2018年内蒙古自治区中考数学模拟试卷(十)(附解析)
- 格式:doc
- 大小:452.97 KB
- 文档页数:22
2024年内蒙古通辽市中考数学试卷(附答案解析)一、选择题(本题包括12道小题,每小题3分,共36分,每小题只有一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.(3分)某地区某日最高气温是零上8℃,记作+8℃,最低气温是零下3℃,应该记作()A.﹣3℃B.+3℃C.﹣5℃D.+5℃【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以,某地区某日最高气温是零上8℃,记作+8℃,最低气温是零下3℃,应该记作﹣3℃.故选:A.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.2.(3分)如图,这个几何体的俯视图是()A.B.C.D.【分析】根据简单几何体的三视图的画法画出它的俯视图即可.【解答】解:这个几何体的俯视图是,故选:D.【点评】本题考查简单几何体的三视图,理解视图的定义,掌握简单几何体三视图的画法和形状是正确解答的关键.3.(3分)在学校文艺汇演中,7名参加舞蹈表演的女生身高(单位:cm)如下:170175169171172170173这组数据的中位数是()A.175B.172C.171D.170【答案】C.4.(3分)下列运算结果正确的是()A.4xy﹣3xy=1B.(﹣a2)3=﹣a6C.=﹣5D.+=【答案】B.5.(3分)剪纸是我国民间艺术之一,如图放置的剪纸作品,它的对称轴与平面直角坐标系的坐标轴重合,则点A(﹣4,2)关于对称轴对称的点的坐标为()A.(﹣4,﹣2)B.(4,﹣2)C.(4,2)D.(﹣2,﹣4)【分析】根据所给图形,得出y轴为其对称轴,再根据轴对称的性质即可解决问题.【解答】解:由所给图形可知,此图形关于y轴对称,所以点A(﹣4,2)关于对称轴对称的点的坐标为(4,2).故选:C.【点评】本题主要考查了坐标与图形变化﹣对称、坐标确定位置及关于x轴、y轴对称的点的坐标,熟知轴对称的性质是解题的关键.6.(3分)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2(其中k1k1≠0,k1,k2,b1,b2为常数)的图象分别为直线l1,l2.下列结论正确的是()A.b1+b2>0B.b1b2>0C.k1+k2<0D.k1k2<0【分析】根据函数图象,可以得到b1=2,b2=﹣1,k1>0,k2>0,然后即可判断各个选项中的说法是否正确.【解答】解:由图象可得,b1=2,b2=﹣1,k1>0,k2>0,∴b1+b2>0,故选项A正确,符合题意;b1b2<0,故选项B错误,不符合题意;k1+k2>0,故选项C错误,不符合题意;k1k2>0,故选项D错误,不符合题意;故选:A.【点评】本题考查一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.(3分)不透明的袋子中装有1个红球,2个白球,这些球除颜色外无其他差别,从中随机摸出一个球,放回并摇匀,再从中随机摸出一个球,那么两次都摸出白球的概率是()A.B.C.D.【分析】列表可得出所有等可能的结果数以及两次都摸出白球的结果数,再利用概率公式可得出答案.【解答】解:列表如下:红白白红(红,红)(红,白)(红,白)白(白,红)(白,白)(白,白)白(白,红)(白,白)(白,白)共有9种等可能的结果,其中两次都摸出白球的结果有4种,∴两次都摸出白球的概率为.故选:C.【点评】本题考查列表法与树状图法、概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.8.(3分)将三角尺ABC按如图位置摆放,顶点A落在直线l1上,顶点B落在直线l2上,若l1∥l2,∠1=25°,则∠2的度数是()A.45°B.35°C.30°D.25°【分析】由平行线的性质推出∠3=∠1=25°,即可求出∠2的度数.【解答】解:∵l1∥l2,∴∠3=∠1=25°,∴∠2=60°﹣25°=35°.故选:B.【点评】本题考查平行线的性质,关键是由平行线的性质推出∠3=∠1.9.(3分)如图,▱ABCD的对角线AC,BD交于点O,以下条件不能证明▱ABCD是菱形的是()A.∠BAC=∠BCA B.∠ABD=∠CBDC.OA2+OB2=AD2D.AD2+OA2=OD2【分析】由菱形的判定、矩形的判定分别对各个选项进行判断即可.【解答】解:A、∵∠BAC=∠BCA,∴AB=BC,∴▱ABCD是菱形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠CBD,∵∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴▱ABCD是菱形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴OB=OD,∵OA2+OB2=AD2,∴OA2+OD2=AD2,∴∠AOD=90°,∴AC⊥BD,∴▱ABCD是菱形,故选项C不符合题意,D、∵AD2+OA2=OD2,∴∠OAD=90°,∴OA⊥AD,∴不能证得▱ABCD是菱形,故选项D符合题意;故选:D.【点评】本题考查了菱形的判定、平行四边形的性质,熟练掌握菱形的判定方法是解题的关键.10.(3分)如图,小程的爸爸用一段10m长的铁丝网围成一个一边靠墙(墙长5.5m)的矩形鸭舍,其面积为15m2,在鸭舍侧面中间位置留一个1m宽的门(由其它材料成),则BC长为()A.5m或6m B.2.5m或3m C.5m D.3m【答案】C.11.(3分)如图,圆形拱门最下端AB在地面上,D为AB的中点,C为拱门最高点,线段CD经过拱门所在圆的圆心,若AB=1m,CD=2.5m,则拱门所在圆的半径为()A.1.25m B.1.3m C.1.4m D.1.45m【分析】如图,连接OA,先证明CD⊥AB,AD=BD=0.5,再进一步的利用勾股定理计算即可.【解答】解:如图,连接OA,∵D为AB的中点,C为拱门最高点,线段CD经过拱门所在圆的圆心,AB=1m,∴CD⊥AB,AD=BD=0.5,设拱门所在圆的半径为rm,∴OA=OC=r,而CD=2.5m,∴OD=2.5﹣r,∴r2=0.52+(2.5﹣r)2,解得:r=1.3,∴拱门所在圆的半径为1.3m;故选B.【点评】本题考查的是垂径定理的实际应用、勾股定理等内容,熟练掌握相关知识点是解题的关键.12.(3分)如图,平面直角坐标系中,原点O为正六边形ABCDEF的中心,EF∥x轴,点E在双曲线y=(k为常数,k>0)上,将正六边形ABCDEF向上平移个单位长度,点D恰好落在双曲线上,则k的值为()A.4B.3C.2D.3【解答】解:如图,作DG⊥EF交EF的延长线于点G,DG交反比例函数图象于点H,∵原点O为正六边形ABCDEF的中心,EF∥x轴,∴∠EDO===60°,∴EDG=30°,∴EG=ED,GD=设正六边形ABCDEF的边长为a,则E(,),H(a,),∵点EH都在反比例函数图象上,∴,解得a=4,∴H(4,),∴k=4.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征、正六边形的性质,熟练掌握反比例函数图象上点的坐标特征是关键.二、填空题(本题包括5道小题,每小题3分,共15分,将答案直接填在答题卡对应题的横线上)13.(3分)分解因式:3ax2﹣6axy+3ay2=.【分析】先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.【解答】解:3ax2﹣6axy+3ay2,=3a(x2﹣2xy+y2),=3a(x﹣y)2,故答案为:3a(x﹣y)2.14.(3分)如图,根据机器零件的设计图纸,用不等式表示零件长度L的合格尺寸(L的取值范围)【分析】从图上可以看出:合格尺寸最小应是40﹣0.01=39.99;最大应是40+0.01=40.01.【解答】解:根据题意,得.39.99≤L≤40.01.故答案为:39.99≤L≤40.01.【点评】本题考查了有理数的加减混合运算,理解40±0.01的意义是解题的关键.15.(3分)分式方程的解是.【解答】解:去分母得:3x=2x﹣4,解得:x=﹣4,经检验x=﹣4是分式方程的解.故答案为:x=﹣416.(3分)如图,为便于研究圆锥与扇形的关系,小方同学利用扇形纸片恰好围成一个底面半径为5cm,母线长为12cm的圆锥的侧面,那么这个扇形纸片的面积是cm2(结果用含π的式子表示).【分析】根据圆锥的侧面积=底面周长×母线长÷2计算即可.【解答】解:这个扇形纸片的面积是为×2π×5×12=60π(cm2).故答案为:60π.17.(3分)关于抛物线y=x2﹣2mx+m2+m﹣4(m是常数),下列结论正确的是(填写所有正确结论的序号).①当m=0时,抛物线的对称轴是y轴;②若此抛物线与x轴只有一个公共点,则m=﹣4;③若点A(m﹣2,y1),B(m+1,y2)在抛物线上,则y1<y2;④无论m为何值,抛物线的顶点到直线y=x的距离都等于2.【分析】依据题意,根据二次函数的图象与性质,逐个进行判断即可得解.【解答】解:当m=0时,抛物线为y=x2﹣4,∴抛物线的对称轴是y轴,故①正确.又若此抛物线与x轴只有一个公共点,∴Δ=4m2﹣4(m2+m﹣4)=﹣4m+16=0.∴m=4,故②错误.由题意,∵抛物线为y=x2﹣2mx+m2+m﹣4,∴对称轴是直线x=﹣=m.又抛物线开口向上,∴抛物线上的点离对称轴越近函数值越小.又∵A(m﹣2,y1),B(m+1,y2),∴m﹣(m﹣2)=2>m+1﹣m=1.∴y1>y2,故③错误.由题意,∵抛物线y=x2﹣2mx+m2+m﹣4的对称轴是直线x=m,∴顶点为(m,m﹣4).∴顶点在直线y=x﹣4上.又直线y=x与y=x﹣4平行,∴顶点到直线y=x的距离等于两条平行线间的距离.又直线y=x﹣4与y轴的夹角为45°,且y=x﹣4是y=x向下平移4个单位得到的,∴两平行线间的距离为4sin45°=4×=2.∴顶点到直线y=x的距离为2,故④正确.故答案为:①④.三、解答题(本题包括9道小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出解答各题的文字说明、证明过程或计算步骤18.(5分)计算:|﹣2|+2sin60°﹣(﹣π)0.【分析】首先计算零指数幂、特殊角的三角函数值和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【解答】解:|﹣2|+2sin60°﹣(﹣π)0=2﹣+2×﹣1=2﹣+﹣1=1.19.(6分)先化简,再求值:(2a+b)(2a﹣b)﹣(a+b)(4a﹣b),其中a=﹣,b=2.【分析】根据平方差公式、多项式乘多项式的运算法则去括号,再合并同类项得到最简结果,最后将a,b的值代入计算即可.【解答】解:原式=4a2﹣b2﹣(4a2﹣ab+4ab﹣b2)=4a2﹣b2﹣4a2+ab﹣4ab+b2=﹣3ab.当a=﹣,b=2时,原式==.【点评】本题考查整式的混合运算—化简求值,熟练掌握运算法则是解答本题的关键.20.(6分)在“综合与实践”活动课上,活动小组测量一棵杨树的高度.如图,从C点测得杨树底端B 点的仰角是30°,BC长6米,在距离C点4米处的D点测得杨树顶端A点的仰角为45°,求杨树AB 的高度(精确到0.1米,AB,BC,CD在同一平面内,点C,D在同一水平线上,参考数据:≈1.73).【分析】延长AB交DC于H,得到∠AHD=90°,解直角三角形即可得到结论.【解答】解:延长AB交DC于H,则∠AHD=90°,∵∠BCH=30°,BC=6米,∴BH=BC=3米,CH=BC=3米,∵∠ADC=45°,∴AH=DH=CD+CH=(4+3)米,∴AB=AH﹣BH=4+3﹣3=1+3≈6.2(米),答:杨树AB的高度约为6.2米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,正确地作出辅助线是解题的关键.21.(8分)为迎接2024年5月26日的科尔沁马拉松赛事,某中学七年级提前开展了一次“马拉松”历史知识测试.七年级600名学生全部参加本次测试,调查研究小组随机抽取50名学生的测试成绩(百分制)作为一个样本.【收集数据】调查研究小组收集到50名学生的测试成绩:6061629473738585877263647066746567757671949384917682838392848080829291867786887270719390819074788175【整理描述数据】通过整理数据,得到以下尚不完整的频数分布表、频数分布直方图和扇形统计图:组别成绩分组频数A60≤x<70aB70≤x<8016C80≤x<9016D90≤x≤100b(1)频数分布表中a=8,b=10,并补全频数分布直方图;(2)扇形统计图中m=20,D所对应的扇形的圆心角度数是72°.【应用数据】(3)若成绩不低于90分为优秀,请你估计参加这次知识测试的七年级学生中,成绩为优秀的人数.【分析】(1)根据所给的数据即可得a和b的值,即可补全频数分布直方图;(2)利用D组的人数除以总人数即可得m的值,用360°乘以D组的人数所占的百分比即可求出D 所对应的扇形的圆心角度数;(3)用总人数乘以样本中成绩不低于90分是人数所占的百分比即可.【解答】解:(1)频数分布表中a=8,b=10,补全频数分布直方图如下:故答案为:8,10;(2)∵m%=×100%=20%,∴m=20,D所对应的扇形的圆心角度数是360°×20%=72°;故答案为:20,72°;(3)600×20%=120(人),答:估计参加这次知识测试的七年级学生中,成绩为优秀的人数为120人.【点评】本题考查频数(率)分布直方图,频数(率)分布表,扇形统计图和用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.(8分)如图,△ABC中.∠ACB=90°,点O为AC边上一点,以点O为圆心,OC为半径作圆与AB相切于点D,连接CD.(1)求证:∠ABC=2∠ACD;(2)若AC=8,BC=6,求⊙O的半径.【分析】(1)连接OD,如图,先根据切线的性质得到∠ODA=∠ODB=90°,再根据四边形的内角和与等角的补角相等得到∠ABC=∠AOD,接着根据圆周角定理得到∠AOD=2∠ACD,从而得到结论;(2)设⊙O的半径为r,则OD=OC=r,OA=8﹣r,先利用勾股定理计算出AB=10,再证明△AOD∽△ABC,则利用相似比得到=,然后解方程即可.【解答】(1)证明:连接OD,如图,∵AB为⊙O的切线,∴OD⊥AB,∴∠ODA=∠ODB=90°,∵∠ACB=90°,∴∠ABC+∠COD=180°,∵∠AOD+∠COD=180°,∴∠ABC=∠AOD,∵∠AOD=2∠ACD,∴∠ABC=2∠ACD;(2)解:设⊙O的半径为r,则OD=OC=r,OA=8﹣r,在Rt△ACB中,∵∠ACB=90°,AC=8,BC=6,∴AB==10,∵∠OAD=∠BAC,∠ADO=∠ACB,∴△AOD∽△ABC,∴=,即=,解得r=3,即⊙O的半径为3.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和相似三角形的判定与性质.23.(10分)某中学为加强新时代中学生劳动教育,开辟了劳动教育实践基地.在基地建设过程中,需要采购煎蛋器和三明治机.经过调查,购买2台煎蛋器和1台三明治机需240元,购买1台煎蛋器和3台三明治机需395元.(1)求煎蛋器和三明治机每台价格各是多少元;(2)学校准备采购这两种机器共50台,其中要求三明治机的台数不少于煎蛋器台数的一半.请你给出最节省费用的购买方案.【分析】(1)设每台煎蛋器的价格是x元,每台三明治机的价格是y元,根据“购买2台煎蛋器和1台三明治机需240元,购买1台煎蛋器和3台三明治机需395元”,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m台煎蛋器,则购买(50﹣m)台三明治机,根据购买三明治机的台数不少于煎蛋器台数的一半,可列出关于m的一元一次不等式,解之可得出m的取值范围,设学校采购这两种机器所需总费用为w元,利用总价=单价×数量,可找出w关于m的函数关系式,再利用一次函数的性质,即可找出最节省费用的购买方案.【解答】解:(1)设每台煎蛋器的价格是x元,每台三明治机的价格是y元,根据题意得:,解得:.答:每台煎蛋器的价格是65元,每台三明治机的价格是110元;(2)设购买m台煎蛋器,则购买(50﹣m)台三明治机,根据题意得:50﹣m≥m,解得:m≤.设学校采购这两种机器所需总费用为w元,则w=65m+110(50﹣m),即w=﹣45m+5500,∵﹣45<0,∴w随m的增大而减小,又∵m为正整数,∴当m=33时,w取得最小值,此时50﹣m=50﹣33=17,∴最节省费用的购买方案为:购买33台煎蛋器,17台三明治机.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的函数关系式.24.(8分)【实际情境】手工课堂上,老师给每个制作小组发放一把花折伞和制作花折伞的材料及工具.同学们认真观察后,组装了花折伞的骨架,粘贴了彩色伞面,制作出精美的花折伞.【模型建立】(1)如图1,从花折伞中抽象出“牵形图”,AM=AN,DM=DN.求证∠AMD=∠AND.【模型应用】(2)如图2、△AMC中,∠MAC的平分线AD交MC于点D.请你从以下两个条件:①∠AMD=2∠C;②AC=AM+MD中选择一个作为已知条件,另一个作为结论,并写出结论成立的证明过程.(注:只需选择一种情况作答)【拓展提升】(3)如图3,AC为⊙O的直径,=,∠BAC的平分线AD交BC于点E,交⊙O于点D,连接CD.求证AE=2CD.【分析】(1)利用SSS证明△ADM≌△ADN,即可;(2)选择②为条件,①为结论:在AC取点N,使AN=AM,连接DN,证明△ADM≌△ADN,可得DM=DN,∠AMD=∠AND,再由AC=AM+MD,可得DN=CN,从而得到∠C=∠CDN,即可;选择①为条件,②为结论:在AC取点N,使AN=AM,连接DN,证明△ADM≌△ADN,可得DM=DN,∠AMD=∠AND,再由∠AMD=2∠C,可得∠C=∠CDN,从而得到DN=CN,即可;(3)连接BD,取AE的中点F,连接BF,根据圆周角定理可得BD=CD,从而得到∠BCD=∠CBD,再由AC为⊙O的直径,可得AE=2BF=2AF,从而得到∠ABF=∠BAF,然后根据,可得AB =BC,可证明△ABF≌△CBD,从而得到BF=BD=CD,即可.【解答】解:(1)在△ADM和△ADN中,,∴△ADM≌△ADN(SSS),∴∠AMD=∠AND;(2)解:(Ⅰ)选择②为条件,①为结论,如图,在AC取点N,使AN=AM,连接DN,∵AD平分∠MAC,∴∠DAM=∠DAN,在△ADM和△ADN中,∵AM=AN,∠DAM=∠DAN,AD=AD,∴△ADM≌△ADN(SAS),∴DM=DN,∠AMD=∠AND,∵AC=AM+MD,AC=AN+NC,∴DM=CN,∴DN=CN,∴∠C=∠CDN,∴∠AMD=∠AND=∠CDN+∠C=2∠C;(Ⅱ)选择①为条件,②为结论,如图,在AC取点N,使AN=AM,连接DN,∵AD平分∠MAC,∴∠DAM=∠DAN,在△ADM和△ADN中,∵AM=AN,∠DAM=∠DAN,AD=AD,∴△ADM≌△ADN(SAS),∴DM=DN,∠AMD=∠AND,∵∠AMD=2∠C,∴∠AND=2∠C=∠CDN+∠C,∴∠CDN=∠C,∴DN=CN,∴DM=CN,∵AC=AN+NC,∴AC=AM+MD;(3)如图,连接BD,取AE的中点F,连接BF,∵∠BAC的平分线AD,∴,∴BD=CD,∴∠BCD=∠CBD,∵AC为⊙O的直径,∴∠ABC=90°,∴AE=2BF=2AF,∴∠ABF=∠BAF,∵∠BAF=∠BCD,∴∠ABF=∠CBD,∵,∴AB=BC,∴△ABF≌△CBD(ASA),∴BF=BD=CD,∴AE=2CD.【点评】本题主要考查了全等三角形的判定和性质、圆周角定理、等腰三角形的判定和性质、直角三角形的性质、三角形外角的性质等内容,熟练掌握相关知识是解题关键.25.(8分)如图,在平面直角坐标系中,直线与x轴,y轴分别交于点C,D,抛物线(k为常数)经过点D且交x轴于A,B两点.(1)求抛物线表示的函数解析式;(2)若点P为抛物线的顶点,连接AD,DP,CP.求四边形ACPD的面积.【分析】(1)求出D(0,3),可得3=﹣×(0﹣2)2+k,k=4,即可得抛物线表示的函数解析式为y=﹣x2+x+3;(2)连接OP,求出C(2,0),OC=2,A(﹣2,0),OA=2,抛物线顶点P坐标为(2,4),可得S=S△AOD+S△POD+S△POC=10.四边形ACPD【解答】解:(1)在y=﹣x+3中,令x=0得y=3,∴D(0,3),∵抛物线经过点D(0,3),∴3=﹣×(0﹣2)2+k,解得k=4,∴y=﹣(x﹣2)2+4=﹣x2+x+3;∴抛物线表示的函数解析式为y=﹣x2+x+3;(2)连接OP,如图;在y=﹣x+3中,令y=0得x=2,∴C(2,0),OC=2,在y=﹣x2+x+3中,令y=0得0=﹣x2+x+3,解得x=6或x=﹣2,∴A(﹣2,0),OA=2,由y=﹣(x﹣2)2+4可得抛物线顶点P坐标为(2,4),=S△AOD+S△POD+S△POC=×2×3+×3×2+×2×4=3+3+3=10;∴S四边形ACPD∴四边形ACPD的面积为10.【点评】本题考查二次函数综合应用,涉及待定系数法,函数图象上点坐标的特征,三角形面积等知识,解题的关键是用割补法求出四边形ACPD的面积.26.(10分)数学活动课上,某小组将一个含45°的三角尺AEF和一个正方形纸板ABCD如图1摆放,若AE=1,AB=2.将三角尺AEF绕点A逆时针方向旋转α(0°≤α≤90°)角,观察图形的变化,完成探究活动.【初步探究】如图2,连接BE,DF并延长,延长线相交于点G,BG交AD于点M.问题1BE和DF的数量关系是BE=DF,位置关系是BE⊥DF.【深入探究】应用问题1的结论解决下面的问题.问题2如图3,连接BD,点O是BD的中点,连接OA,OG.求证OA=OD=OG.【尝试应用】问题3如图4,请直接写出当旋转角α从0°变化到60°时,点G经过路线的长度.【分析】(1)先证△AEB≌△AFD,得到BE=DF,再根据△AMB和△DMG内角和推导,证∠G=90°即可;(2)利用直角三角形斜边上的中线等于斜边的一半即可得证;(3)由(2)知点OA=OD=OG,则点G的运动轨迹是以O为圆心,OA为半径的弧上,再根据α的变化求圆心角即可得解.【解答】(1)解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵△AEF是含有45°的直角三角尺,∴△AEF是等腰直角三角形,∴AE=AF,∠EAF=90°,∵∠BAD﹣∠DAE=∠EAF﹣∠DAE,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴BE=DF,∠ABE=∠ADF,∵∠AMB=∠DMG,∴∠G=∠BAM=90°,即BE⊥DF,故答案为:BE=DF,BE⊥DF.(2)∵△BAD是直角三角形,O是BD中点,∴OA=BD=OD,由(1)知∠G=90°,∴△BGD是直角三角形,∴OG=BD=OD,∴OA=OD=OG.(3)由(2)知,OA=OD=OG,∴点G的运动轨迹是以O为圆心,OA为半径的弧,连接OA,OG,∵旋转角α从0°变化到60°,∴此时点G的运动路线就是,∵∠BAE=60°,∴ABE=30°,∴∠OBG=45°﹣30°=15°,∵OB=OG=BD,∴∠DOG=30°,∴∠AOG=180°﹣∠AOB﹣∠DOG=60°,∵AB=2,∴BD=AB=2,∴OA=OG=,∴的长度==π.即点G经过路线的长度为π.。
2022年内蒙古呼和浩特市中考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.计算−3−2的结果是( )A. −1B. 1C. −5D. 52.据2022年5月26日央视新闻报道,今年我国农发行安排夏粮收购准备金1100亿元.数据“1100亿”用科学记数法表示为( )A. 1.1×1012B. 1.1×1011C. 11×1010D. 0.11×10123.不透明袋中装有除颜色外完全相同的a个白球、b个红球,则任意摸出一个球是红球的概率是( )A. ba+b B. baC. aa+bD. ab4.图中几何体的三视图是( )A.B.C.D.5.学校开展“书香校园,师生共读”活动,某学习小组五名同学一周的课外阅读时间(单位:ℎ),分别为:4,5,5,6,10.这组数据的平均数、方差是( )A. 6,4.4B. 5,6C. 6,4.2D. 6,56.下列运算正确的是( )A. √12×√8=±2 B. (m+n)2=m2+n2C. 1x−1−2x=−1xD. 3xy÷−2y23x=−9x22y7.如图.△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△EDC,使点B的对应点D恰好落在AB边上,AC、ED交于点F.若∠BCD=α,则∠EFC的度数是(用含α的代数式表示)( )A. 90°+12α B. 90°−12α C. 180°−32α D. 32α8.已知x1,x2是方程x2−x−2022=0的两个实数根,则代数式x13−2022x1+x22的值是( )A. 4045B. 4044C. 2022D. 19.如图,四边形ABCD是菱形,∠DAB=60°,点E是DA中点,F是对角线AC上一点,且∠DEF=45°,则AF:FC的值是( )A. 3B. √5+1C. 2√2+1D. 2+√310.以下命题:①面包店某种面包售价a元/个,因原材料涨价,面包价格上涨10%,会员优惠从打八五折调整为打九折,则会员购买一个面包比涨价前多花了0.14a元;②等边三角形ABC中,D是BC边上一点,E是AC边上一点,若AD=AE,则∠BAD=3∠EDC;③两边及第三边上的中线对应相等的两个三角形全等;④一列自然数0,1,2,3,…,55,依次将该列数中的每一个数平方后除以100,得到一列新数,则原数与对应新数的差,随着原数的增大而增大.其中真命题的个数有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18分)11.因式分解:x3−9x=______.(k>0)的图象上,若0<y1<y2,则a的12.点(2a−1,y1)、(a,y2)在反比例函数y=kx取值范围是______.13.如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为______(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为______.14.某超市糯米的价格为5元/千克,端午节推出促销活动:一次购买的数量不超过2千克时,按原价售出,超过2千克时,超过的部分打8折.若某人付款14元,则他购买了______千克糯米;设某人的付款金额为x 元,购买量为y 千克,则购买量y 关于付款金额x(x >10)的函数解析式为______.15. 已知AB 为⊙O 的直径且AB =2,点C 是⊙O 上一点(不与A 、B 重合),点D 在半径OB上,且AD =AC ,AE 与过点C 的⊙O 的切线垂直,垂足为E.若∠EAC =36°,则CD =______,OD =______.16. 在平面直角坐标系中,点C 和点D 的坐标分别为(−1,−1)和(4,−1),抛物线y =mx 2−2mx +2(m ≠0)与线段CD 只有一个公共点,则m 的取值范围是______.三、解答题(本大题共8小题,共72分) 17. 计算求解18. (1)计算2sin45°−|2−√2|+(−13)−1; 19. (2)解方程组:{4x +y =5x−12+y 3=2.20. “一去紫台连朔漠,独留青冢向黄昏”,美丽的昭君博物院作为著名景区现已成为外地游客到呼和浩特市旅游的打卡地.如图,为测量景区中一座雕像AB 的高度,某数学兴趣小组在D 处用测角仪测得雕像顶部A 的仰角为30°,测得底部B 的俯角为10°.已知测角仪CD 与水平地面垂直且高度为1米,求雕像AB 的高.(用非特殊角的三角函数及根式表示即可)21. 某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下: 22. 17 18 16 13 24 15 27 26 18 19 23. 22 17 16 19 32 30 16 15 16 28 24. 15 32 23 17 14 15 27 27 16 1925. 对这30个数据按组距3进行分组,并整理和分析如下26.频数分布表组别一二三四五六七销售额/万元13≤x<1616≤x<1919≤x<2222≤x<2525≤x<2828≤x<3131≤x<34频数61033a b2数据分析表平均数众数中位数20.3c d请根据以上信息解答下列问题:(1)上表中a=______,b=______,c=______,d=______;(2)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由;(3)若从第六组和第七组内随机选取两名营业员在表彰会上作为代表发言,请你直接写出这两名营业员在同一组内的概率.27.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交线段CA的延长线于点E,连接BE.28.(1)求证:BD=CD;29.(2)若tanC=12,BD=4,求AE.30.如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A、B两点,且A点的横坐标为1,过点B作BE//x轴,AD⊥BE于点D,点C(72,−12)是直线BE上一点,且AC=√2CD.31.(1)求一次函数与反比例函数的解析式;32.(2)根据图象,请直接写出不等式kx+b−mx<0的解集.33.今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.34.(1)问去年每吨土豆的平均价格是多少元?35.(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元,由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?豆数量的2336.下面图片是八年级教科书中的一道题.37.如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证AE=EF.(提示:取AB的中点G,连接EG.)38.39.(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件:______;40.(2)如图1,若点E是BC边上任意一点(不与B、C重合),其他条件不变.求证:AE=EF;41.(3)在(2)的条件下,连接AC,过点E作EP⊥AC,垂足为P.=k,当k为何值时,四边形ECFP是平行四边形,并给予证明.42.设BEBC43.x2+bx+c经过点B(4,0)和点C(0,2),与x轴的另一个交点为A,44.如图,抛物线y=−12连接AC、BC.45.(1)求抛物线的解析式及点A的坐标;46.(2)如图1,若点D是线段AC的中点,连接BD,在y轴上是否存在点E,使得△BDE是以BD为斜边的直角三角形?若存在,请求出点E的坐标;若不存在,请说明理由.47.(3)如图2,点P是第一象限内抛物线上的动点,过点P作PQ//y轴,分别交BC、x轴于点M、N,当△PMC中有某个角的度数等于∠OBC度数的2倍时,请求出满足条件的点P的横坐标.48.答案和解析1.【答案】C【解析】解:−3−2=−5.故选:C.运用有理数的减法运算法则计算.本题考查有理数的运算,熟练掌握运算法则是解题的关键.2.【答案】B【解析】解:1100亿=110000000000=1.1×1011.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n 比原来的整数位数少1,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【答案】A【解析】解:不透明袋中装有除颜色外完全相同的a个白球、b个红球,则任意摸出一个球是红球的概率是b.a+b故选:A.根据概率的计算公式直接计算即可.一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=m.n本题考查了用列举法求概率,解题的关键是熟练掌握概率公式,必然事件的概率为1,不可能事件的概率为0,如果A为随机事件,那么0<P(A)<1.4.【答案】C【解析】解:根据题意可得,图中几何体的三视图如图,.故选:C .应用简单几何体的三视图判断方法进行判定即可得出答案.本题主要考查了简单几何体的三视图,熟练掌握简单几何体的三视图的判定方法进行求解是解决本题的关键.5.【答案】A【解析】解:∵x −=15×(4+5+5+6+10)=6,∴S 2=15×[(4−6)2+2×(5−6)2+(6−6)2+(10−6)2]=4.4, 故选:A .先计算出这组数据的平均数,再根据方差的计算公式计算可得.本题主要考查平均数、方差,解题的关键是掌握平均数、方差的计算公式.6.【答案】D【解析】解:A 、√12×√8=2,故A 不符合题意;B 、(m +n)2=m 2+2mn +n 2,故B 不符合题意;C 、1x−1−2x=2−xx 2−x,故C 不符合题意;D 、3xy ÷−2y 23x=−9x 22y,故D 符合题意;故选:D .利用二次根式的乘法的法则,完全平方公式,分式的减法的法则,分式的除法的法则对各项进行运算即可.本题主要考查二次根式的乘法,完全平方公式,分式的混合运算,解答的关键是对相应的运算法则的掌握.7.【答案】C【解析】解:由旋转的性质可知,BC =CD ,∠B =∠EDC ,∠A =∠E ,∠ACE =∠BCD , ∵∠BCD =α,∴∠B=∠BDC=180°−α2=90°−α2,∠ACE=α,∵∠ACB=90°,∴∠A=90°−∠B=α2.∴∠E=α2.∴∠EFC=180°−∠ECF−∠E=180°−32α.故选:C.由旋转的性质可知,BC=CD,∠B=∠EDC,∠A=∠E,∠ACE=∠BCD,因为∠BCD=α,所以∠B=∠BDC=180°−α2=90°−α2,∠ACE=α,由三角形内角和可得,∠A=90°−∠B=α2.所以∠E=α2.再由三角形内角和定理可知,∠EFC=180°−∠ECF−∠E=180°−32α.本题主要考查旋转的性质,三角形内角和等相关内容,由旋转的性质得出∠E和∠ECF的角度是解题关键.8.【答案】A【解析】解:把x=x1代入方程得:x12−x1−2022=0,即x12−2022=x1,∵x1,x2是方程x2−x−2022=0的两个实数根,∴x1+x2=1,x1x2=−2022,则原式=x1(x12−2022)+x22=x12+x22=(x1+x2)2−2x1x2=1+4044=4045.故选:A.把x=x1代入方程表示出x12−2022=x1,代入原式利用完全平方公式化简,再根据根与系数的关系求出所求即可.此题考查了根与系数的关系,熟练掌握一元二次方程根与系数的关系是解本题的关键.9.【答案】D【解析】解:连接DB,交AC于点O,连接OE,∵四边形ABCD是菱形,∴∠DAC=12∠DAB=30°,AC⊥BD,OD=12BD,AC=2AO,AB=AD,∵∠DAB=60°,∴△ABD是等边三角形,∴DB=AD,∵∠AOD=90°,点E是DA中点,∴OE=AE=DE=12AD,∴设OE=AE=DE=a,∴AD=BD=2a,∴OD=12BD=a,在Rt△AOD中,AO=√AD2−DO2=√(2a)2−a2=√3a,∴AC=2AO=2√3a,∵EA=EO,∴∠EAO=∠EOA=30°,∴∠DEO=∠EAO+∠EOA=60°,∵∠DEF=45°,∴∠OEF=∠DEO−∠DEF=15°,∴∠EFO=∠EOA−∠OEF=15°,∴∠OEF=∠EFO=15°,∴OE=OF=a,∴AF=AO+OF=√3a+a,∴CF=AC−AF=√3a−a,∴AFCF =√3a+a√3a−a=√3+1√3−1=2+√3,故选:D.∠DAB=30°,AC⊥BD,连接DB,交AC于点O,连接OE,根据菱形的性质可得∠DAC=12BD,AC=2AO,AB=AD,从而可得△ABD是等边三角形,进而可得DB=AD,OD=12AD,然后设OE=AE=DE=再根据直角三角形斜边上的中线可得OE=AE=DE=12a,则AD=BD=2a,在Rt△AOD中,利用勾股定理求出AO的长,从而求出AC的长,最后利用等腰三角形的性质,以及三角形的外角求出∠OEF=∠EFO=15°,从而可得OE=OF=a,即可求出AF,CF的长,进行计算即可解答.本题考查了菱形的性质,等边三角形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.10.【答案】B【解析】解:(1)根据题意得:0.9×1.1a−0.85a=0.14a,故①是正确的;(2)如图:设∠EDC=x;则∠AED=x+60°,∵AD=AE∴∠ADE=∠AED,∴∠DAC=180°−2∠AED=180°−2x−120°=60−2x.∴∠BAD=60°−∠DAC=2x=2∠EDC.故②是错误的.(3)如图:D为BC的中点,两边为AB,AC;把AD中线延长加倍,得△ACD≌△EBD,所以AC =BE ,所以△ABE 与对应三角形全等,得∠BAE 与对应角相等,再根据两边及夹角相等,两个三角形全等, 故③是正确的.(4)设该列自然数为a ,则新数为a 2100,则a −a 2100=−a 2+100a100=−(a−50)2+2500100,∵0≤a ≤55,∴原数与对应新数的差是先变大,再变小. 故④是错误的. 故选:B . (1)列代数式求解;(2)利用三角形内角和及外交关系定理求解; (3)利用三角形全等进行判断; (4)利用作差比较代数式的大小.主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定理及正确计算.11.【答案】x(x +3)(x −3)【解析】解:x 3−9x=x(x 2−9)=x(x +3)(x −3). 故答案为x(x +3)(x −3).先提取公因式x ,再利用平方差公式进行分解.本题主要考查提公因式法分解因式和利用平方差公式分解因式,本题要进行二次分解,注意分解因式要彻底.12.【答案】a >1【解析】解:∵k >0,∴反比例函数y =kx (k >0)的图象在一、三象限,在每个象限,y 随x 的增大而减小, ∵0<y 1<y 2,∴点(2a −1,y 1)、(a,y 2)都在第一象限, ∴2a −1>a , 解得:a >1,故答案为:a>1.先确定反比例函数y=kx(k>0)的图象在一、三象限,由0<y1<y2可知点(2a−1,y1)、(a,y2)都在第一象限,根据反比例函数的性质即可得到2a−1>a,求解即可.此题主要考查了反比例函数图象上点的坐标特征,熟知反比例函数的性质是解题的关键.13.【答案】3πa2103a 5【解析】解:∵五边形ABCDE是正五边形,∴∠BCD=(5−2)×180°5=108°,∴S扇形=108π×a2360=3πa210;又∵弧BD的长为108πa180=3πa5,即圆锥底面周长为3πa5,∴圆锥底面直径为3a5,故答案为:3πa210;3a5.先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.本题考查正多边形与圆,扇形面积,弧长及圆周长,掌握扇形面积、弧长、圆周长的计算方法是正确解决问题的关键.14.【答案】34x+2【解析】解:当x>2时,y=5×2+5×0.8(x−2)=4x+2;∵14>10,∴x>2,∴4x+2=14,即:x=3.故答案为:3;y=4x+2.根据糯米的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打8折,分别即可得出解析式;再把y=14代入即可.本题考查一次函数的应用,解答本题的关键是明确题意,写出相应的函数解析式.15.【答案】1−1+√52【解析】解:如图:连接OC,设OD=x,∵直径AB=2,∴OA=OC=1,∴AD=AC=1+x,∵EC与⊙O相切于点C,∴OC⊥EC,∵AE⊥EC,∴∠AEC=90°,∴AE//OC,∴∠EAC=∠ACO=36°,∵OA=OC,∴∠ACO=∠OAC=36°,∵AC=AD,∴∠ADC=∠ACD=72°,∴∠OCD=∠ACD−∠ACO=36°,∵∠COD=2∠CAD=72°,∴∠COD=∠ADC=72°,∴OC=DC=1,∴∠OCD=∠CAD,∠ADC=∠ODC,∴△DOC∽△DCA,∴DODC =DCDA,∴x1=11+x,解得:x=−1±√52,经检验:x=−1±√52是原方程的根,∵x>0,∴OD=−1+√5,2.故答案为:1,−1+√52连接OC,设OD=x,则AC=AD=1+x,利用切线的性质可得OC⊥EC,从而可得AE/ /OC,然后利用平行线和等腰三角形的性质可得∠EAC=∠ACO=∠OAC=36°,从而可得∠ADC=∠ACD=72°,进而可得∠OCD=36°,∠COD=∠ADC=72°,即可得出OC= DC=1,最后证明△DOC∽△DCA,从而利用相似三角形的性质进行计算即可解答.本题考查了切线的性质,圆周角定理,相似三角形的判定与性质,熟练掌握切线的性质,以及相似三角形的判定与性质是解题的关键.16.【答案】m=3或−1<m<−38=1,【解析】解:抛物线的对称轴为:x=−−2m2m当x=0时,y=2,∴抛物线与y轴的交点坐标为(0,2),顶点坐标为(1,2−m),直线CD的表达式y=−1,当m>0时,且抛物线过点D(4,−1)时,16m−8m+2=−1,(不符合题意,舍去),解得:m=−38当抛物线经过点(−1,−1)时,m+2m+2=−1,解得:m=−1(不符合题意,舍去),当m>0且抛物线的顶点在线段CD上时,2−m=−1,解得:m=3,当m<0时,且抛物线过点D(4,−1)时,16m−8m+2=−1,,解得:m=−38当抛物线经过点(−1,−1)时,m+2m+2=−1,解得:m=−1,,综上,m的取值范围为m=3或−1<m<−38故答案为:m =3或−1<m <−38.根据抛物线求出对称轴x =1,y 轴的交点坐标为(0,2),顶点坐标为(1,2−m),直线CD 的表达式y =−1,分两种情况讨论:m >0时或m <0时,利用抛物线的性质分析求解. 本题考查了二次函数的性质,理解对称轴的含义,熟练掌握二次函数的性质,巧妙运用分类讨论思想解决问题是解题的关键.17.【答案】解:(1)原式=2×√22−2+√2−3 =√2−2+√2−3 =2√2−5; (2)方程组整理得{4x +y =5①3x +2y =15②,②−①×2得:−5x =5, 解得:x =−1,把x =−1代入①得:−4+y =5, 解得:y =9,则方程组的解为{x =−1y =9.【解析】(1)原式利用负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可求出值;(2)方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,以及实数的运算,熟练掌握运算法则是解本题的关键.18.【答案】解:过点C 作CE ⊥AB ,垂足为E ,则CD =BE =1米,在Rt △CBE 中,∠BCE =10°, ∴CE =BEtan10∘=1tan10∘(米),在Rt△ACE中,∠ACE=30°,∴AE=CE⋅tan30°=1tan10∘⋅√33=√33tan10°(米),∴AB=AE+BE=(1+√33tan10°)米,∴雕像AB的高为(1+√33tan10°)米.【解析】过点C作CE⊥AB,垂足为E,则CD=BE=1米,然后在Rt△CBE中,利用锐角三角函数的定义求出CE的长,再在Rt△ACE中,利用锐角三角函数的定义求出AE的长,进行计算即可解答.本题考查了解直角三角形的应用−仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.19.【答案】421618【解析】解:(1)a=4,b=2;c=16,d=18;故答案为4,2,16,18;(2)月销售额定为18万元合适.理由如下:想让一半左右的营业员都能达到销售目标,月销售额定为中位数,因为低于中位数和高于中位数的人数相同,所以月销售额定为18万元合适;(3)画树状图为:共有12种等可能的结果,其中这两名营业员在同一组内的结果数为4,所以这两名营业员在同一组内的概率=412=13.(1)利用唱票的形式可得到a、b的值,然后根据众数和中位数的定义确定数据的众数与中位数;(2)根据中位数的意义确定月销售额定;(3)画树状图展示所有12种等可能的结果,找出这两名营业员在同一组内的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.也考查了统计图、众数和中位数.20.【答案】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴BD=DC;(2)解:∵BD=DC=4,∴BC=DB+DC=8,在Rt△ADC中,tanC=12,∴AD=CD⋅tanC=4×12=2,∴AC=√AD2+CD2=√22+42=2√5,∵AB是⊙O的直径,∴∠AEB=90°,∵∠AEB=∠ADC=90°,∠C=∠C,∴△CDA∽△CEB,∴CECD =CBCA,∴CE4=2√5,∴CE=165√5,∴AE=CE−AC=65√5,∴AE的长为65√5.【解析】(1)连接AD,利用直径所对的圆周角是直角可得∠ADB=90°,然后利用等腰三角形的三线合一性质即可解答;(2)利用(1)的结论可得BD =DC =4,BC =8,然后在Rt △ADC 中,利用锐角三角函数的定义求出AD 的长,从而利用勾股定理求出AC 的长,最后证明△CDA∽△CEB ,利用相似三角形的性质求出CE 的长,进行计算即可解答.本题考查了圆周角定理,相似三角形的判定与性质,解直角三角形,等腰三角形的性质,熟练掌握圆周角定理,以及解直角三角形是解题的关键.21.【答案】解:(1)∵AD ⊥BE 于点D ,AC =√2CD .∴cos∠ACD =CDAC =√22, ∴∠ACD =45°,∴△ADC 是等腰直角三角形, ∴AD =CD ,∵A 点的横坐标为1,点C(72,−12), ∴CD =72−1=52,∴A(1,52−12),即A(1,2), ∵反比例函数y 2=mx 的图象过A 、B 两点, ∴m =1×2=2,∴反比例函数的表达式为y 2=2x , ∵BE//x 轴,∴B 点的纵坐标为−12, ∴B(−4,−12),把A 、B 的坐标代入y 1=kx +b 得{k +b =2−4k +b =−12,解得{k =12b =32,∴一次函数的表达式为y 1=12x +32;(2)从图象可以看出,不等式kx +b −m x<0的解集是x <−4或0<x <1.【解析】(1)根据题意求得A 点的坐标,用待定系数法即可求得反比例函数的解析式,进而求得B 的坐标,代入y 1=kx +b ,即可解得一次函数的解析式;(2)观察函数图象即可求解.本题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,解直角三角形,等腰直角三角形的性质,反比例函数图象上点的坐标特征,利用形数结合是解题的关键.22.【答案】解:(1)设去年每吨土豆的平均价格是x 元,则今年第一次采购每吨土豆的平均价格为(x +200)元,第二次采购每吨土豆的平均价格为(x −200)元, 由题意得:300000x+200×2=500000x−200,解得:x =2200,经检验,x =2200是原分式方程的解,且符合题意,答:去年每吨土豆的平均价格是2200元;(2)由(1)得:今年采购的土豆数为:3000002200+200×3=375(吨),设应将m 吨土豆加工成薯片,则应将(375−m)吨加工成淀粉,由题意得:{m ≥23(375−m)m 5+375−m 8≤60, 解得:150≤m ≤175,设总利润为y 元,则y =700m +400(375−m)=300m +150000,∵300>0,∴y 随m 的增大而增大,∴当m =175时,y 的值最大=300×175+150000=202500,答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202500元.【解析】(1)设去年每吨土豆的平均价格是x 元,则第一次采购每吨土豆的平均价格为(x +200)元,第二次采购每吨土豆的平均价格为(x −500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列出分式方程求解即可;(2)先求出今年采购的土豆数,根据采购的土豆需不超过60天加工完毕,加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,据此列出不等式组并求解,然后由一次函数的性质求出最大利润即可.本题考查分式方程的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准数量关系,正确列出分式方程;(2)找出数量关系,正确列出一元一次不等式组.23.【答案】AG=CE【解析】(1)解:∵点E为BC的中点,∴BE=CE,∵点G为AB的中点,∴BG=AG,∴AG=CE,故答案为:AG=CE;(2)证明:取AG=EC,连接EG,∵四边形ABCD是正方形,∴AB=BC,∠B=90°,∵AG=CE,∴BG=BE,∴△BGE是等腰直角三角形,∴∠BGE=∠BEG=45°,∴∠AGE=∠ECF=135°,∵AE⊥EF,∴∠AEB+∠FEC=90°,∵∠BAE+∠AEB=90°,∴∠FEC=∠BAE,∴△GAE≌△CEF(ASA),∴AE=EF;(3)解:k=1时,四边形PECF是平行四边形,如图,3由(2)知,△GAE≌△CEF ,∴CF =EG ,设BC =x ,则BE =kx ,∴GE =√2kx ,EC =(1−k)x ,∵EP ⊥AC ,∴△PEC 是等腰直角三角形,∴∠PEC =45°,∴∠PEC +∠ECF =180°,∴PE//CF ,∴PE =√22(1−k)x ,当PE =CF 时,四边形PECF 是平行四边形,∴√22(1−k)x =√2kx ,解得k =13.(1)根据点E 为BC 的中点,可得答案;(2)取AG =EC ,连接EG ,首先说明△BGE 是等腰直角三角形,再证明△GAE≌△CEF ,可得答案;(3)设BC =x ,则BE =kx ,则GE =√2kx ,EC =(1−k)x ,再利用等腰直角三角形的性质表示EP 的长,利用平行四边形的判定可得只要EP =FC ,即可解决问题.本题是四边形的综合题,主要考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,平行四边形的判定等知识,取AG =CE ,证明△GAE≌△CEF 是解题的关键.24.【答案】解:(1)将点B(4,0)和点C(0,2)代入抛物线y =−12x 2+bx +c 中, 则{−12×42+4b +c =0c =2, 解得:{b =32c =2,∴抛物线的解析式为y=−12x2+32x+2,在y=−12x2+32x+2中,令y=0得−12x2+32x+2=0,解得:x1=−1,x2=4,∴A(−1,0);(2)存在y轴上一点E,使得△BDE是以BD为斜边的直角三角形,理由如下:如图:∵点D是线段AC的中点,A(−1,0),C(0,2),∴D(−12,1),设E(0,t),又B(4,0),∵∠BED=90°,∴BE2+DE2=BD2,即[(4−0)2+(0−t)2]+[(−12−0)2+(1−t)2]=(4+12)2+(0−1)2,化简得:t2−t−2=0,解得:t1=−1,t2=2,∴E的坐标为(0,−1)或(0,2);(3)∵B(4,0)、C(0,2),∴设直线BC的解析式为y=kx+2(k≠0),把点B(4,0)代入解析式得,4k+2=0,解得:k=−12,∴直线BC的解析式为y=−12x+2,设点P(m,−12m2+32m+2),则M(m,−12m+2),①当∠PCM=2∠OBC时,过点C作CF⊥PM于点F,如图,∵CF⊥PM,PM//y轴,∴CF//OB,∴∠FCM=∠OBC,F(m,2),又∵∠PCM=2∠OBC,∴∠PCF=FCM=∠OBC,∴F是线段PM的中点,∴−12m2+32m+2+(−12m+2)2=2,整理得:m2−2m=0,解得:m=2或m=0,∵点P是第一象限内抛物线上的动点,∴m=2;②∠CMP=2∠OBC时,∵∠CMP=∠BMN,∴∠BMN=2∠OBC,即∠BMN=2∠NBM,∵PN⊥x轴,∴∠BMN+∠NBM=90°,即3∠NBM=90°,∴∠NBM=30°,∴OC=12BC,∵BC=√OC2+OB2=√4+16=2√5≠4,∴此种情况不存在;③当∠CPM=2∠OBC时,∵∠CMP=∠NMB=90°−∠OBC,∴∠PCM=180°−∠CPM−∠CMP=180°−2∠OBC−(90°−∠OBC)=90°−∠OBC,∴∠PCM=∠CMP,∴PC=PM,∴(m−0)2+(−12m2+32m+2−2)2=[(−12m2+32m+2)−(−12m+2)]2,整理得:m2+14m4−32m3+94m2=14m4−2m3+4m2,解得:m=32;综上所述,满足条件的点P的横坐标为2或32.【解析】(1)用待定系数法可得抛物线的解析式为y=−12x2+32x+2,令y=0得A(−1,0);(2)由A(−1,0),C(0,2),知线段AC的中点D(−12,1),设E(0,t),根据∠BED=90°,得[(4−0)2+(0−t)2]+[(−12−0)2+(1−t)2]=(4+12)2+(0−1)2,即可解得E的坐标为(0,−1)或(0,2);(3)分当∠PCM=2∠OBC时,∠CMP=2∠OBC时,当∠CPM=2∠OBC时三种情况,利用二次函数的性质和等腰三角形,勾股定理等性质进行计算即可.本题考查二次函数综合应用,涉及待定系数法、等腰三角形性质、直角三角形性质及应用,利用分类讨论的思想是解题的关键.。
2024呼和浩特数学中考模拟(一)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.中国是世界上最早认识和应用负数的国家,比西方早一千多年,在我国古代数学名著《九章算术》中,首次引入负数.若收入200元,记作+200元,则100-元表示()A .收入100元B .支出100元C .收入300元D .支出300元2.如图所示的几何体从正面看到的图形()A .B .C .D .3.下列计算中,错误的个数是().①326(3)6x x =;②5521010(5)25a b a b -=-;③3328()327x x -=-;④23467(3)81x y x y =;⑤235x x x ×=A .2个B .3个C .4个D .5个4.已知a 、b 、c 在数轴上的位置如图所示,则2||()a c b c a ++-)A .2b c -B .2b a -C .2a b --D .2c b-5.有甲、乙、丙三个不透明的布袋,里面都装有相同数量的玻璃球,这些玻璃球除了颜色不同外其他都相同.已知甲布袋中黑色玻璃球的数量占甲布袋中玻璃球总数的14,乙布袋中没有黑色玻璃球,丙布袋中黑色玻璃球的数量占丙布袋中玻璃球总数的712.现将乙、丙布袋中的玻璃球全部倒入甲布袋中,再从甲布袋中任意取出一个,则取出的这个玻璃球是黑色的概率为()A .56B .512C .518D .7486.把图中的风车图案绕着中心O 旋转,旋转后的图案与原来的图案重合,旋转角的度数至少为()A .60︒B .72︒C .90︒D .180︒7.用配方法解下列方程时,配方正确的是()A .22990x x --=化为()2198x -=B .2890x x ++=化为()2425=x +C .22740t t --=化为2781216t ⎛⎫-= ⎪⎝⎭D .23420y y --=化为221039y ⎛⎫-= ⎪⎝⎭8.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,45COD ∠=︒,点E 在边AD 上,22DE =,点F 在边BC 上,将四边形CDEF 沿EF 所在的直线翻折,点D 恰好落在点O 处,点C 落在点C '处.下列结论中,正确的有()①50OEA ∠=︒;②过点O 作OP AE ⊥于点P ,OPE 是等腰直角三角形;③AB 的长为42A .3个B .2个C .0个D .1个9.七年级某生物课外兴趣小组观察一棵植物的生长,得到植物高度y (cm )与观察时间x (天)的关系如图所示,则下列说法正确的是()A .自变量为植物高度y (cm )B .刚开始观察时该植物的高度为10cmC .观察第10天时,该植物的高度为40cmD .该植物从观察时起50天内平均每天长高4cm 10.在正方形ABCD 中,E 为BC 上一点,作DF ⊥AE 于点F 、BG ⊥AE 于点G 连接BF ,作GH ∥BF 交DF 于点H ,连接BH 、AH ,若AF =FG ,则①∠BAG =30°;②△ABG ≌△DAF ;③BH =AD ;④S △ABH =2+1)S △AFH .在上述结论中,正确的有()A .①②③B .②③④C .②③D .①②③④二、填空题(本大题共6小题,每小题3分,共18分)11.把多项式32333a m a -分解因式的结果是.12.小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,制作了测试成绩折线统计图.根据图中信息,小聪测试成绩的方差是.13.如图,正六边形ABCDEF 的边长为6,以顶点A 为圆心,AB 的长为半径画圆,则:(1)图中阴影部分的面积为;(2)直线DF 与圆A 的位置关系是.14.如图,AB 是⊙O 的切线,点B 为切点,作AC AB ⊥交AB 于点A ,AC 交⊙O 于C ,D 两点,若3AB =,9AC =,则⊙O 的半径长是.15.小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的.(1)被污染的条件是;(2)被污染的二元一次方程是;(3)y x -的值是.16.已知函数2142y x x =-++与y 轴交于点C ,顶点为D .直线CD 交x 轴于点E ,点F 在直线CD 上,且横坐标为4,现在,将抛物线沿其对称轴上下平移,使抛物线与线段EF 总有公共点.抛物线向上最多可以平移个单位长度,向下最多可以平移个单位长度.三、解答题(本大题共8小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(1()21116444--+--;(2)解不等式组413323x x x x +⎧≥⎪⎨⎪<+⎩,并把解集表示在数轴上.。
最新人教版中考数学仿真模拟试卷(附解析)一、选择题(每个小题4分,10个小题共40分)1.﹣2的相反数是()A.2 B.﹣2 C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.如图,直线a∥b,若∠1=40°,∠2=55°,则∠3等于()A.85°B.95°C.105°D.115°【考点】平行线的性质.【分析】根据平行线的性质得出∠4=∠3,然后根据三角形外角的性质即可求得∠3的度数.【解答】解:∵直线a∥b,∴∠4=∠3,∵∠1+∠2=∠4,∴∠3=∠1+∠2=95°.故选B.3.已知一元二次方程x2﹣2x﹣1=0的两根分别为m、n,则m+n的值为()A.﹣2 B.﹣1 C.1 D.2【考点】根与系数的关系.【分析】根据一元二次方程的系数结合根与系数的关系即可得出m+n的值,由此即可得出结论.【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m、n,∴m+n=﹣=2.故选D.4.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD 的长为()A.2 B.3 C.D.2【考点】菱形的性质.【分析】首先根据菱形的性质知AC垂直平分BD,再证出△ABC是正三角形,由三角函数求出BO,即可求出BD的长.【解答】解:∵四边形ABCD菱形,∴AC⊥BD,BD=2BO,∵∠ABC=60°,∴△ABC是正三角形,∴∠BAO=60°,∴BO=sin60°•AB=2×=,∴BD=2.故选:D.A.64元B.65元C.66元D.67元【考点】二元一次方程组的应用.【分析】设商品A的标价为x元,商品B的标价为y元,由题意得等量关系:①4个A的花费+3个B的花费=93元;②6个A的花费+6个B的花费=162元,根据等量关系列出方程组,再解即可.【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;所以3×12+2×15=66元,。
【中考数学】2023-2024学年内蒙古呼和浩特市质量检测仿真模拟试卷(一模)一、选一选(本题包括10道小题,每小题3分,共30分,每小题只要一个正确答案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.|﹣2|的倒数是()A.2B.C.﹣2D.﹣2.下列计算正确的是()A.x2+x3=x5B.2x3﹣x3=1C.x3•x4=x7D.(﹣2xy2)3=﹣6x3y63.为迎接中国建党一百周年,某班50名同窗进行了党史知识竞赛,测试成绩统计如下表,其中有两个数据被遮盖.成绩/分919293949596979899100人数■■1235681012下列关于成绩的统计量中,与被遮盖的数据有关的是()A.平均数,方差B.中位数,方差C.中位数,众数D.平均数,众数4.关于x的一元二次方程x2﹣(k﹣3)x﹣k+1=0的根的情况,下列说确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定5.如图,是由若干个相反的小立方体搭成的几何体的主视图和左视图,则搭成这个几何体的小立方体的个数不可能是()A.3B.4C.5D.66.随着互联网技术的发展,我国快递业务量逐年添加,据统计从2018年到2020年,我国快递业务量由507亿件添加到833.6亿件,设我国从2018年到2020年快递业务量的年平均增长率为x,则可列方程为()A.507(1+2x)=833.6B.507×2(1+x)=833.6C.507(1+x)2=833.6D.507+507(1+x)+507(1+x)2=833.67.如图,在Rt△ABC中,∠ACB=90°,根据尺规作图的痕迹,判断以下结论错误的是()A.∠BDE=∠BAC B.∠BAD=∠B C.DE=DC D.AE=AC8.定义:函数y=ax+b的特征数为[a,b],若函数y=﹣2x+m的图象向上平移3个单位长度后与反比例函数y=﹣的图象交于A,B两点,且点A,B关于原点对称,则函数y=﹣2x+m的特征数是()A.[2,3]B.[2,﹣3]C.[﹣2,3]D.[﹣2,﹣3]9.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于M,N两点,当B ′为线段MN的三等分点时,BE的长为()A.B.C.或D.或10.如图,在矩形ABCD中,AB=4,BC=3,动点P,Q同时从点A出发,点P沿A→B→C的路径运动,点Q沿A→D→C的路径运动,点P,Q的运动速度相反,当点P到达点C时,点Q也随之中止运动,连接PQ.设点P的运动路程为x,PQ2为y,则y关于x的函数图象大致是()A.B.C.D.二、填空题(本题包括7道小题,每小题3分,共21分。
鄂尔多斯市2024年初中学业水平第二次调研考试试卷数学注意事项:1.本试卷共8页,满分120分.考试时间为120分钟.2.答题前,考生务必先将自己的考生号、姓名、座位号等信息填写在试卷和答题卡的指定位置.请认真核对条形码上的相关信息后,将条形码粘贴在答题卡的指定位置上.3.答题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共有10小题,每小题3分,共30分每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑.1. 下列四个数,,)A. B. C. D. 2. 鄂尔多斯市2023年一般公共预算收入累计完成了910亿元,财政收入位列全内蒙古第一.数据910亿元用科学记数法表示为( )A. 元B. 元C. 元D. 元3. 下列计算正确的是( )A. B. C. D. 4. 将一块含有角的直角三角板和一把直尺按如图所示的方式摆放,若,则∠2的度数是( )A. B. C. D. 5. 中国古典四大名著:《西游记》《红楼梦》《水浒传》《三国演义》可谓家喻户晓若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两木恰好是《西游记》和《红楼22-3-212-⎛⎫- ⎪⎝⎭212-⎛⎫- ⎪⎝⎭3-22-109.110⨯110.9110⨯119.110⨯99110⨯2235a a a +=236a a a ⋅=()224224a b a b =()()43a a a -÷-=30︒120∠=︒45︒50︒55︒60︒梦》的概率是( )A. B. C. D. 6. 由几个大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则该几何体至少由几个小正方搭成( )A. 4B. 5C. 6D. 77. 如图,在中,,的平分线交于点D ,点P 是射线边上的动点,连接交于M ,若,,则的度数是( )A. B. C. 或 D. 或8. 著名数学家华罗庚说过:“数缺形时少直觉,形缺数时难入微.数形结合百般好,隔离分家万事非.”寥窖数语,把图形之妙趣说的淋漓尽致.如图是函数的图象,那么无论x 为何值,函数值y 永远为负的条件是( )A. ,B. ,C. ,D. ,9. 如图,内接于,已知的直径为10,弦的长为6,则的值为()13141618Rt ABC △90ACB ∠=︒BAC ∠BC AC BP AD 30BAC ∠=︒=20PBC ∠︒AMP ∠45︒55︒45︒135︒55︒95︒2y ax bx c =++0a >240b ac ->0a >240b ac -<0a <240b ac ->0a <240b ac -<ABC O O AB tan CA. B. C. D. 10. 如图,菱形边长为,,动点E 从点B 出发,以的速度沿射线方向运动,动点F 同时从B 出发,以的速度沿边向点C 运动,点F 到达点C 时点E 同时停止运动,若点F 运动的时间为t 秒,的面积为,则S 关于t 的函数图象是( )A. B.C. D.二、填空题:本大题共有6小题,每小题3分,共18分请将答案填在答题卡上对应的横线上.11.有意义,则x 的取值范围是____.12. 若,是一元二次方程的两个实数根,则的值为_______.13. 弹簧秤不挂重物时长,挂上重物后伸长的长度与所挂重物的质量成正比.如果挂上的物体后,弹簧伸长,则弹簧总长y (单位:)关于所挂物体质量x (单位:)的函数表达式为_______.14. 蜜蜂是世界上最伟大的建筑师,观察下面的“蜂窝图”,如图,按照这样的规律,第2024个图案中的“”的个数是_______.的34433545ABCD 4cm 30B ∠=︒1cm/s BC 2cm/s BA AD DC 、、BEF △2cm S 1x 2x 260x x --=1211+x x 20cm 1kg 1cm cm kg15. 如图,矩形的对角线与双曲线相交于点D ,已知,且,则______.16. 如图,将边长为2的正方形沿折叠,点A 恰好落在边上的点P 处,点B 落在点G 处,交于点H ,连接AP ,则下列结论:①;②;③平分;④当点P 是边中点时,,其中正确的有______.(请填写所有正确的序号)三、解答题:本大题共有7小题,共72分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17. (1)计算:(2)先化简,再求值:,其中.18. 某校为了了解初一学生长跑能力,从初一1200名学生中随机抽取部分学生进行1000米跑步测试,并将得分情况绘制成如下统计图(如图,部分信息未给出).OABC OB ()0k y x x=<50OABC S =矩形:3:2OD BD =k =ABCD EF CD PG BC AP EF ⊥AP EF =AP DPH ∠CD 4tan 3DPE ∠=202412cos301-+︒+-2344111x x x x ++⎛⎫+÷ ⎪--⎝⎭2x =-由图中给出的信息解答下列问题:(1)抽取学生总人数为______,并补全频数分布直方图;(2)如果该校全体初一学生都参加测试,请你根据抽样测试的结果估计该校初一学生获得9分及以上的人数;(3)根据测试结果,请对该学校初一学生“1000米跑步”情况作出评价,并向学校提出一条合理建议.19. 鄂尔多斯市东胜区烈士陵园始建于1953年,核心建筑为位于陵园正中央的革命烈士纪念塔,是内蒙古自治区爱国主义教育基地.为了测算革命烈士纪念塔的高度,如图,无人机在离地面30米的D 处,测得操控者A 的俯角为,测得点C 处的俯角为,又经过人工测量得到操控者A 和革命烈士纪念塔间的水平距离为24米,则革命烈士纪念塔的高度为多少米?(点A ,B ,C ,D 都在同一平面内,结果保留根号)20. “绿品出塞,北京有约”2023年京蒙消费推介会在北京举行,来自鄂尔多斯的百余种名优特农畜产品集中亮相,阿尔巴斯羊肉独具特色某肉联食品厂销售该产品的成本价格为30元/,若按46元/销售,一个月可以售出4000,销售价每涨1元,月销量就会减少100.(1)当销售单价定为55元时,计算月销售量和销售利润;的的BC 60︒45︒BC BC kg kg kg kg(2)写出月销售利润y 与销售价之间的函数解析式;(3)在(2)的情况下当销售单价定为多少元时会获得最大利润?并求出最大利润.21. 如图,为的直径,为弦,过圆上一点D 作的切线交的延长线于点E ,连接,,.(1)若,求长;(2)若D 是中点,求证.(请用两种证法解答)22. 如图,点G 是矩形内一点,,把绕点C 按顺时针方向旋转,得到(点B 对应点,点G 对应点)延长交于点E ,连接.(1)判断四边形的形状,并说明理由;(2)如图1,若,,,求;(3)如图2,若,,求证:.23. 如图,已知:抛物线与x 轴交于点和点,与y 轴交于点C .的的()46x x >AB O AC O OC CD DE =10OE =3tan 4ACD ∠=AD AC AC DE ABCD 90BGC ∠=︒Rt BGC △90︒B CG ''△B 'G 'BG B G ''AG CGEG '10B C '=6EG '=4CD =ABG S AB AG =112AB k k BC ⎛⎫=<≤ ⎪⎝⎭()21B E k EG ''=-22y ax x c =-+()30A -,()10B ,(1)求抛物线的解析式;(2)如图1,点P 是抛物线(不包括坐标轴)上一个动点,连接和,当时,求出点P 的坐标;(3)如图2在(2)的条件下,连接CP 与x 轴交于点M ,求证:.PA PC 4PAC OBC S S =△△45AMP OCB ∠-∠=︒。
2018年内蒙古省包头市初中毕业、升学考试数 学(满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018内蒙古包头,1,3分)计算34---的结果是( )A .-1B .-5C .1D .5【答案】B【解析】原式=-2-3=-5,故选择B . 【知识点】实数的运算2.(2018内蒙古包头,2,3分)如图1,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )【答案】C【解析】主视图是指从正面看到的图形,由已知条件可知,主视图有两列,每列小正方形数目分别是2、2,故选择C .【知识点】几何体的三视图3.(2018内蒙古包头,3,3分) 函数11-=x y 中,自变量x 的取值范围是( )A .x ≠1B .x >0C .x ≥1D .x >1【答案】D【解析】根据函数有意义,则分母不能为0,根号下的数必须非负得:x -1>0,所以x >1,故选择D .【知识点】函数自变量的取值范围4.(2018内蒙古包头,4,3分) 下列事件中,属于不可能事件的是( )A .某个数的绝对值大于0B .某个数的相反数等于它本身C .任意一个五边形的外角和等于540°D .长分别为3,4,6的三条线段能围成一个三角形【答案】C 【解析】根据定义可知:A 、B 都属于随机事件;C 属于不可能事件;D 属于确定必然事件.故选择C .【知识点】事件的分类及概念5.(2018内蒙古包头,5,3分)如果y a x 12+与12-b y x 是同类项,那么ba 的值是( ) A .21 B .23 C .1 D .3【答案】A【解析】根据同类项的特征可得⎩⎨⎧=-=+1121b a ,解得⎩⎨⎧==21b a,∴21=b a .故选择A . 【知识点】同类项的概念6.(2018内蒙古包头,6,3分)一组数据1,3,4,4,4,5,5,6的众数和方差分别是( )A .4,1B .4,2C .5,1D .5,2【答案】B【解析】因为4出现了3次,次数最多,故众数是4;又∵4865544431=+++++++=x , ∴282)46(2)45(2)45(2)44(2)44(2)44(2)43(2)41(2=-+-+-+-+-+-+-+-=S . 故选择B .【知识点】众数、方差7.(2018内蒙古包头,7,3分)如图2,在△ABC 中,AB =2,BC =4,∠ABC =30°,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是 ( )A .32π- B .62π- C .34π- D .64π-【答案】A【解析】作AM ⊥BC 于点M ,∵∠ABC =30°∴AM =21AB =1 3236022301421ππ-=⨯-⨯⨯=-∆=ABD S ABC S S 扇形阴影面积故选择A .【知识点】扇形面积的计算;三角形面积的计算;含有30°角的直角三角形的性质8.(2018内蒙古包头,8,3分)如图3,在△ABC 中,AB =AC , △ADE 的顶点D 、E分别在BC 、AC 上,且∠DAE =90°,AD =AE .若∠C +∠BAC =145°,则∠EDC 的度数为( )A .17.5°B .12.5°C .12°D .10°【答案】D【思路分析】由∠C +∠BAC =145°得知∠B =35°;由AB =AC 得知∠B =∠C =35°;由等腰直角三角形的性质可得∠AED =45°,又∵∠AED =∠EDC +∠C ,∴∠EDC =45°-35°=10°.【知识点】等腰三角形的性质;等腰直角三角形的性质;三角形内角和;三角形外角的性质9.(2018内蒙古包头,9,3分)已知关于x 的一元二次方程0222=-++m x x 有两个实数根,m 为正整数,且该方程的根都是整数,则符合条件的所有正整数m 的和为 ( )A .6B .5C .4D .3【答案】B【思路分析】根据方程有两个实数根,得出根的判别式的值大于或等于0列出关于m 的不等式,求出不等式的解集得到m 的取值范围;找出m 范围中的正整数解确定出m 的值,经检验即可得到满足题意的m 的值.【解题过程】根据题意得:△=4-4(m -2)≥0,解得m ≤3;由m 为正整数,得m =1或2或3, 利用求根公式表示出方程的解为m m x -±-=-±-=312)3(42, ∵方程的解为整数。
2024年赤峰市初中毕业、升学统一考试试卷数学温馨提示:1.本试卷卷面分值150分,共8页,考试时间120分钟.2.答题前,考生务必将姓名、座位号、考生号填写在答题卡的相应位置上,并仔细阅读答题卡上的“注意事项”.3.答题时,请将答案填涂在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为()A.95.210⨯ B.110.5210⨯ C.95210⨯ D.105.210⨯3.将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为()A.100︒B.105︒C.115︒D.120︒4.下列计算正确的是()A.235a a a+= B.222()a b a b+=+ C.632a a a÷= D.()236a a=5.在数据收集、整理、描述的过程中,下列说法错误..的是()A.为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50B.了解某校一个班级学生的身高情况,适合全面调查C.了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性D.甲、乙二人10次测试的平均分都是96分,且方差2 2.5S=甲,2 2.3S=乙,则发挥稳定的是甲6.解不等式组()322211x x x x -<⎧⎪⎨+≥-⎪⎩①②时,不等式①和不等式②的解集在数轴上表示正确的是()A.B.C.D.7.如图,是正n 边形纸片的一部分,其中l m ,是正n 边形两条边的一部分,若l m ,所在的直线相交形成的锐角为60︒,则n 的值是()A.5B.6C.8D.108.某市为了解初中学生的视力情况,随机抽取200名初中学生进行调查,整理样本数据如下表.根据抽样调查结果,估计该市16000名初中学生中,视力不低于4.8的人数是()视力 4.7以下 4.7 4.8 4.9 4.9以上人数3941334047A.120B.200C.6960D.96009.等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A.17或13B.13或21C.17D.1310.如图,AD 是O 的直径,AB 是O 的弦,半径OC AB ⊥,连接CD ,交OB 于点E ,42BOC ∠=︒,则OED ∠的度数是()A.61︒B.63︒C.65︒D.67︒11.用1块A 型钢板可制成3块C 型钢板和4块D 型钢板;用1块B 型钢板可制成5块C 型钢板和2块D 型钢板.现在需要58块C 型钢板、40块D 型钢板,问恰好用A 型钢板、B 型钢板各多少块?如果设用A 型钢板x 块,用B 型钢板y 块,则可列方程组为()A.32404558x y x y +=⎧⎨+=⎩ B.35404258x y x y +=⎧⎨+=⎩ C.35584240x y x y +=⎧⎨+=⎩ D.34585240x y x y +=⎧⎨+=⎩12.如图,ABC 中,1AB BC ==,72C ∠=︒.将ABC 绕点A 顺时针旋转得到AB C ''△,点B'与点B 是对应点,点C '与点C 是对应点.若点C '恰好落在BC 边上,下列结论:①点B 在旋转过程中经过的路径长是15π;②B B A C '∥;③BD C D '=;④AB B B AC BD'=.其中正确的结论是()A.①②③④B.①②③C.①③④D.②④13.如图,数轴上点A ,M ,B 分别表示数a a bb +,,,若AM BM >,则下列运算结果一定是正数的是()A.a b +B.a b -C.abD.a b-14.如图,正方形ABCD 的顶点A ,C 在抛物线24y x =-+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是()A.1m n +=B.1m n -=C.1mn = D.1mn=二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15.请写出一个比小的整数_____________16.因式分解:233am a -=______.17.综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为________米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos650.423︒≈,tan 65 2.145︒≈).18.编号为A ,B ,C ,D ,E 的五台收割机,若同时启动其中两台收割机,收割面积相同的田地所需时间如下表:收割机编号A ,B B ,C C ,D D ,E A ,E 所需时间(小时)2319202218则收割最快的一台收割机编号是________.三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.(1()0π12sin 602+++︒+-;(2)已知230a a --=,求代数式2(2)(1)(3)a a a -+-+的值.20.如图,在ABC 中,D 是AB 中点.(1)求作:AC 的垂直平分线l (要求:尺规作图,不写作法,保留作图痕迹);(2)若l 交AC 于点E ,连接DE 并延长至点F ,使2EF DE =,连接BE CF ,.补全图形,并证明四边形BCFE 是平行四边形.21.某校田径队为了调动队员体育训练的积极性,计划根据成绩情况对队员进行奖励.为确定一个适当的成绩目标,进行了体育成绩测试,统计了每个队员的成绩,数据如下:收集数据777876728475918578798278767991917674758575918077757587857677整理、描述数据成绩/分72747576777879808284858791人数/人11a433b111314分析数据样本数据的平均数、众数、中位数如下表:平均数众数中位数80c78解决问题(1)表格中的=a ______;b =______;c =______;(2)分析平均数、众数、中位数这三个数据,如果想让一半左右的队员都能达到成绩目标,你认为成绩目标应定为______分,如果想确定一个较高的成绩目标,这个成绩目标应定为______分;(3)学校要从91分的A ,B ,C ,D 四名队员中,随机抽取两名队员去市里参加系统培训.请利用画树状图法或列表法,求A ,B 两名队员恰好同时被选中的概率.22.一段高速公路需要修复,现有甲、乙两个工程队参与施工,已知乙队平均每天修复公路比甲队平均每天修复公路多3千米,且甲队单独修复60千米公路所需要的时间与乙队单独修复90千米公路所需要的时间相等.(1)求甲、乙两队平均每天修复公路分别是多少千米;(2)为了保证交通安全,两队不能同时施工,要求甲队的工作时间不少于乙队工作时间的2倍,那么15天的工期,两队最多能修复公路多少千米?23.在平面直角坐标系中,对于点()11,M x y ,给出如下定义:当点()22,N x y ,满足1212x x y y +=+时,称点N 是点M 的等和点.(1)已知点()1,3M ,在()14,2N ,()23,1N -,()30,2N -中,是点M 等和点的有_____;(2)若点()3,2M -的等和点N 在直线y x b =+上,求b 的值;(3)已知,双曲线1ky x=和直线22y x =-,满足12y y <的x 取值范围是4x >或20x -<<.若点P 在双曲线1ky x=上,点P 的等和点Q 在直线22y x =-上,求点P 的坐标.24.如图,ABC 中,90ACB ∠=︒,AC BC =,O 经过B ,C 两点,与斜边AB 交于点E ,连接CO 并延长交AB 于点M ,交O 于点D ,过点E 作EF CD ∥,交AC 于点F .(1)求证:EF 是O 的切线;(2)若42BM =,1tan 2BCD ∠=,求OM 的长.25.如图,是某公园的一种水上娱乐项目.数学兴趣小组对该项目中的数学问题进行了深入研究.下面是该小组绘制的水滑道截面图,如图1,人从点A 处沿水滑道下滑至点B 处腾空飞出后落入水池.以地面所在的水平线为x 轴,过腾空点B 与x 轴垂直的直线为y 轴,O 为坐标原点,建立平面直角坐标系.他们把水滑道和人腾空飞出后经过的路径都近似看作是抛物线的一部分.根据测量和调查得到的数据和信息,设计了以下三个问题,请你解决.(1)如图1,点B 与地面的距离为2米,水滑道最低点C 与地面的距离为78米,点C 到点B 的水平距离为3米,则水滑道ACB 所在抛物线的解析式为______;(2)如图1,腾空点B 与对面水池边缘的水平距离12OE =米,人腾空后的落点D 与水池边缘的安全距离DE 不少于3米.若某人腾空后的路径形成的抛物线BD 恰好与抛物线ACB 关于点B 成中心对称.①请直接写出此人腾空后的最大高度和抛物线BD 的解析式;②此人腾空飞出后的落点D 是否在安全范围内?请说明理由(水面与地面之间的高度差忽略不计);(3)为消除安全隐患,公园计划对水滑道进行加固.如图2,水滑道已经有两条加固钢架,一条是水滑道距地面4米的点M 处竖直支撑的钢架MN ,另一条是点M 与点B 之间连接支撑的钢架BM .现在需要在水滑道下方加固一条支撑钢架,为了美观,要求这条钢架与BM 平行,且与水滑道有唯一公共点,一端固定在钢架MN 上,另一端固定在地面上.请你计算出这条钢架的长度(结果保留根号).26.数学课上,老师给出以下条件,请同学们经过小组讨论,提出探究问题.如图1,在ABC 中,AB AC =,点D 是AC 上的一个动点,过点D 作DE BC ⊥于点E ,延长ED 交BA 延长线于点F .请你解决下面各组提出的问题:(1)求证:AD AF =;(2)探究DF DE 与ADDC的关系;某小组探究发现,当13AD DC =时,23DF DE =;当45AD DC =时,85DF DE =.请你继续探究:①当76AD DC =时,直接写出DFDE 的值;②当AD m DC n =时,猜想DFDE的值(用含m ,n 的式子表示),并证明;(3)拓展应用:在图1中,过点F 作FP AC ⊥,垂足为点P ,连接CF ,得到图2,当点D 运动到使ACF ACB ∠=∠时,若AD m DC n =,直接写出APAD的值(用含m ,n 的式子表示).参考答案一、选择题(每小题给出的选项中只有一个符合题意,请将符合题意的选项序号,在答题卡的对应位置上按要求涂黑.每小题3分,共42分)1.【答案】A【解析】A .是轴对称图形,故A 选项正确;B .不是轴对称图形,故B 选项错误;C .不是轴对称图形,故C 选项错误;D .不是轴对称图形,故D 选项错误.故选:A .2.【答案】D【解析】解:1052000000000 5.210=⨯,故选:D .3.【答案】B【解析】解:如图所示:由题意得:3230∠=∠=︒∴1180345105∠=︒-∠-︒=︒故选:B .4.【答案】D【解析】解:A 、2a 与3a 不是同类项,不能合并,故此选项不符合题意;B 、()222222a b a ab b a b +=++≠+,故此选项不符合题意;C 、6332a a a a ÷=≠,故此选项不符合题意;D 、()236a a =,故此选项符合题意.故选:D .5.【答案】D【解析】解:A 、为了解1000只灯泡的使用寿命,从中抽取50只进行检测,此次抽样的样本容量是50,说法正确,本选项不符合题意;B 、了解某校一个班级学生的身高情况,适合全面调查,说法正确,本选项不符合题意;C 、了解商场的平均日营业额,选在周末进行调查,这种调查不具有代表性,说法正确,本选项不符合题意;D 、甲、乙二人10次测试的平均分都是96分,且方差22.5S =甲,22.3S =乙,则发挥稳定的是乙,故原说法错误,符合题意;故选:D .6.【答案】C【解析】解:()322211x x x x -<⎧⎪⎨+≥-⎪⎩①②解不等式①得,2x <,解不等式②得,3x ≥-,所以,不等式组的解集为:32x -≤<,在数轴上表示为:故选:C .7.【答案】B【解析】解:如图,直线l m 、相交于点A ,则60A ∠=︒,∵正多边形的每个内角相等,∴正多边形的每个外角也相等,∴1806012602︒-︒∠=∠==︒,∴360660n ︒==︒,故选:B.8.【答案】D 【解析】解:334047160009600200++⨯=,∴视力不低于4.8的人数是9600,故选:D .9.【答案】C【解析】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .10.【答案】B【解析】解:∵半径OC AB ⊥,∴ AC BC=,∴42AOC BOC ∠=∠=︒,84AOB ∠=︒,∵ AC AC=,∴1212D AOC ∠=∠=︒,∴63OED AOB D ∠=∠-∠=︒,故选:B .11.【答案】C【解析】解:设用A 型钢板x 块,用B 型钢板y 块,由题意得:35584240x y x y +=⎧⎨+=⎩,故选:C .12.【答案】A【解析】解:∵AB BC =,72C ∠=︒,∴72BAC C ∠=∠=︒,180236ABC C ∠︒=︒-∠=,由旋转的性质得36AB C ABC ︒'∠=∠=,72B AC BAC ︒''∠=∠=,72AC B C ''∠︒=∠=,72AC B ADC ︒''∠=∠=,AC AC '=,∴72AC C C '∠=∠=︒,∴36CAC '∠=︒,∴36CAC BAC ''∠=∠=︒,∴723636B AB '∠=︒-︒=︒,由旋转的性质得AB AB '=,∴()118036722ABB AB B ''∠=∠=︒-︒=︒,①点B 在旋转过程中经过的路径长是36111805ππ⋅=;①说法正确;②∵36B AB ABC '∠=∠=︒,∴B B A C '∥;②说法正确;③∵18027236DC B '∠=︒-⨯︒=︒,∴36DC B ABC '∠=∠=︒,∴BD C D '=;③说法正确;④∵36BB D ABC '∠=∠=︒,72B BD BAC '∠=∠=︒,∴B BD BAC '∽△△,∴AB B B AC BD'=.④说法正确;综上,①②③④都是正确的,故选:A .13.【答案】A【解析】解:数轴上点A ,M ,B 分别表示数a a bb +,,,∴AM a b a b =+-=、()BM b a b a =-+=-,∵AM BM >,∴原点在A ,M 之间,由它们的位置可得a<0,0b >且a b <,∴0a b +>,0a b -<,00ab a b <-<,,故运算结果一定是正数的是a b +.故选:A .14.【答案】B【解析】解:如图,连接AC 、BD 交于点E ,过点A 作MN y ⊥轴于点M ,过点B 作BN MN ⊥于点N ,四边形ABCD 是正方形,AC ∴、BD 互相平分,AB AD =,90BAD ∠=︒,90BAN DAM ∴∠+∠=︒,90DAM ADM ∠+∠=︒,BAN ADM ∴∠=∠.90BNA AMD ∠=∠=︒ ,BA AD =,(AAS)ANB DMA ∴ ≌.AM NB ∴=,DM AN =.点A 、C 的横坐标分别为m 、n ,24(,)A m m ∴+-,2()4,C n n -+.(2m n E +∴,2282m n -+-,2(0,)4M m +-,设(0,)D b ,则22(,)8B m n m n b ++---,2()4,N m n m ++-,24BN n b ∴=-+-,AM m =,AN n =,24DM m b =-+.又AM NB =,DM AN =,24n m b +--∴=,24n m b =-+.24b n m ∴=--+.2244n m n m ∴=---+.∴()()m n m n m n +-=+.点A 、C 在y 轴的同侧,且点A 在点C 的右侧,0m n ∴+≠.1m n ∴-=.故选:B .二、填空题(请把答案填写在答题卡对应的横线上.每小题3分,共12分)15.【答案】1(或2)【解析】23=<<= ,满足条件的数为小于或等于2的整数均可.16.【答案】()()311a m m +-【解析】解:()()()223331311am a a m a m m -=-=+-,故答案为:()()311a m m +-.17.【答案】11.5【解析】解:如图,过点D 作DM AB ⊥,交AB 的延长线于点M ,∴四边形ACDM 是矩形,∴10DM AC ==米,∵45BDM ∠=︒,65ADM ∠=︒,90M ∠=︒,∴BDM 是等腰直角三角形,∴10BM DM ==米,在Rt ADM △中,tan 10tan 6510 2.14521.45AM DM ADM =⋅∠=⋅︒≈⨯≈(米),∴21.451011.4511.5AB AM BM =-=-=≈(米),∴古树AB 的高度约为11.5米.故答案为:11.5.18.【答案】C【解析】解:同时启动A ,B 两台收割机,所需的时间为23小时,同时启动B ,C 两台收割机,所需的时间为19小时,得到C 比A 快;同时启动B ,C 两台收割机,所需的时间为19小时,同时启动C ,D 两台收割机,所需的时间为20小时,得到B 比D 快;同时启动A 、B 两台收割机,所需的时间为23小时,同时启动A ,E 两台收割机,所需的时间为18小时,得到E 比B 快;同时启动C ,D 两台收割机,所需的时间为20小时,同时启动D ,E 两台收割机,所需的时间为22小时,得到C 比E 快.综上,收割最快的一台收割机编号是C .故答案为:C .三、解答题(在答题卡上解答,答在本试卷上无效,解答时要写出必要的文字说明、证明过程或演算步骤.共8题,满分96分)19.【答案】(1)6;(2)7.【解析】解:(1)原式331222=++⨯+42=+-,6=;(2)∵230a a --=,∴23a a -=,∴()()()2213a a a -+-+224423a a a a =-+++-,2221a a =-+,()221a a =-+,231=⨯+,7=.20.【答案】(1)见解析(2)见解析【解析】【小问1详解】解:直线l 如图所示,;【小问2详解】证明:补全图形,如图,由(1)作图知,E 为AC 的中点,∵D ,E 分别为AB ,AC 的中点,∴DE BC ∥,12DE BC =,∵2EF DE =,即:12DE EF =,∴EF BC =,∵EF BC ∥,∴四边形BCFE 是平行四边形.21.【答案】(1)5;2;75(2)78;80(3)A ,B 两名队员恰好同时被选中的概率为16.【解析】【小问1详解】解:根据收集的数据知5a =;2b =;出现最多的是75分,有5人,众数为75分,则75c =;故答案为:5;2;75;【小问2详解】解:∵由统计图可知中位数为78分,∴如果想让一半左右的队员都能达到成绩目标,成绩目标应定为78分,如果想确定一个较高的目标,成绩目标应定为80分,因为在样本的众数,中位数和平均数中,平均数最大,可以估计,如果成绩目标定为80分,努力一下都能达到成绩目标.故答案为:78;80;【小问3详解】解:画树状图表示所有等可能结果如图所示,共有12种等可能结果,A ,B 两名队员恰好同时被选中的情况有2种,∴A ,B 两名队员恰好同时被选中的概率为21126==,答:A ,B 两名队员恰好同时被选中的概率为16.22.【答案】(1)甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;(2)15天的工期,两队最多能修复公路105千米.【解析】【小问1详解】解:设甲队平均每天修复公路x 千米,则乙队平均每天修复公路()3x +千米,由题意得60903x x =+,解得6x =,经检验,6x =是原方程的解,且符合题意,39x +=,答:甲队平均每天修复公路6千米,则乙队平均每天修复公路9千米;【小问2详解】解:设甲队的工作时间为m 天,则乙队的工作时间为()15m -天,15天的工期,两队能修复公路w 千米,由题意得()69153135w m m m =+-=-+,()215m m ≥-,解得10m ≥,∵30-<,∴w 随m 的增加而减少,∴当10m =时,w 有最大值,最大值为310135105w =-⨯+=,答:15天的工期,两队最多能修复公路105千米.23.【答案】(1)()14,2N 和()30,2N -;(2)5b =;(3)()4,2--或()2,4.【解析】【小问1详解】解:由()1,3M ,()14,2N 得,12125x x y y +=+=,∴点()14,2N 是点M 的等和点;由()1,3M ,()23,1N -得,124x x +=,122y y +=,∵1212x x y y +≠+,∴()23,1N -不是点M 的等和点;由()1,3M ,()30,2N -得,12121x x y y +=+=,∴()30,2N -是点M 的等和点;故答案为:()14,2N 和()30,2N -;【小问2详解】解:设点N 的横坐标为a ,∵点N 是点()3,2M -的等和点,∴点N 的纵坐标为()325a a +--=+,∴点N 的坐标为(),5a a +,∵点N 在直线y x b =+上,∴5a a b +=+,∴5b =;【小问3详解】解:由题意可得,0k >,双曲线分布在一、三象限内,设直线与双曲线的交点分别为点A B 、,如图,由12y y <时x 的取值范围是4x >或20x -<<,可得点A 的横坐标为4,点B 的横坐标为2-,把4x =代入2y x =-得,422y =-=,∴()4,2A ,把()4,2A 代入1k y x =得,24k =,∴8k =,∴反比例函数解析式为18y x =,设8,P m m ⎛⎫ ⎪⎝⎭,点Q 的横坐标为n ,∵点Q 是点P 的等和点,∴点Q 的纵坐标为8m n m +-,∴8,Q n m n m ⎛⎫+- ⎪⎝⎭,∵点Q 在直线22y x =-上,∴82m n n m +-=-,整理得,820m m -+=,去分母得,2280m m +-=,解得14m =-,12m =,经检验,4,2m m =-=是原方程的解,∴点P 的坐标为()4,2--或()2,4.24.【答案】(1)见解析(2)5OM =【解析】【小问1详解】证明:连接OE ,延长EO ,交O 于点P ,连接,,PD BD 如图,∵,90,AB BC ACB =∠=︒∴ABC 是等腰直角三角形,∴45,ABC ∠=︒∵CD 是O 的直径,∴90,CBD ∠=︒∴904545,DBE CBD ABC ∠=∠-∠=︒-︒=︒∴45,EPD DBE ∠=∠=︒∴224590,DOE DPE ∠=∠=⨯︒=︒∵,EF CD ∥∴90,FEO DOE ∠=∠=︒即,OE EF ⊥∵OE 是O 的半径,∴EF 是O 的切线;【小问2详解】解:∵90DBC ∠=︒,1tan 2BCD ∠=,∴12DB BC =,∵,BC AC =∴12DB AC =,∵,DMB CMA ∠=∠A DBM ∠=∠,∴DBM ACM ∽ ,∴12BM DM DB AM CM AC ===,∵BM =,∴2AM BM ==∴AB AM BM =+=+=,在等腰直角三角形ABC 中,222AC BC AB +=,∴(2222AC AC AB +==,解得,12AC =,∴12AC BC ==,∴16,2DB BC ==在t R BDC 中,CD ==∴CO DO ==又12DM CM =,∴2,CM DM =∴2DM DM CD +==∴DM =∴OM OD DM =-==25.【答案】(1)()217388y x =++(2)①此人腾空后的最大高度是258米,解析式为()2125388y x =--+;②此人腾空飞出后的落点D 在安全范围内,理由见解析(3)这条钢架的长度为米【解析】【小问1详解】解:根据题意得到水滑道ACB 所在抛物线的顶点坐标为73,8C ⎛⎫- ⎪⎝⎭,且过点()0,2B ,设水滑道ACB 所在抛物线的解析式为()2738y a x =++,将()0,2B 代入,得:()272038a =++,即998a =,18a ∴=,∴水滑道ACB 所在抛物线的解析式为()217388y x =++;【小问2详解】解:① 人腾空后的路径形成的抛物线BD 恰好与抛物线ACB 关于点B 成中心对称,则设人腾空后的路径形成的抛物线的解析式为()218y x b c =-++,∴人腾空后的路径形成的抛物线BD 的顶点坐标与抛物线ACB 的顶点坐标73,8C ⎛⎫- ⎪⎝⎭关于点()0,2B 成中心对称,()7250233,2288⨯--=⨯-=,∴人腾空后的路径形成的抛物线BD 的顶点坐标为253,8⎛⎫ ⎪⎝⎭,即253,8b c ==,∴此人腾空后的最大高度是258米,人腾空后的路径形成的抛物线BD 的解析式为:()2125388y x =--+;由①知人腾空后的路径形成的抛物线BD 的解析式为:()2125388y x =--+,令0y =,则()21253088x --+=,即()2325x -=∴8x =或2x =-(舍去,不符合题意),∴点()8,0D ,8OD ∴=,12OE =,43DE OE OD ∴=-=>,∴此人腾空飞出后的落点D 在安全范围内;【小问3详解】解:根据题意可得M 点的纵坐标为4,令()2173488y x =++=,即()2325x +=,2x ∴=(舍去,不符合题意)或8x =-,()8,4M ∴-,设BM 所在直线的解析式为y kx b '=+,将()()8,4,0,2M B -代入得:248b k b =⎧⎨=-+''⎩,解得:214b k =-'⎧⎪⎨=⎪⎩,∴BM 所在直线的解析式为124y x =-+,如图,设这条钢架为GH ,与MN 交于点G ,与地面交于H, 这条钢架与BM 平行,∴设该钢架GH 所在直线的解析式为14y x n =-+,联立()21417388y x n y x ⎧=-+⎪⎪⎨⎪=++⎪⎩,即()21173488x n x -+=++,整理得:281680x x n ++-=,该钢架GH 与水滑道有唯一公共点,()2Δ8411680n ∴=-⨯⨯-=,∴0n =即该钢架所在直线的解析式为14y x =-,∴点H 与点O 重合, ()1824GN =-⨯-=,8NO =,90GNO ∠=︒,GH ∴==∴这条钢架的长度为米.26.【答案】(1)见解析(2)①73DF DE =②2DF DE m n=,证明见解析(3)2AP n AD m =【解析】【小问1详解】证明:∵AB AC =,∴B C ∠=∠,∵DE BC ⊥,∴90BEF CED ∠=∠=︒,∴90F B ∠=︒-∠,90CDE C ∠=︒-∠,且CDE ADF ∠=∠,∴F ADF ∠=∠,∴AD AF =;【小问2详解】解:①当13AD DC =时,23DF DE =;当45AD DC =时,85DF DE =,∴总结规律得:DF DE 是AD DC 的2倍,∴当76AD DC =时,14763DF DE ==;②当AD m DC n =时,猜想2DF DE m n =,证明:作AG EF ⊥于点G ,∵DE BC ⊥,∴AG CE ∥,∴AGD CED ∽△△,∵AD m DC n =,∴GD AD m DE DC n ==,由(1)知AD AF =,又AG EF ⊥,∴DG FG =,即2DF DG =,∴22GD m DE nDF DE ==;【小问3详解】2AP n AD m=,理由如下:过点D 作DG CF ⊥,∵ACF ACB ∠=∠,DE CE ⊥,∴DG DE =,由(2)知,当AD m DC n =时,2DF DE m n=,∴2DE n DF m =,∴2DG n DF m=,∵PF AC ⊥,∴90ACF CFP ∠+∠=︒,∵FE BC ⊥,∴90B AFD ∠+∠=︒,∵AB AC =,∴ACB B =∠∠,∴B ACF ∠=∠,∴AFD CFP ∠=∠,∴AFD PFD CFP PFD ∠-∠=∠-∠,∴AFP DFG ∠=∠,∴sin sin AFP DFG ∠=∠,∴2AP DG n AF DF m==,由(1)知AD AF =,∴2AP AP n AD AF m ==.。
2024年初中学业水平考试试卷数学注意事项:1.本试卷共6页,满分120分.考试时间为120分钟.2.答题前,考生务必先将自己的考生号、姓名、座位号等信息填写在试卷和答题卡的指定位置.请认真核对条形码上的相关信息后,将条形码粘贴在答题卡的指定位置.3.答题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共有10小题,每小题3分,共30分.每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑.1.计算所得结果是()A.3B.C. D.±2.若,m n 互为倒数,且满足3m mn +=,则n 的值为()A.14B.12C.2D.43.如图,正方形ABCD 边长为2,以AB 所在直线为轴,将正方形ABCD 旋转一周,所得圆柱的主视图的面积为()A.8B.4C.8πD.4π4.如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有()A.1个B.2个C.3个D.4个5.为发展学生的阅读素养,某校开设了《西游记》《三国演义》《水浒传》和《红楼梦》四个整本书阅读项目,甲、乙两名同学都通过抽签的方式从这四个阅读项目中随机抽取一个.则他们恰好抽到同一个阅读项目的概率是()A.116 B.112C.16D.146.将抛物线22y x x =+向下平移2个单位后,所得新抛物线的顶点式为()A.()213y x =+- B.()=+-2y x 12C.()213y x =-- D.()212y x =--7.若21m -,m ,4m -这三个实数在数轴上所对应的点从左到右依次排列,则m 的取值范围是()A.2m < B.1m < C.12m << D.513m <<8.如图,在扇形AOB 中,80AOB ∠=︒,半径3OA =,C 是 AB 上一点,连接OC ,D 是OC 上一点,且OD DC =,连接BD .若BD OC ⊥,则 AC 的长为()A.π6B.π3C.π2D.π9.如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是()0,0O ,()1,2A ,()3,3B ,()5,0C ,则四边形OABC 的面积为()A.14B.11C.10D.910.如图,在矩形ABCD 中,,E F 是边BC 上两点,且BE EF FC ==,连接,,DE AF DE 与AF 相交于点G ,连接BG .若4AB =,6BC =,则sin GBF ∠的值为()A.1010B.31010C.13D.23二、填空题:本大题共有6小题,每小题3分,共18分.请将答案填在答题卡上对应的横线上.11.()2024381+-=______.12.已知一个n 边形的内角和是900︒,则n =________.13.在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的表达式______.14.如图,四边形ABCD 是O 的内接四边形,点O 在四边形ABCD 内部,过点C 作O 的切线交AB 的延长线于点P ,连接,OA OB .若140AOB ∠=︒,35BCP ∠=︒,则ADC ∠的度数为______.15.若反比例函数12y x=,23y x=-,当13x ≤≤时,函数1y 的最大值是a ,函数2y 的最大值是b ,则b a =______.16.如图,在菱形ABCD 中,60ABC ∠=︒,6AB =,AC 是一条对角线,E 是AC 上一点,过点E 作EF AB ⊥,垂足为F ,连接DE .若CE AF =,则DE 的长为______.三、解答题:本大题共有7小题,共72分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17.(1)先化简,再求值:()()2121x x +-+,其中x =(2)解方程:2244x xx x --=--.18.《国家学生体质健康标准(2014年修订)》将九年级男生的立定跳远测试成绩分为四个等级:优秀(240x ≥),良好(225240x ≤<),及格(185225x ≤<),不及格(185x <),其中x 表示测试成绩(单位:cm ).某校为了解本校九年级全体男生立定跳远测试的达标情况,精准找出差距,进行科学合理的工作规划,整理了本校及所在区县九年级全体男生近期一次测试成绩的相关数据,信息如下:a .本校测试成绩频数(人数)分布表:等级优秀良好及格不及格频数(人数)40706030b .本校测试成绩统计表:平均数中位数优秀率及格率222.5228p85%c .本校所在区县测试成绩统计表:平均数中位数优秀率及格率218.722323%91%请根据所给信息,解答下列问题:(1)求出p 的值;(2)本校甲、乙两名同学本次测试成绩在本校排名(从高到低)分别是第100名、第101名,甲同学的测试成绩是230cm ,请你计算出乙同学的测试成绩是多少?(3)请你结合该校所在区县测试成绩,从平均数、中位数、优秀率和及格率四个方面中任选两个,对该校九年级全体男生立定跳远测试的达标情况做出评价,并为该校提出一条合理化建议.19.如图,学校数学兴趣小组开展“实地测量教学楼AB 的高度”的实践活动.教学楼周围是开阔平整的地面,可供使用的测量工具有皮尺、测角仪(皮尺的功能是直接测量任意可到达的两点间的距离;测角仪的功能是测量角的大小).(1)请你设计测量教学楼AB 的高度的方案,方案包括画出测量平面图,把应测数据标记在所画的图形上(测出的距离用,m n 等表示,测出的角用,αβ等表示),并对设计进行说明;(2)根据你测量的数据,计算教学楼AB 的高度(用字母表示).20.图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y (单位:cm )随着碗的数量x (单位:个)的变化规律.下表是小亮经过测量得到的y 与x 之间的对应数据:/x 个1234/cmy 68.410.813.2(1)依据小亮测量的数据,写出y 与x 之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm ,求此时碗的数量最多为多少个?21.如图,AB 是O 的直径,,BC BD 是O 的两条弦,点C 与点D 在AB 的两侧,E 是OB 上一点(OE BE >),连接,OC CE ,且2BOC BCE ∠=∠.(1)如图1,若1BE =,CE =,求O 的半径;(2)如图2,若2BD OE =,求证:BD OC ∥.(请用两种证法解答)22.如图,在ABCD Y 中,ABC ∠为锐角,点E 在边AD 上,连接,BE CE ,且ABE DCE S S = .(1)如图1,若F 是边BC 的中点,连接EF ,对角线AC 分别与,BE EF 相交于点,G H .①求证:H 是AC 的中点;②求::AG GH HC ;(2)如图2,BE 的延长线与CD 的延长线相交于点M ,连接,AM CE 的延长线与AM 相交于点N .试探究线段AM 与线段AN 之间的数量关系,并证明你的结论.23.如图,在平面直角坐标系中,抛物线22y x bx c =-++与x 轴相交于()1,0A ,B 两点(点A 在点B 左侧),顶点为()2,M d ,连接AM .(1)求该抛物线的函数表达式;(2)如图1,若C 是y 轴正半轴上一点,连接,AC CM .当点C 的坐标为10,2⎛⎫⎪⎝⎭时,求证:ACM BAM ∠=∠;(3)如图2,连接BM ,将ABM 沿x 轴折叠,折叠后点M 落在第四象限的点M '处,过点B 的直线与线段AM '相交于点D ,与y 轴负半轴相交于点E .当87BD DE =时,3ABD S △与2M BD S '△是否相等?请说明理由.参考答案一、选择题:本大题共有10小题,每小题3分,共30分.每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑.1.【答案】C===;故选C .2.【答案】B【解析】解:∵,m n 互为倒数,∴1⋅=m n ,∵3m mn +=,∴2m =,则12n =,故选:B .3.【答案】A【解析】解:由图可知:圆柱体的主视图为长为4,高为2的长方形,∴面积为248⨯=;故选A .4.【答案】C【解析】解∶∵AB CD ∥,∴180AEF CGE +∠=︒∠,∵CGE DGF ∠=∠,∴180AEF DGF ∠+∠=︒,又180AEF BEG ∠+∠=︒,∴图中与AEF ∠互补的角有CGE ∠,DGF ∠,BEG ∠,共3个.故选∶C .5.【答案】D【解析】解:设《西游记》《三国演义》《水浒传》和《红楼梦》四个整本书阅读项目分别为A B C D 、、、,画树状图如下:一共有16种等可能的结果,其中恰好抽到同一个阅读项目的结果有4种可能,∴他们恰好抽到同一个阅读项目的概率是41164=,故选:D .6.【答案】A【解析】解:抛物线22y x x =+向下平移2个单位后,则抛物线变为222y x x =+-,∴222y x x =+-化成顶点式则为()213y x =+-,故选:A .7.【答案】B【解析】解:由题意,得:214m m m -<<-,解得:1m <;故选B .8.【答案】B【解析】解:连接BC ,OD DC =,BD OC ⊥,OB BC ∴=,∴OBC △是等腰三角形,OB OC =,∴OB OC BC ==,OBC △是等边三角形,∴60BOC ∠=︒,80AOB ∠=︒,∴20AOC AOB BOC ∠=∠-∠=︒,3OA =,∴ 203ππ1803AC ⨯==,故选:B .9.【答案】D【解析】解∶过A 作AM OC ⊥于M ,过B 作BN OC ⊥于N ,∵()0,0O ,()1,2A ,()3,3B ,()5,0C ,∴1OM =,2AM =,3ON BN ==,5CO =,∴2MN ON OM =-=,2CN OC ON =-=,∴四边形OABC 的面积为AOM BCNAMNB S S S ++梯形 ()1111223232222=⨯⨯+⨯+⨯+⨯⨯9=,故选:D .10.【答案】A【解析】解:∵矩形ABCD ,BE EF FC ==,4AB =,6BC =,∴6,AD BC AD BC ==∥,2BE EF FC ===,∴AGD FGE ∽,4BF =,∴13FG EF AG AD ==,∴14FG AF =过点G 作GH BC ⊥,则:GH AB ∥,∴GHF ABF ∽,∴14FH GH FG BF AB AF ===,∴114FH BF ==,114GH AB ==,∴3BH BF FH =-=,∴221310BG =+=∴10sin 1010HG GBF BG ∠===;故选A .二、填空题:本大题共有6小题,每小题3分,共18分.请将答案填在答题卡上对应的横线上.11.【答案】3【解析】解:原式213=+=;故答案为:3.12.【答案】7【解析】解:根据题意,得()2180900n -︒=⋅︒,解得7n =.故答案为:713.【答案】1y x =+(答案不唯一)【解析】解:设一次函数的解析式为()0y kx b k =+≠,∵一次函数的图象经过一、二、三象限,∴0,0k b >>,∴符合该条件的一个一次函数的表达式是:1y x =+(答案不唯一).故答案为:1y x =+(答案不唯一).14.【答案】105︒##105度【解析】解∶连接OC ,∵OA OB OC ==,140AOB ∠=︒,∴()1180202OAB OBA AOB ∠=∠=︒-∠=︒,OCB OBC ∠=∠,∵CP 是切线,∴90OCP ∠=︒,即90OCB BCP ∠+∠=︒,∵35BCP ∠=︒,∴55OBC OCB ∠=∠=︒,∴75ABC ABO OBC ∠=∠+∠=︒,∵四边形ABCD 是O 的内接四边形,∴180105ADC ABC ∠=︒-∠=︒,故答案为:105︒.15.【答案】12##0.5【解析】解: 函数12y x =,当13x ≤≤时,函数1y 随x 的增大而减小,最大值为a ,1x ∴=时,12y a ==,23y x =- ,当13x ≤≤时,函数2y 随x 的增大而减大,函数2y 的最大值为21y b =-=,1122b a -∴==.故答案为:12.16.【答案】【解析】解∶过D 作DH AC ⊥于H ,∵菱形ABCD 中,60ABC ∠=︒,6AB =,∴AB BC CD AD ===,60ADC ABC ∠=∠=︒,∴ABC ,ACD 都是等边三角形,∴60EAF ∠=︒,6AC AB ==,132AH CH AC ===,∵EF AB ⊥,∴30AEF ∠=︒,∴2AE AF =,又CE AF =,∴2AE CE =,∴2CE =,∴1HE CH CE =-=,在Rt CDH △中,22227DH CD CH =-=,∴DE ==故答案为:三、解答题:本大题共有7小题,共72分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17.【答案】(1)21x -,7;(2)3x =【解析】解:(1)()()2121x x +-+22122x x x =++--21x =-,当x =(217=-=;(2)2244x x x x --=--去分母,得()224x x x ---=,解得3x =,把3x =代入43410x -=-=-≠,∴3x =是原方程的解.18.【答案】(1)20%(2)乙同学的测试成绩是226cm(3)见解析【解析】【小问1详解】解:本次测试的总人数为:40706030200+++=(人),成绩为优秀的人数为:40人,则优秀率为:40200100%20%p =÷⨯=;【小问2详解】解: 第100名、第101名成绩的平均值为该校本次测试成绩的中位数,中位数为228,则2228230226cm ⨯-=,答:乙同学的测试成绩是226cm ;【小问3详解】解:本校测试成绩的平均数为222.5,本校所在区县测试成绩平均数为218.7,本校测试成绩的优秀率为20%,本校所在区县测试成绩优秀率为23%,222.5218.7,20%23%>< ,从平均数角度看,该校九年级全体男生立定跳远的平均成绩高于区县水平,整体水平较好;从优秀率角度看,该校九年级全体男生立定跳远成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的优秀率低于区县水平;建议:该校在保持学校整体水平的同时,多关注接近优秀的学生,提高优秀成绩的人数.19.【答案】(1)见解析(2)()tan tan m αβ+【解析】【小问1详解】解:如图,将测角仪放在D 处,用皮尺测量出D 到AB 的距离为m ,用测角仪测出A 的仰角为α,测出B 的俯角为β;【小问2详解】解:如图,过C 作CE AB ⊥于E ,则四边形CDBE 是矩形,ACE α∠=,BCE β∠=,∴CE BD m ==,BE CD =,在Rt BCE 中,tan tan BE CE ECB m β=⋅∠=,在Rt ACE 中,tan tan BE CE ECA m α=⋅∠=,∴()tan tan AB AE BE m αβ=+=+,答:教学楼AB 的高度为()tan tan m αβ+.20.【答案】(1) 2.4 3.6y x =+(2)10个【解析】【小问1详解】解:由表格可知,每增加一只碗,高度增加2.4cm ,∴()6 2.41 2.4 3.6y x x =+-=+,检验∶当1x =时,6y =;当2x =时,8.4y =;当3x =时,10.8y =;当4x =时,13.2y =;∴ 2.4 3.6y x =+;【小问2详解】解:根据题意,得2.4 3.628.8x +≤,解得10.5x ≤,∴碗的数量最多为10个.21.【答案】(1)3(2)见解析【解析】【小问1详解】解∶∵OC OB =,∴()11802OBC OCB BOC ∠=∠=︒-∠,∵2BOC BCE ∠=∠,∴()11802902OBC BCE BCE ∠=︒-∠=︒-∠,即90OBC BCE ∠+∠=︒,∴90OEC ∠=︒,∴222OC OE CE =+,∴()2221OC OC =-+,解得3OC =,即O 的半径为3;【小问2详解】证明:法一:过O 作OF BD ⊥于F ,∴12BF BD =,∵2BD OE=∴OE BF =,又OC OB =,90OEC BFO ∠=∠=︒,∴()Rt Rt HL CEO OFB ≌,∴COE OBF ∠=∠,∴BD OC ∥;法二:连接AD ,∵AB 是直径,∴90ADB ∠=︒,∴2AD CE ====,∴12OC CE OE AB AD BD ===,∴CEO ADB ∽ ,∴COE ABD ∠=∠,∴BD OC ∥.22.【答案】(1)①见解析;②::2:1:3AG GH HC =(2)3AM AN =,理由见解析【解析】【小问1详解】解:①ABE DCE S S = ,E ∴为AD 的中点,AE DE ∴=,F 是边BC 的中点,BF CF ∴=,AE CF ∴=,在ABCD Y 中,AD BC∴EAH FCH ∠=∠,又∵AHE CHF ∠=∠,()AAS AHE CHF ∴ ≌,AH CH ∴=,H ∴是AC 的中点;②,AE BF AE BF =∥ ,∴四边形ABFE 为平行四边形,AB EF ∴∥,AGB HGE ∴ ∽,AB AG EH GH∴=,∵AHE CHF ≌,EH FH ∴=,2AB AG EH GH∴==,2AG GH ∴=,1133GH AH HC ∴==,::2:1:3AG GH HC ∴=;【小问2详解】解:线段AM 与线段AN 之间的数量关系为:3AM AN =,理由如下:连接BD 交CN 于点F ,如下图:由题意,BE 的延长线与CD 的延长线相交于点M ,连接,AM CE 的延长线与AM 相交于点N ,,AE DE AEB DEM =∠=∠ ,又AB CD ∥ ,AB CM \∥,ABE DME ∴∠=∠,()AAS AEB DEM ∴ ≌,AB DM ∴=,∴四边形ABDM 为平行四边形,,AM BD AB MD ∴==,AB CD =,DM CD ∴=,D ∴为CM 的中点,DF MN ∥ ,12CD CF CM CN ∴==,F ∴为CN 的中点,DF ∴为CMN 的中位线,12DF MN ∴=,,,AE DE AEN DEF NAE FDE =∠=∠∠=∠ ,()ASA AEN DEF ∴ ≌,DF AN ∴=,12DF AN MN ∴==,2MN AN ∴=,3AM AN MN AN ∴=+=,3AM AN ∴=.23.【答案】(1)2286y x x =-+-(2)见解析(3)相等,理由见解析【解析】【小问1详解】解: 该抛物线的顶点为()2,M d ,即该抛物线的对称轴为2x =,∴()2222b b x a =-=-=⨯-,∴8b =,将()1,0A 代入解析式228y x x c =-++,则028c =-++,∴6c =-,∴抛物线的解析式表达式为2286y x x =-+-;【小问2详解】证明:如图1,延长MC 交x 轴于点D,由(1)知抛物线的解析式表达式为2286y x x =-+-,则2228262M y =-´+´-=,∴()2,2M ,点C 的坐标为10,2⎛⎫ ⎪⎝⎭,设直线MC 的解析式为()0y kx b k =+≠,则1222b k b⎧=⎪⎨⎪=+⎩,解得:1234b k ⎧=⎪⎪⎨⎪=⎪⎩∴直线MC 的解析式为3142y x =+,则31042D x =+,23D x ∴=-,∴2,03D ⎛⎫-⎪⎝⎭, ()1,0A ,∴53AD =,∴105,36DM CD ====,551136,1052233ADCD DMAD ==== ,∴ADCD DM AD=,ADM ADM ∠=∠ ,∴ACD MAD ∽ ,∴ACD MAD ∠=∠,180ACD ACM MAD BAM ∠+∠=∠+∠=︒,∴ACM BAM ∠=∠;【小问3详解】解:过点D 作DG x⊥轴,交x 轴于点G ,令22860x x -+-=,即2430x x -+=,解得:121,3x x ==,根据题意得:()3,0B ,∴3,2OB AB ==,DG x ⊥轴,OE x ⊥轴,∴OE DG ∥,∴BDG BEO ∽ ,∴=BG BD DG OB BE OE =,87BD DE =,即815BD BE =,∴88155BG OB ==,∴75OG =,∴点D 的横坐标为75,由折叠的性质得到()2,2M '-,设直线AM '的解析式为()0y mx n m =+≠,则220m n m n -=+⎧⎨=+⎩,解得:22m n =-⎧⎨=⎩,∴直线AM '的解析式为22y x =-+,742255D y ∴=-⨯+=-,∴74,55D ⎛⎫- ⎪⎝⎭,∴45DG =,∴1425ABD S AB DG =⋅= ,∴146255M BD ABM ABD M S S S AB y '''=-=⋅-= ,∴4123355ABD S =⨯=△,6122255M BD S '=⨯=△,∴32ABD M BD S S '=△△.。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。
2018年内蒙古自治区中考数学模拟试卷(十)(附解析)一、选择题(共6小题,每小题3分,满分18分)1.若分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x=1 D.x<12.已知一组数据7,6,x,9,11的平均数是9,那么数x等于()A.3 B.10 C.12 D.93.如图,P是正△ABC内的一点,若将△PBC绕点B旋转到△P′BA,则∠PBP′的度数是()A.45° B.60° C.90° D.120°4.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1 B.2 C.﹣1 D.﹣25.计算:的结果是()A.B.3 C.3 D.96.一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张二、填空题(本大题共有3小题,每小题3分,共18分)7.举世瞩目的长江三峡水利枢纽工程建成后,总装机容量为1820千瓦,年发电量为847亿千瓦时,将年发电量用科学记数法表示为千瓦时.8.分解因式:a3﹣16a= .9.如图,根据下面的运算程序,若输入x=1时,输出的结果y= .10.在计算器上,有很多按键,有的是运算符号键,有的是数字键,按照下面的程序进行操作:表中的x与y分别是输入的6个数及相应的计算结果,上面操作程序中所按的第三个运算符号键和第四个数字键应是.11.反比例函数y=的图象与正比例函数y=3x的图象交于点P(m,6),则反比例函数的关系式是.12.如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为.三、解答题(本大题共有5小题,共30分)13.解方程组:.14.先化简下列代数式,再求值:(﹣)÷,其中x=+1.15.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.16.在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是.(1)试写出y与x的函数关系式.(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为,求x和y的值.17.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.四、解答题(本大题共有4小题,共32分)18.某校初三年级共有学生540人,张老师对该年级学生的升学志愿进行了一次抽样调查,他对随机抽取的一个样本进行了数据整理,绘制了两幅不完整的统计图(图甲和图乙)如下.请根据图中提供的信息解答下列问题:(1)求张老师抽取的样本容量;(2)把图甲和图乙都补充绘制完整;(3)请估计全年级填报就读职高的学生人数.19.如图1所示,一架长4m的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面所成的角α为60度.(1)求AO与BO的长;(2)若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2所示,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端NO下滑了多少米?②如图3所示,当A点下滑到A′点,B点向右滑行到B′点时,梯子AB的中点P也随之运动到P′点,若∠POP′=15°,试求AA′的长.20.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润元.(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?21.我们给出如下定义:若一个四边形的有一组对边相等,另一组对边不相等,则称这个四边形为等对边四边形.(1)写出你所学过的特殊四边形中是等对边四边形的一种图形的名称;(2)请你探究:等对边四边形另一组对边中点的连线段与等对边中一条线段长度的大小关系,并证明你的结论.(写出已知、求证与证明)五、解答题(本大题共有1小题,共10分)22.小明为了通过描点法作出函数y=x2﹣x+1的图象,先取自变量x的7个值满足:x2﹣x1=x3﹣x2=…=x7﹣x6=d,再分别算出对应的y值,列出表1:表1记m1=y2﹣y1,m2=y3﹣y2,m3=y4﹣y3,m4=y5﹣y4,…;s1=m2﹣m1,s2=m3﹣m2,s3=m4﹣m3,…(1)判断s1、s2、s3之间关系,并说明理由;(2)若将函数“y=x2﹣x+1”改为“y=ax2+bx+c(a≠0)”,列出表2:表2其他条件不变,判断s1、s2、s3之间关系,并说明理由;(3)小明为了通过描点法作出函数y=ax2+bx+c(a≠0)的图象,列出表3:表3由于小明的粗心,表中有一个值算错了,请指出算错的值(直接写答案).六、解答题(本大题共有1小题,共12分)23.如图,菱形ABCD中,∠A=60°,边长为4厘米,动点P从A出发,以1厘米/秒的速度沿A﹣B﹣C运动,在P出发1秒后,点Q以同样的速度沿相同的路线运动,过点P、Q的直线L1、L2相互平行,且都与AB边所在的直线成60°角,设P点运动的时间为x秒(1<x<8),直线L1、L2在菱形ABCD上截得的图形面积为y平方厘米.(1)阴影部分的图形总是梯形吗?(2)求y与x之间的关系式;(3)当x取何值时,y的值最大,最大值为多少?2016年江西省中考数学模拟试卷(B卷)参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.若分式有意义,则x的取值范围是()A.x≠1 B.x>1 C.x=1 D.x<1【考点】分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母不等于0.【解答】解:∵x﹣1≠0,∴x≠1.故选:A.2.已知一组数据7,6,x,9,11的平均数是9,那么数x等于()A.3 B.10 C.12 D.9【考点】算术平均数.【分析】一组数据7,6,x,9,11的平均数是9,根据平均数的概念,即可求得x的值.【解答】解:∵(7+6+x+9+11)=9,解得:x=5×9﹣7﹣6﹣9﹣11=12.故本题选C.3.如图,P是正△ABC内的一点,若将△PBC绕点B旋转到△P′BA,则∠PBP′的度数是()A.45° B.60° C.90° D.120°【考点】旋转的性质;等边三角形的性质.【分析】根据旋转的性质可得:△PBC≌△P′BA,故∠PBC=∠P′BA,即可求解.【解答】解:∠PBP′=∠P′BA+∠PBA,=∠PBC+∠PBA,=∠ABC,=60°.故选B.4.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1 B.2 C.﹣1 D.﹣2【考点】一元二次方程的解.【分析】把x=n代入方程得出n2+mn+2n=0,方程两边都除以n得出m+n+2=0,求出即可.【解答】解:∵n(n≠0)是关于x的方程x2+mx+2n=0的根,代入得:n2+mn+2n=0,∵n≠0,∴方程两边都除以n得:n+m+2=0,∴m+n=﹣2.故选D.5.计算:的结果是()A.B.3 C.3 D.9【考点】二次根式的加减法.【分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解: =,故选A.6.一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张【考点】等腰三角形的性质;相似三角形的判定与性质.【分析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【解答】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则,解得x=4.5,所以另一段长为22.5﹣4.5=18,因为18÷3=6,所以是第6张.故选:C.二、填空题(本大题共有3小题,每小题3分,共18分)7.举世瞩目的长江三峡水利枢纽工程建成后,总装机容量为1820千瓦,年发电量为847亿千瓦时,将年发电量用科学记数法表示为8.47×1010千瓦时.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:847亿=84 700 000 000=8.47×1010千瓦时.8.分解因式:a3﹣16a= a(a+4)(a﹣4).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a3﹣16a,=a(a2﹣16),=a(a+4)(a﹣4).9.如图,根据下面的运算程序,若输入x=1时,输出的结果y= 2 .【考点】函数值.【分析】根据1的值确定利用哪个函数解析式计算,然后代入求值即可.【解答】解:x=1时,y=12+2﹣1=2.故答案是:2.10.在计算器上,有很多按键,有的是运算符号键,有的是数字键,按照下面的程序进行操作:表中的x与y分别是输入的6个数及相应的计算结果,上面操作程序中所按的第三个运算符号键和第四个数字键应是+1 .【考点】计算器—有理数.【分析】根据表格中数据求出x、y之间的关系,即可得出答案.【解答】解:根据表格中数据分析可得:x、y之间的关系为:y=3x+1,则按的第三个键和第四个键应是“+”和“1”.故答案为:+111.反比例函数y=的图象与正比例函数y=3x的图象交于点P(m,6),则反比例函数的关系式是.【考点】反比例函数与一次函数的交点问题.【分析】先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.【解答】解:先根据正比例函数y=3x求出P点坐标为(2,6),代入反比例函数y=中得k=12,所以反比例函数的关系式是.故答案为:.12.如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为.【考点】勾股定理;矩形的性质.【分析】连接AF,作GH⊥AE于点H,则有AE=EF=HG=4,FG=2,AH=2,根据矩形的性质及勾股定理即可求得其周长.【解答】解:如图,连接AF,作GH⊥AE于点H,则有AE=EF=HG=4,FG=2,AH=2,∵AG==2,AF==4,∴AF2=AD2+DF2=(AG+GD)2+FD2=AG2+GD2+2AG•GD+FD2,GD2+FD2=FG2∴AF2=AG2+2AG•GD+FG2∴32=20+2×2×GD+4,∴GD=,FD=,∵∠BAE+∠AEB=90°=∠FEC+∠AEB,∴∠BAE=∠FEC,∵∠B=∠C=90°,AE=EF,∴△ABE≌△ECF(AAS),∴AB=CE,CF=BE,∵BC=BE+CE=AD=AG+GD=2+,∴AB+FC=2+,∴矩形ABCD的周长=AB+BC+AD+CD=2BC+AB+CF+DF=2++2++2++=8.故答案为:8.三、解答题(本大题共有5小题,共30分)13.解方程组:.【考点】解二元一次方程组.【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:6x+2x=8,解得:x=1,把x=1代入①得:y=2,则方程组的解为.14.先化简下列代数式,再求值:(﹣)÷,其中x=+1.【考点】二次根式的化简求值;分式的化简求值.【分析】先算括号里的,按同分母分式相减法则:分母不变,分子相减;再将除法化成乘法,化简为x﹣2,再将x的值代入计算.【解答】解:(﹣)÷,=•,=,=x﹣2,当x=+1时,原式=+1﹣2=﹣1.15.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】相似三角形的判定与性质;平行四边形的性质;菱形的判定.【分析】(1)根据平行四边形的对角相等,以及垂直的定义可得△ABE和△ADF的两角对应相等,则两个三角形相似;(2)证明△ABG≌△ADH,则AB=AD,从而证得四边形是菱形.【解答】解:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵四边形ABCD是平行四边形,∴∠ABE=∠ADF,∴△ABE∽△ADF;(2)∵△ABE∽△ADF,∴∠BAG=∠DAH,∴AG=AH,∴∠AGH=∠AHG,∴∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.16.在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是.(1)试写出y与x的函数关系式.(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为,求x和y的值.【考点】概率公式;二元一次方程组的应用.【分析】(1)根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立.化简可得y与x的函数关系式;(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=25.【解答】解:(1)根据题意得:,整理,得8x=3x+3y,∴5x=3y,∴;(2)解法一:根据题意,得,整理,得2x+20=x+y+10,∴y=x+10,∴5x=3(x+10),∴x=15,y=25.解法二:(2)根据题意,可得,整理得,解得.17.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.【考点】利用轴对称设计图案.【分析】因为正三角形是轴对称图形,其对称轴是从顶点向底边所作垂线,故只要所涂得小正三角形关于大正三角形的中垂线对称即可.【解答】解:如图.四、解答题(本大题共有4小题,共32分)18.某校初三年级共有学生540人,张老师对该年级学生的升学志愿进行了一次抽样调查,他对随机抽取的一个样本进行了数据整理,绘制了两幅不完整的统计图(图甲和图乙)如下.请根据图中提供的信息解答下列问题:(1)求张老师抽取的样本容量;(2)把图甲和图乙都补充绘制完整;(3)请估计全年级填报就读职高的学生人数.【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)根据条形图和扇形图得到填报就读普高的学生人数以及百分比,计算即可;(2)分别求出填报就读职高的学生人数和填报就读其它的学生人数,补充完整图形;(3)根据填报就读职高的学生人数所占的百分比计算即可.【解答】解:(1)由条形图可知,填报就读普高的学生人数是30人,由扇形图可知,填报就读普高的学生人数所占的百分比是50%,∴张老师抽取的样本容量为:30÷50%=60人;(2)由条形图可知,填报就读职高的学生人数是25人,则填报就读其它的学生人数是5人,图甲和图乙都补充绘制完整如图:(3)全年级填报就读职高的学生人数为540×=225人.19.如图1所示,一架长4m的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面所成的角α为60度.(1)求AO与BO的长;(2)若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2所示,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端NO下滑了多少米?②如图3所示,当A点下滑到A′点,B点向右滑行到B′点时,梯子AB的中点P也随之运动到P′点,若∠POP′=15°,试求AA′的长.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】(1)直角三角形中已知斜边和一个角,那么两条直角边就容易求得了.(2)①可先设出AC,BD的长,然后表示出OC,OD的长,根据滑动前后梯子长不变的特点在直角三角形WMC中运用勾股定理求出未知数的值,然后求出AC,BD的长.②可根据直角三角形斜边中线定理,和已知的∠ABO的度数,来求出∠B′A′O的度数,然后求出OA′的长,从而求出AA′的长.【解答】解:(1)BO=AB•cos60°=4×=2(m)AO=AB•sin60°=4×=2(m)答:BO=2m;AO=2m.(2)①设AC=2x,BD=3x,在Rt△COD中,OC=2﹣2x,OD=2+3x,CD=4m.根据勾股定理有OC2+OD2=CD2.∴(2﹣2x)2+(2+3x)2=42.∴13x2+(12﹣8)x=0.∵x≠0,∴13x+12﹣8=0,∴x=m.∴AC=2x=m.答:梯子顶端A沿NO下滑了m.②∵P点和P′点分别是Rt△AOB的斜边AB与Rt△A′OB′的斜边A′B′的中点.∴PA=PO,P′A′=P′O.∴∠PAO=∠AOP,∠P′A′O=∠A′OP′.∴∠P′A′O﹣∠PAO=∠A′OP′﹣∠AOP.∴∠P′A′O﹣∠PAO=∠POP′=15°.又∵∠PAO=30°.∴∠P′A′O=45°.∴A′O=A′B′•cos45°=4×=2(m).∴AA′=AO﹣A′O=(2﹣2)m.20.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润2000 元.(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?【考点】二次函数的应用.【分析】(1)原来一天可获利润=(原售价﹣原进价)×一天的销售量;(2)①根据等量关系:降价后的单件利润×销售量=总利润,列方程解答;②根据“总利润=降价后的单件利润×销售量”列出函数表达式,并运用二次函数性质解答.【解答】解:(1)×100=2000(元);故答案为:2000.(2)①依题意得:=2160即x2﹣10x+16=0解得:x1=2,x2=8经检验:x1=2,x2=8都是方程的解,且符合题意.答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元.②依题意得:y=,∴y=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10≤0,∴当x=5时,商店所获利润最大.21.我们给出如下定义:若一个四边形的有一组对边相等,另一组对边不相等,则称这个四边形为等对边四边形.(1)写出你所学过的特殊四边形中是等对边四边形的一种图形的名称;(2)请你探究:等对边四边形另一组对边中点的连线段与等对边中一条线段长度的大小关系,并证明你的结论.(写出已知、求证与证明)【考点】三角形中位线定理;等腰梯形的性质.【分析】(1)根据题目中的定义即刻得到结论;(2)连接AC,取AC的中点G,连接EG,FG,根据三角形中位线的性质和三角形的三边关系即可得到结论.【解答】解:(1)所学过的特殊四边形中是等对边四边形的一种图形的名称:等腰梯形;(2)另一组对边中点的连线段小于等对边中一条线段长度;已知:四边形ABCD,AB=CD,点E,F分别是AD,BC的中点,求证:EF<AB,证明:连接AC,取AC的中点G,连接EG,FG,∵点E,F分别是AD,BC的中点,∴AE=DE,BF=CF,∴EG=CD,GF=AB,∵AB=CD,∴GE+GF=AB=CD,在△EFG中,EG+FG>EF,∴AB>EF.五、解答题(本大题共有1小题,共10分)22.小明为了通过描点法作出函数y=x2﹣x+1的图象,先取自变量x的7个值满足:x2﹣x1=x3﹣x2=…=x7﹣x6=d,再分别算出对应的y值,列出表1:表1记m1=y2﹣y1,m2=y3﹣y2,m3=y4﹣y3,m4=y5﹣y4,…;s1=m2﹣m1,s2=m3﹣m2,s3=m4﹣m3,…(1)判断s1、s2、s3之间关系,并说明理由;(2)若将函数“y=x2﹣x+1”改为“y=ax2+bx+c(a≠0)”,列出表2:表2其他条件不变,判断s1、s2、s3之间关系,并说明理由;(3)小明为了通过描点法作出函数y=ax2+bx+c(a≠0)的图象,列出表3:表3由于小明的粗心,表中有一个值算错了,请指出算错的值(直接写答案).【考点】二次函数综合题.【分析】(1)根据表中数值计算出m1、m2、m3、m4,继而计算出s1、s2、s3的值即可得知;(2)可分别表示出s1,s2,s3的值,然后进行比较即可.(3)根据(1)(2)得出的规律,进行判断即可.【解答】解:(1)s1=s2=s3.∵m1=y2﹣y1=3﹣1=2,同理m2=4,m3=6,m4=8.∴s1=m2﹣m1=4﹣2=2,同理s2=2,s3=2.∴s1=s2=s3.(2)s1=s2=s3.∵m1=y2﹣y1=ax22+bx2+c﹣(ax12+bx1+c)=d[a(x2+x1)+b].m2=y3﹣y2=ax32+bx3+c﹣(ax22+bx2+c)=d[a(x3+x2)+b].同理m3=d[a(x4+x3)+b]、m4=d[a(x5+x4)+b].∴s1=m2﹣m1=d[a(x3+x2)+b]﹣d[a(x2+x1)+b]=2ad2.同理s2=2ad2、s3=2ad2.∴s1=s2=s3.(3)412.∵m1=y2﹣y1=50﹣10=40,m2=y3﹣y2=110﹣50=60,m3=y4﹣y3=190﹣110=80,m4=y5﹣y4=290﹣190=100,m5=y6﹣y5=412﹣290=122,…;∴且s1=s2=s3=20,而s4=22,故算错的值是412.六、解答题(本大题共有1小题,共12分)23.如图,菱形ABCD中,∠A=60°,边长为4厘米,动点P从A出发,以1厘米/秒的速度沿A﹣B﹣C运动,在P出发1秒后,点Q以同样的速度沿相同的路线运动,过点P、Q的直线L1、L2相互平行,且都与AB边所在的直线成60°角,设P点运动的时间为x秒(1<x<8),直线L1、L2在菱形ABCD上截得的图形面积为y平方厘米.(1)阴影部分的图形总是梯形吗?(2)求y与x之间的关系式;(3)当x取何值时,y的值最大,最大值为多少?【考点】四边形综合题.【分析】(1)阴影部分的图形不一定总是梯形;有三种情况:①当1<x≤4时;②当4<x <5时;③当5≤x<8时;容易得出结论;(2)分三种情况:①当1<x≤4时,由等边三角形的性质和梯形面积公式即可得出结果;②当4<x<5时,连接BD,证出△ABD和△BCD是等边三角形,得出BD=AB=4,由等边三角形的性质和图象面积公式即可得出结果;③当5≤x<8时,同①得出结果;(3)当1<x≤4时,由一次函数的性质得出y最大=;当4<x<5时,由二次函数的顶点是得出当x=时,y最大=;当5≤x<8时,由一次函数的性质得出当x=5时,y最大=;进行比较即可.【解答】解:(1)阴影部分的图形不一定总是梯形;有三种情况:①当1<x≤4时,阴影部分的图形是梯形;②当4<xxy5时,阴影部分的图形不是梯形;当③5≤x<8时,阴影部分的图形是梯形;(2)分三种情况:①当1<x≤4时,y=(x﹣1+x)×=x﹣;②当4<x<5时,连接BD,如图1所示:∵四边形ABCD是菱形,∠A=60°,∴AB=BC=CD=DA=4,∴△ABD和△BCD是等边三角形,∴BD=AB=4,y=(x﹣1+4)×(5﹣x)+(4+8﹣x)×(x﹣4)=﹣x2+x﹣;③当5≤x<8时,如图2所示y=(8﹣x+9﹣x)×=﹣x+;(3)当1<x≤4时,y=x﹣,y随x的增大而增大,当x=4时,y最大=;当4<x<5时,y=﹣x2+x﹣=﹣(x﹣)2+,∴当x=时,y最大=;当5≤x<8时,y=﹣x+,y随x的增大而减小,∴当x=5时,y最大=;综上所述:∵>,∴当x=时,y的值最大,最大值为.。