件,如弯曲、拉直等工具。
2.3 正火正火是将未经淬火的钢件,经过加热均匀后,在适当的时间内使其冷却到室温,使其得到一定的硬度和强度。
正火适用于低碳、合金钢等模具材料的热处理。
2.4 表面强化表面强化是指对模具表面进行改性处理,改变其表面性质,以达到增强其耐磨性和耐腐蚀性的目的。
表面强化工艺包括浸渗、硬质合金喷涂和表面喷丸等。
其中,硬质合金喷涂是目前应用最广的表面强化技术之一。
喷涂层有良好的耐磨性和耐腐蚀性,可在模具表面形成一层坚硬的保护层,可以有效地提高模具的使用寿命。
3. 热处理工艺的注意事项冷冲压模具的热处理在实施时需要注意以下几点。
3.1 选择正确的热处理工艺不同的热处理工艺适用于不同的模具材料和零件类型。
冷冲压模具的热处理工艺冷冲压模具是一种常用于金属加工的模具,其中热处理工艺是冷冲压模具制造过程中非常重要的一步。
本文将详细介绍冷冲压模具的热处理工艺。
一、热处理的概念在冷冲压模具制造中,热处理是指采用一定的加热、保温、冷却等方法,将制作好的模具材料进行改善其内部组织结构的工艺。
简单来说,热处理可以使模具材料的性能更加稳定、硬度更加均匀、适应性更加广泛,提高模具的使用寿命和耐磨性能。
二、热处理的分类热处理通常分为三类,即退火、正火和淬火。
1.退火:退火是将模具材料加热到一定温度,保温一段时间,然后缓慢冷却的工艺。
退火可以改善模具材料的塑性和韧性,并且使其组织结构得到松弛与改善。
2.正火:正火是将模具材料加热到一定温度(通常高于910℃),保温一段时间,然后迅速冷却的工艺。
正火使模具材料的硬度得到大幅提高,但对于一些高温合金钢,正火不一定适用。
3.淬火:淬火是将模具材料加热到一定温度,保温一段时间,然后迅速浸入油、水等冷却介质中,使温度迅速降低,加速钢材的晶体转变和相变。
淬火可以使钢材达到极高的硬度,但如果淬火温度过高或时间过长,就会导致钢材出现裂纹或变形等缺陷。
三、冷冲压模具的热处理工艺冷冲压模具的热处理工艺通常分为两个阶段:预热和精炼。
1.预热:在制造冷冲压模具的过程中,首先需要将钢材进行预热。
预热的目的是去除材料表面的氧化物、炭化物等附着物,使表面变得光滑,并减少热应力。
预热时温度通常控制在300℃左右,保温时间大约为2小时。
2.精炼:在预热完成后,需要进行精炼工艺。
该工艺包括退火、正火和淬火三种方式,具体选择哪种方式要根据冷冲压模具的材料和具体使用环境来确定。
(1)退火热处理工艺:退火热处理工艺分为两种,分别是软化退火和回火处理。
软化退火是将模具材料加热到较高的温度(通常为800℃-900℃),保温一段时间,然后缓慢冷却的工艺。
软化退火可以改善模具材料的韧性,增强其可塑性,并改善其冷变性。
该工艺一般适用于硬度较高的钢材。
效益,使现代冲压技术水平提高到一个新的高度。
1.3 模具的发展与现状模具是工业生产中的基础工艺装备,是一种高附加值的高技术密集型产品,也是高新技术产业的重要领域,其技术水平的高低已成为衡量一个国家制造水平的重要标志。
随着国民经济总量和工业产品技术的不断发展,各行各业对模具的需求量越来越大,技术要求也越来越高。
目前我国模具工业的发展步伐日益加快,“十一五期间”产品发展重点主要应表现在 [2]:(1)汽车覆盖件模;(2)精密冲模;(3)大型及精密塑料模;(4)主要模具标准件;(5)其它高技术含量的模具。
目前我国模具年生产总量虽然已位居世界第三,其中,冲压模占模具总量的40%以上[2],但在整个模具设计制造水平和标准化程度上,与德国、美国、日本等发达国家相比还存在相当大的差距。
以大型覆盖件冲模为代表,我国已能生产部分轿车覆盖件模具。
轿车覆盖件模具设计和制造难度大,质量和精度要求高,代表覆盖件模具的水平。
在设计制造方法、手段上已基本达到了国际水平,模具结构功能方面也接近国际水平,在轿车模具国产化进程中前进了一大步。
但在制造质量、精度、制造周期和成本方面,以国外相比还存在一定的差距。
标志冲模技术先进水平的多工位级进模和多功能模具,是我国重点发展的精密模具品种,在制造精度、使用寿命、模具结构和功能上,与国外多工位级进模和多功能模具相比,存在一定差距[2-3]。
1.4 模具CAD/CAE/CAM技术冲压技术的进步首先通过模具技术的进步来体现出来。
对冲模技术性能的研究已经成为发展冲压成形技术的中心和关键。
20世纪60年代初期,国外飞机、汽车制造公司开始研究计算机在模具设计与制造中的应用。
通过以计算机为主要技术手段,以数学模型为中心,采用人机互相结合、各尽所长的方式,把模具的设计、分析、计算、制造、检验、生产过程连成一个有机整体,使模具技术进入到综合应用计算机进行设计、制造的新阶段。
模具的高精度、高寿命、高效率成为模具技术进步的特征。
模具CAD/CAE/CAM是改造传统模具生产方式的关键技术,是一项高科技、高效益的系统工程。
它以计算机软件的形式,为企业提供一种有效的辅助工具,使工程技术人员借助于计算机对产品性能、模具结构、成形工艺、数控加工及生产管理进行设计和优化[4]。
模具CAD/CAE/CAM 技术能显著缩短模具设计与制造周期,降低生产成本和提高产品质量已成为模具界的共识。
模具CAD/CAE/CAM在近20年中经历了从简单到复杂,从试点到普及的过程。
进入本世纪以来,模具CAD/CAE/CAM技术发展速度更快,应用范围更广。
在级进模CAD/CAE/CAM发展应用方面,本世纪初,美国UGS公司与我国华中科技大学合作在UG-II(现为NX)软件平台上开发出基于三维几何模型的级进模CAD/CAM软件NX-PDW。
该软件包括工程初始化、工艺预定义、毛坯展开、毛坯排样、废料设计、条料排样、压力计算和模具结构设计等模块。
具有特征识别与重构、全三维结构关联等显著特色,已在2003年作为商品化产品投入市场。
与此同时,新加波、马来西亚、印度及我国台湾、香港有关机构和公司也在开发和试用新一代级进模CAD/CAM系统。
我国从上世纪90年代开始,华中科技大学、上海交通大学、西安交通大学和北京机电研究院等相继开展了级进模CAD/CAM系统的研究和开发。
如华中科技大学模具技术国家重点实验室在AutoCAD软件平台上开发出基于特征的级进模CAD/CAM系统HMJC,包括板金零件特征造型、基于特征的冲压工艺设计、模具结构设计、标准件及典型结构建库工具和线切割自动编程5个模块。
上海交通大学为瑞士法因托(Finetool)精冲公司开发成功精密冲裁级进模CAC/CAM系统。
西安交通大学开发出多工位弯曲级进模CAD系统等。
近年来,国内一些软件公司也竞相加入了级进模CAD/CAM系统的开发行列,如深圳雅明软件制作室开发的级进模系统CmCAD、富士康公司开发的用于单冲模与复合模的CAD系统Fox-CAD等[4]。
展望国内外模具CAD/CAE/CAM技术的发展,本世纪的科学技术正处于日新月异的变革之中,通过与计算机技术的紧密结合,人工智能技术、并行工程、面向装配、参数化特征建模以及关联设计等一系列与模具工业相关的技术发展之快,学科领域交叉之广前所未见。
今后10年新一代模具CAD/CAE/CAM系统必然是当今最好的设计理念、最新的成形理论和最高水平的制造方法相结合的产物,其特点将反映在专业化、网络化、集成化、智能化四个方面。
主要表现在[4]:(1)模具CAD/CAM的专业化程度不断提高;(2)基于网络的CAD/CAE/CAM一体化系统结构初见端倪;(3)模具CAD/CAE/CAM的智能化引人注目;(4)与先进制造技术的结合日益紧密。
1.5 课题的主要特点及意义该课题主要针对电器开关过电片零件,在对过电片冲孔、落料和压弯等成形工艺分析的基础上,提出了该零件采用多工位级进模的冲压方案;根据零件的形状、尺寸精度要求,设计过程中综合考虑采用“双列直对排法”排样,成形侧刃定位,保证工件的尺寸和形状位置精度要求的同时,提高了材料的利用率和劳动生产率。
本课题涉及的知识面广,综合性较强,在巩固大学所学知识的同时,对于提高设计者的创新能力、协调能力,开阔设计思路等方面为作者提供了一个良好的平台。
2 冲压工艺方案的制定本电器开关过电片从总体上看是一个带双孔的“”形弯曲件,该零件需要控制的尺寸有,,,,分别为公差等级件。
由于“”形弯曲件两直边折弯方作。
现改为“”形弯曲件,它是“”形件的成对弯曲,然后再切断为二个“”形件,这样使两边的弯曲力相互平第三工位:“”形弯曲,由导正销在圆孔第四工位:切断“”形件,分离得四个“”形制件。
==59.7%若冲出的小孔材料可以加以利用,则由本排样方案计算一个进距的材料利用率为:),这里;=, A=, A=,=,==,=,B=式中,—凸模制造公差,级处理有,得,,这样将不满足分开加工条件:。
:,取,,这样就满足分开加工条件:4-4 冲圆孔凸模尺寸图4-3 圆孔尺寸(4-3) 则:则:,级处理有,心距。
,。
、—凸、凹模孔心距的标称尺寸(—工件孔心距的标称尺寸(—工件孔心距的公差(则:=, A=, =, A=;=。
式中,—弯曲件基本尺寸—弯曲件制造公差—凸台制造公差,按则:故:凸模工作部分的长度应根据模具的结构来确定。
一般不宜过长,否则往往因纵向弯曲而使凸模工作时失稳。
致使模具间隙出现不均匀,从而使冲件的质量及精度有所下降,严重时甚至会使凸模折断。
根据模具设计结构形式,凸模的长度为(4-8)式中,—凸模的长度(mm);—凸模固定板的厚度(mm),它取决于冲件的厚度t,一般在冲制t<1.5mm的板料时,取15~20mm;当t=1.5~2.5mm时,取20~25mm;这里取;—卸料板的厚度(mm),取;—导料板的厚度(mm),取;—附加长度(mm)。
主要考虑凸模进入凹模的深度(对于冲裁凸模取1mm,对于压弯凸模根据零件弯曲高度取5.2mm)以及模具闭合状态下卸料板的到凸模固定板间的安全距离(取20mm)将各数据代入式(4-8)中得:冲裁凸模长度压弯凸模长度4.2.3 凸模的强度计算冲裁时凸模因承受了全部的压力,所以它承受了相当大的压应力。
而在卸料时,又承受有拉应力。
因此,在一次冲裁的过程中,其应力为拉伸和压缩交变反复作用。
在一般情况下,凸模的强度是足够的,因此没有必要作强度的校核[9]。
但针对本过电片零件特点,其中有的凸模断面尺寸很小,因此必须对相应凸模的强度—包括凸模的最小断面(危险断面)的承压能力和抗弯能力进行校核。
(1)凸模承受能力的校核对凸模最小断面上的承受能力进行计算时,必须使冲裁力小于或等于危险断面所允许的最大压应力。
由[9]表2-9查得,对于材料为黄铜的冲件,最小的允许凸模相对直径()为0.61~0.85,而该模具中凸模刃口最小壁厚1.2mm,,故凸模承受能力满足要求。
(2)失稳弯曲应力的校核料板导向凸模最大允许长度按式(式中,—凸模最大允许长度(—凸模材料弹性模量,对于钢材可取;—凸模或冲孔直径(—冲件材料厚度(—冲件材料抗剪强度(),这里对于普通黄铜现今对最小凸模直径进行校核计算,将各数据代入式(所以大于凸模长度,故满足要求。
显然,其它凸模也满足弯曲校核要求。
所示,图4-12 凹模刃壁形式使压弯时在产品根部产生塑性变形,减小回弹,保证弯凹模的厚度和外形尺寸,对于其承受的冲裁力,必须具有不引起破损和变形的足够强度。
冲裁时,凹模承受冲裁力和水平方向的作用,由于凹模的结构形式不一,受力状态又比较复杂,特别是对于复杂形状的冲件,其凹模的强度计算就相当的复杂。
因而,在目前一般的生产实际情况下,通常都是根据冲裁件的轮廓尺寸和板料厚度、冲裁力的大小等来进行概略的估算及经验修正的[9]。
结构尺寸计算如下:(1)凹模壁厚凹模壁厚b按文献[10]表14-5选择。
从排样图2-3知冲件料宽50 mm(>40-50 mm),料厚0.5 mm(≤0.8 mm),由文献[10]表14-5取b=30mm。
(2)凹模厚度:凹模厚度h根据冲裁力F按文献[10]图14-15选择。
先算冲裁力:(4-10)式中,L—冲裁件周边长度(mm);t—材料厚度(mm),t=0.5mm;t—材料抗剪强度(MPa),τ=240MPa;K—系数。
考虑到模具刃口的磨损,模具间隙的波动,材料力学性能的变化及材料厚度偏差等因素,一般取K=1.3。
算得整个冲压工序中冲裁周边长度L=388mm,代入式(4-10)得:F=1.3×388×240×0.5≈60KN由文献[10]图14-15中取凹模厚度h=20mm。
(3)凹模外形尺寸根据排样图2-3所注尺寸和上述凹模厚度h与壁厚b,可以得出:凹模长L=124 mm;凹模宽B=110 mm;故初步有了凹模外形尺寸L×B×h=124×112×20 mm。
根据要求,上述凹模外形尺寸须向国家标准靠拢,对照文献[10]表14-6(摘自GB2858-81),将上述尺寸改为125×125×20 mm。
(4)刃壁高度垂直于凹模平面的刃壁,其高度h0可以按下列规则计算[10]:冲件料厚t≤3 mm,h0=3 mm;冲件料厚t>3 mm,h0=t;所以,这里取h0=3 mm。
(5)凹模镶块尺寸设计对于凹模镶块的尺寸,可以参见相关零件图纸。
4.3 模板的设计标准的级进模模板包括:卸料板、固定板、凹模板、垫板、上模板、下模板,其中卸料板、固定板、凹模板是关键的三块模板,也是级进模比不可少的[11]。
该模具中固定板起着固定凸模的作用,卸料板主要起卸料、压料同时还具有一定的导向作用;凹模板前面已经提到,既充当凹模刃口,又可以在其上镶拼凹模镶块。