热质交换原理与设备(chapter2 C)解析
- 格式:ppt
- 大小:3.04 MB
- 文档页数:8
《热质交换原理与设备》习题答案《热质交换原理与设备》习题答案《热质交换原理与设备》习题答案.第一章绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在);热量传递:温度梯度的存在(或温度分布不均匀);质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
2、解:热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。
间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。
直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。
蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。
热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,热、冷流体在通道内横掠管束连续流动实现传热。
3、解:顺流式又称并流式,其内冷、热两种流体平行地向着同方向流动,即冷、热两种流体由同一端进入换热器。
逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷、热两种流体逆向流动,由相对得到两端进入换热器,向着相反的'方向流动,并由相对的两端离开换热器。
叉流式又称错流式,两种流体的流动方向互相垂直交叉。
混流式又称错流式,两种流体的流体过程中既有顺流部分,又有逆流部分。
顺流和逆流分析比较:在进出口温度相同的条件下,逆流的平均温差最大,顺流的平均温差最小,顺流时,冷流体的出口温度总是低于热流体的出口温度,而逆流时冷流体的出口温度却可能超过热流体的出口温度,以此来看,热质交换器应当尽量布置成逆流,而尽可能避免布置成顺流,但逆流也有一定的缺点,即冷流体和热流体的最高温度发生在换热器的同一端,使得此处的壁温较高,为了降低这里的壁温,有时有意改为顺流。
第2章 热质交换过程2.1 传质基本概念(1)定义:两种或两种以上的组分的混合物,其组分互相的迁移,本专业有关的即传质过程往往就是相变过程,传质与传热的复合。
(2)对换热设备而言,可以利用相变来传热。
(3)传质的基本方式⎩⎨⎧对流引起的对流扩散在流体中由于由微观分了引起边界层中分子扩散在静止流体或,(4)动量、热量、质量交换是类比现象,不是相似现象。
什么叫相似现象?用同一个微分方程来描述,且描写的物理量相同。
什么叫类比现象?用同一个微分方程来描述,但描写的物理量不同。
2.1.1 扩散传质的物理机理例 墨水在无扰动的清水中的扩散,汽车尾气与静止大气中的传播。
2.1.2 浓度的概念(1)概念:二元或多元混合物中,单位体积中含组分能量的多少,的浓度。
例1第一节内容中三个基本传递公式中动量浓度,焓浓度,质量浓度(密度),斐尔浓度。
例2空气粗略的可以看作是氧气A ,氮气B 的混合物。
BB B A AA V MC V M C ρρ====(2)如果二元混合物是混合气体⎪⎪⎩⎪⎪⎨⎧==⇒⎭⎬⎫==T R P C T R P C T R M V P T R M V P B BB AA AB B B A A A 求 A P ——氧的分压力A M ——氧的质量V ——混合气体体积A R ——气体常数T ——绝对温度质量浓度 ⇔分压力 正比关系(3)质量百分数C C M M C AA A A ===ρρ***A A A A C C C C ρρ===∴ρ、C —— 混合气体的浓度,即单位体积中混合气体的总质量同理 对摩尔浓度 nA ,摩尔百分数n nAn A =*2.1.3 扩散通量⎪⎪⎩⎪⎪⎨⎧相对扩散通量扩散通量向量绝对扩散通量摩尔扩散通量质扩散通量组分的物质的量单位面积上通过的某一单位时间扩散通量.注意: (1)不同方向上,扩散通量的大小不同。
(2)等于浓度面上的某点,以通过该点的最大扩散通量的方向为方向,数值上也正好等于该方向上的扩散通量的向量,称扩散通量向量。
第二章1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。
传质通量等于传质速度与浓度的乘积。
以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+ 以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+以主流速度表示的质量通量:1()()A A A AB B A A B e u e e u e u a m m e ⎡⎤=+=+⎢⎥⎣⎦()B B A B e u a m m =+2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO 通过碳粒表面边界界层的质扩散为等摩尔互扩散。
3、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:410D -=若在压强5001.01310,273P Pa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T 状态下的扩散系数可用该式计算32000P T D D P T ⎛⎫= ⎪⎝⎭(1)氧气和氮气:2233025.610/()32o V m kg kmol μ-=⨯⋅= 223331.110/()28N N V m kg kmol μ-=⨯⋅=525233 1.5410/1.013210(25.631.1)D m s -==⨯⨯⨯+(2)氨气和空气:51.013210P Pa =⨯ 25273298T K =+=50 1.013210P Pa =⨯ 0273T K =3221.0132980.2()0.228/1.0132273D cm s=⨯⨯=2-4、解:气体等摩尔互扩散问题124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯m 2sR 0通用气体常数单位:J/kmol ﹒K5、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅ 6242015.5310/,0.2210/m s D m s υ--=⨯=⨯32420006640.2510/40.08Re 2060515.531015.53100.620.2510o c P T D D m sP T u d v v S D ----⎛⎫==⨯ ⎪⎝⎭⨯===⨯⨯===⨯用式子(2-153)进行计算0.830.440.830.4440.0230.023206050.6270.9570.950.25100.0222/0.08m e c m m sh R S sh D h m sd -==⨯⨯=⨯⨯===设传质速率为A G ,则211220000()()()44ln4A A A m A s A A lAm A s AA s A m A s A dG d dx h d u d du d dx h du l h ρρππρρρρρρρρρρ⋅⋅⋅⋅=-==--=-⎰⎰2-6、解:20℃时的空气的物性:(注:状态不同,D 需修正)353352244200505541.205/, 1.8110,1.013102930.22100.2410/1.0132102730.053 1.205Re 99901.81101.81100.6261.2050.2410o c kg m Pa s P T D D m s P T u dv S D ρμρμρ------==⨯⋅⎛⎫⨯⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭⨯⨯===⨯⨯===⨯⨯(1)用式0.830.440.023me c sh R S =计算m h 0.830.4440.02399900.6260.24100.018750.05m m sh D h d -⨯⨯⨯⨯===(2)用式13340.0395e c sh R S =计算m h134340.0395(9990)(0.626)0.24100.01621/0.05m sh D h m sd -⨯⨯===2-7、错解:氨在水中的扩散系数921.2410/D m s -=⨯,空气在标准状态下的物性为;353591.293/, 1.7210,Pr 0.708, 1.00510/()1.721010727.741.293 1.2410p c kg m Pa s c J kg k S D ρμμρ----==⨯⋅==⨯⋅⨯===⨯⨯由热质交换类比律可得231Pr m p c h h c S ρ⎛⎫= ⎪⎝⎭223351Pr 560.7087.0410/1.293100110727.74m p c h m s h c S ρ-⎛⎫⎛⎫==⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭✧ 1)(第3版P25)用水吸收氨的过程,气相中的NH3(组分A )通过不扩散的空气(组分B ),扩散至气液相界面,然后溶于水中,所以D 为NH3在空气中的扩散。