2017-2018学年新课标最新湖北省孝感市八年级下学期期末数学试卷及答案-精品试卷
- 格式:doc
- 大小:593.40 KB
- 文档页数:27
2017 —2018 学年八年级数学下期末试题2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题(满分120 分,时间:120 分钟)一、选择题: 本大题共8 个小题,每题 3 分,共24 分,在每题给出的四个选项A、B、c、D 中,只有一项为哪一项正确的,请把正确的选项填在答题卡的相应地点1. 在数轴上与原点的距离小于8 的点对应的x 知足A.x <8B.x >8c.x <-8 或x>8D.-8 <x<82. 将多项式﹣6a3b2﹣3a2b2+12a2b3 分解因式时,应提取的公因式是A .-3a2b2B.-3abc .-3a2bD.-3a3b33. 以下分式是最简分式的是A .B.c.D.4. 如图,在Rt △ABc中,∠c=90°,∠ABc=30°,AB=8,将△ABc沿cB 方向向右平移获得△DEF.若四边形ABED的面积为8,则平移距离为A .2B.4c.8D.165. 如下图,在△ABc 中,AB=Ac,AD 是中线,DE⊥A B,D F⊥Ac,垂足分别为E、F,则以下四个结论中:①AB 上任一点与Ac 上任一点到D的距离相等;②AD上任一点到AB、Ac 的距离相等;③∠BDE=∠cDF;④∠1=∠2. 正确的有A.1 个B.2 个c.3 个D.4 个6. 每千克元的糖果x 千克与每千克n 元的糖果y 千克混淆成杂拌糖,这样混淆后的杂拌糖果每千克的价钱为A. 元B. 元c. 元D.元7. 如图,□ABcD的对角线Ac,BD交于点o,已知AD=8,BD=12,Ac=6,则△oBc 的周长为A .13B.26c.20D.178. 如图,DE是△ABc的中位线,过点 c 作cF∥BD交DE的延伸线于点F,则以下结论正确的选项是A .EF=cFB.EF=DEc.cF<BDD.EF>DE二、填空题(本大题共 6 个小题,每题 3 分,共18 分,只需求把最后的结果填写在答题卡的相应地区内)9. 利用因式分解计算:2012-1992= ;10. 若x+y=1,xy=-7 ,则x2y+xy2= ;11. 已知x=2 时,分式的值为零,则k=;12. 公路全长为sk,骑自行车t 小时可抵达,为了提早半小时抵达,骑自行车每小时应多走;13. 一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为;14. 如图,△AcE 是以□ABcD的对角线Ac 为边的等边三角形,点 c 与点E对于x 轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.三、解答题(本大题共78 分, 解答要写出必需的文字说明、演算步骤)15. (6 分)分解因式(1)20a3-30a2 (2)25(x+y)2-9 (x-y )216. (6 分)计算:(1)(2)17. (6 分)A、B 两地相距200 千米,甲车从 A 地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A 地80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.18. (7 分)已知:如图,在△ABc中,AB=Ac,点D 是Bc 的中点,作∠EAB=∠BAD,AE边交cB 的延伸线于点E,延伸AD到点F,使AF=AE,连结cF.求证:BE=cF.19.(8 分)“二广”高速在益阳境内的建设正在紧张地进行,现有大批的沙石需要运输.“益安”车队有载重量为8 吨、10 吨的卡车共12 辆,所有车辆运输一次能运输110 吨沙石.(1)求“益安”车队载重量为8 吨、10 吨的卡车各有多少辆?(2)跟着工程的进展,“益安”车队需要一次运输沙石165 吨以上,为了达成任务,准备新增购这两种卡车共 6 辆,车队有多少种购置方案,请你一一写出.20. (8 分)如图,在Rt△ABc 中,∠AcB=90°,点D, E 分别在AB,Ac 上,cE=Bc,连结cD,将线段cD 绕点c 按顺时针方向旋转90°后得cF,连结EF.(1) 增补达成图形;(2) 若E F∥cD,求证:∠BDc=90° .21.(8 分)下边是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y ,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)= (y+4)2(第三步)= (x2-4x+4 )2(第四步)(1)该同学第二步到第三步运用了因式分解的.A .提取公因式B.平方差公式c .两数和的完整平方公式D.两数差的完整平方公式(2)该同学因式分解的结果能否完全?.(填“完全”或“不完全”)若不完全,请直接写出因式分解的最后结果.( 3 )请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1 进行因式分解.22. (8 分)如图,四边形ABcD中,对角线Ac,BD订交于点o,点E,F 分别在oA,oc 上(1)给出以下条件;①oB=oD,②∠1=∠2,③oE=oF,请你从中选用两个条件证明△BEo≌△DFo;(2)在(1)条件中你所选条件的前提下,增添AE=cF,求证:四边形ABcD是平行四边形.23. (10 分)如图,在□ABcD中,E是Bc 的中点,连结AE并延伸交Dc 的延伸线于点F.(1)求证:AB=cF;(2)连结DE,若AD=2AB,求证:D E⊥A F.24. (11 分)如图,在直角梯形ABcD中,AD∥Bc,∠B=90°,且AD=12c,AB=8c,Dc=10c,若动点P从A点出发,以每秒2c 的速度沿线段AD向点D运动;动点Q从c 点出发以每秒3c 的速度沿cB 向B 点运动,当P点抵达D点时,动点P、Q 同时停止运动,设点P、Q 同时出发,并运动了t 秒,回答以下问题:(1)Bc=c;(2)当t 为多少时,四边形PQcD成为平行四边形?(3)当t 为多少时,四边形PQcD为等腰梯形?(4)能否存在t ,使得△DQc是等腰三角形?若存在,请求出t 的值;若不存在,说明原因.2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题参照答案一、选择题( 每题 3 分,共24 分)1 、D 2、A 3、c4、A 5、c6、B7、D8、B二、填空题( 每题 3 分,共18 分)9.1.-711.-612.-13.6( 六)14. (5,0)三、解答题( 共78 分 )15. ( 1 )解:20a3 ﹣30a2=10a2 (2a ﹣3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)解:25(x+y)2﹣9(x﹣y)2=[5 (x+y)+3(x﹣y)][5 (x+y)﹣3(x﹣y) ]= (8x+2y)(2x+8y);=4(4x+y)(x+4y) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分16. (1)解:== ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)====⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分17. 设甲车的速度是x 千米/ 时,乙车的速度为(x+30)千米/ 时,⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分解得,x=60,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分经检验,x=60 是原方程的解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分则x+30=90,即甲车的速度是60 千米/ 时,乙车的速度是90 千米/ 时.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分18. 证明:∵AB=Ac,点D是Bc 的中点,∴∠cAD= ∠BAD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分又∵∠EAB=∠BAD,∴∠cAD= ∠EAB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分在△AcF 和△ABE中,∴△AcF≌△ABE(SAS).∴BE=cF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分19. 解:(1)设“益安”车队载重量为8 吨、10 吨的卡车分别有x 辆、y 辆,依据题意得:,解之得:.答:“益安”车队载重量为8 吨的卡车有 5 辆,10 吨的卡车有7 辆;⋯⋯⋯⋯⋯⋯⋯ 4 分(2)设载重量为8 吨的卡车增添了z 辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z <,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵z≥0 且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有 3 种购车方案:①载重量为8 吨的卡车购置 1 辆,10 吨的卡车购置 5 辆;②载重量为8 吨的卡车购置 2 辆,10 吨的卡车购置 4 辆;③载重量为8 吨的卡车不购置,10 吨的卡车购置 6 辆.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分20.(1) 解:补全图形,如图所示.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) 证明:由旋转的性质得∠DcF=90°,Dc=Fc,∴∠DcE +∠EcF=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∵∠AcB=90°,∴∠DcE+∠BcD=90°,∴∠EcF=∠BcD∵E F∥Dc,∴∠EFc+∠DcF=180°,∴∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分在△BDc和△EFc 中,Dc =Fc,∠BcD=∠EcF,Bc=Ec,∴△BDc≌△EFc(SAS),∴∠BDc= ∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分21. 解:(1)该同学第二步到第三步运用了因式分解的两数和的完整平方公式;故选:c;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)该同学因式分解的结果不完全,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x ﹣ 2 )4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)(x2﹣2x)(x2﹣2x+2)+1= (x2﹣2x)2+2(x2﹣2x)+1= (x2﹣2x+1)2= (x ﹣ 1 )4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分22. 证明:(1)选用①②,∵在△BEo和△DFo中,∴△BEo ≌△DFo (ASA);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)由(1)得:△BEo≌△DFo,∴Eo=Fo,Bo=Do,∵AE=cF,∴Ao=co,∴四边形ABcD 是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分23. 证明:(1)∵四边形ABcD是平行四边形,∴AB∥DF,∴∠ABE=∠FcE,∵E为Bc 中点,∴BE=cE,在△ABE与△FcE 中,,∴△ABE≌△FcE(ASA),∴AB=Fc;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(2)∵AD=2AB,AB=Fc=cD,∴AD=DF,∵△ABE≌△FcE,∴AE=EF,∴DE ⊥A F.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分24. 解:依据题意得:PA=2t,cQ=3t ,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12c,在直角△cDE中,∵∠cED=90°,Dc=10c,DE=8c,∴Ec==6c,∴Bc=BE+Ec=18c.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(直接写出最后结果18c 即可)(2)∵AD∥Bc,即PD∥cQ,∴当PD=cQ时,四边形PQcD为平行四边形,即12-2t=3t ,解得t= 秒,故当t= 秒时四边形PQcD 为平行四边形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12,c当PQ=cD时,四边形PQcD为等腰梯形.过点P 作PF⊥Bc 于点F,过点D作DE⊥Bc 于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△cDE中,,∴Rt△PQF≌Rt△cDE(HL),∴QF=cE,∴Qc-PD=Qc-EF=QF+Ec=2c,E即3t- (12-2t )=12,解得:t= ,即当t= 时,四边形PQcD 为等腰梯形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分(4)△DQc是等腰三角形时,分三种状况议论:①当Qc=Dc时,即3t=10 ,∴t= ;②当DQ=Dc时,∴t=4 ;③当QD=Qc时,3t ×∴t= .故存在t ,使得△DQc是等腰三角形,此时t 的值为秒或 4 秒或秒.⋯⋯⋯11 分③在Rt△D Q中,DQ2=D2+Q236t=100t=。
湖北省孝感市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题(共10题,共30分) (共10题;共30分)1. (3分)(2018·柳州模拟) 老师要求同学们课后自作既是轴对称又是中心对称的图形,结果有以下几个,其中符合条件的有()。
A . 1个B . 2个C . 3个D . 4个2. (3分)若关于x的一元二次方程(k-1)x2+x+2=0有实数根,则k应满足()A . k≤B . k≤且k≠1C . k≤且k≥0D . 0≤k≤且k≠13. (3分)已知点P(-1,3)在反比例函数的图象上,则k的值是()A .B .C . 3D . -34. (3分)方程x2-9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A . 12B . 12或15C . 15D . 不能确定5. (3分)近年来市政府每年出资新建一批廉租房,使城镇住房困难的居民住房状况得到改善.下面是某小区2006~2008年每年人口总数和人均住房面积的统计的折线图(人均住房面积=该小区住房总面积/该小区人口总数,单位:㎡/人).根据以上信息,则下列说法:①该小区2006~2008年这三年中,2008年住房总面积最大;②该小区2007年住房总面积达到1.728×106 m2;③该小区2008年人均住房面积的增长率为4%.其中正确的有()A . ①②③B . ①②C . ①D . ③6. (3分)否定“自然数a、b、c中恰有一个偶数”时的正确反设为()A . a、b、c都是奇数B . a、b、c或都是奇数或至少有两个偶数C . a、b、c都是偶数D . a、b、c中至少有两个偶数7. (3分)(2019·邹平模拟) 如图,正方形ABCO的边长为4,点E在线段AB上运动,AE=BF,且AF与OE 相交于点P,直线y= x-3与x轴、y轴交于M、N两点,连接PN,PM,则△PMN面积的最大值().A .B . 12C .D . 158. (3分)(2017·竞秀模拟) 如图,▱ABCD中,AB=13,AD=10,将▱ABCD沿AE翻折后,点B恰好与点C重合,则点C到AD的距离为()A . 5B . 12C . 3D .9. (3分)方程ax(x-b)+(b-x)=0的根是()A . x1=b,x2=aB . x1=b,x2=C . x1=a,x2=D . x1=a2 , x2=b210. (3分)(2017·贵港) 如图所示,在梯形ABCD中,AB∥CD,E是BC的中点,EF⊥AD于点F,AD=4,EF=5,则梯形ABCD的面积是()A . 40B . 30C . 20D . 10二、填空题(共10题,共30分) (共10题;共30分)11. (3分) (2020九上·东台期末) 某市努力改善空气质量,近年来空气质量明显好转,根据该市环境保护局公布的2010﹣2014这五年各年全年空气质量优良的天数如表所示,根据表中信息回答:20102011201220132014 234233245247256(1)这五年的全年空气质量优良天数的中位数是________,平均数是________;(2)这五年的全年空气质量优良天数与它前一年相比增加最多的是________年(填写年份);(3)求这五年的全年空气质量优良天数的方差________.12. (3分)计算:=________.13. (3分) (2016八上·卢龙期中) 一个多边形的内角和是它的外角和的3倍,则这个多边形是________边形.14. (3分)(2018·苏州模拟) 如图,矩形的顶点在坐标原点,顶点、分别在轴、轴的正半轴上,顶点在反比例函数( 为常数, )的图像上,将矩形绕点按逆时针方向旋转90°得到矩形,若点的对应点恰好落在此反比例函数的图像上,则的值是________.15. (3分) (2019八下·邓州期中) 如图,在平面直角坐标系中,反比例函数y= (k≠0),经过▱ABCD 的顶点B.D,点A的坐标为(0,-1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点C的坐标是________.16. (3分) (2016九上·台州期末) 已知关于x的一元二次方程x2+ x﹣1=0有两个不相等的实数根,则k的取值范围是________.17. (3分)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n 的值为________.18. (3分)(2011·钦州) 把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是________°.19. (3分)(2017·淄博) 设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1 , E1是其分点,连接AE1 , BD1交于点F1 ,得到四边形CD1F1E1 ,其面积S1= .如图2,分别将AC,BC边3等分,D1 , D2 , E1 , E2是其分点,连接AE2 , BD2交于点F2 ,得到四边形CD2F2E2 ,其面积S2= ;如图3,分别将AC,BC边4等分,D1 , D2 , D3 , E1 , E2 , E3是其分点,连接AE3 , BD3交于点F3 ,得到四边形CD3F3E3 ,其面积S3= ;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CDnFnEn ,其面积Sn=________.20. (3分)(2019·银川模拟) 如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB 的正弦值是________.三、解答题(共6题,共40分) (共6题;共40分)21. (6分) (2019九上·灵石期中) 解方程.(1)(3x+2)2=25(2) 3x2﹣1=4x(3)(2x+1)2=3(2x+1)(4) 4x2+8x+3=022. (6分)(2017·润州模拟) 王华、张伟两位同学分别将自己10次数学自我检测的成绩绘制成如下统计图:(1)根据图中提供的数据列出如下统计表:平均成绩(分)中位数(分)众数(分)方差(S2)王华 80 b 80 d张伟 a 85 c 260则a=________,b=________,c=________,d=________,(2)将90分以上(含90分)的成绩视为优秀,则优秀率高的是________.(3)现在要从这两个同学选一位去参加数学竞赛,你可以根据以上的数据给老师哪些建议?23. (6分) (2019九上·台安月考) 如图,奥运圣火抵达某市奥林匹克广场后,沿图中直角坐标系中的一段反比例函数图象传递.动点表示火炬位置,火炬从离北京路10米处的M点开始传道,到离北京路1000米的N点时传递活动结束.迎圣火临时指挥部设在坐标原点O(北京路与奥运路的十字路口),OATB为少先队员鲜花方阵,方阵始终保持矩形形状且面积恒为10000(路线宽度均不计).(1)求图中反比例函数的关系式(不需写出自变量的取值范围);(2)当鲜花方阵的周长为500米时,确定此时火炬的位置(用坐标表示).24. (6分)已知:如图,试用尺规将它四等分.25. (8.0分)(2019·昆明模拟) 如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求Rt△CED的内切圆半径的取值范围.26. (8.0分) (2017八下·卢龙期末) 如图1,△ABD和△BDC都是边长为1的等边三角形。
2017-2018学年八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1)A.a≤0B.a≥0C.a<0D.a>02.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1C.6,8,11D.5,12,233的整数部分为x,小数部分为y x-y的值是()A.-3 B C.1D.34.如图,能判定四边形ABCD是平行四边形的是()A.AD∥BC,AB=CD B.∥A=∥B,∥C=∥DC.∥A=∥C,∥B=∥D D.AB=AD,CB=CD5.连接对角线互相垂直的四边形的四边中点,所构成的四边形一定是()A.矩形B.菱形C.正方形D.梯形6.八年级甲、乙两班各派5名学生组队进行五人制足球赛他们的身高(单位:cm)如表:队员1队员2队员3队员4队员5甲班162164165166168乙班161163165167169设两队队员身高的平均数依次为身高的方差依次为,则下列关系中完全正确的是()7.若实数k,m,n满足k+m+n=0,且k<n<m,则函数y=kx+m的图象可能是()8.已知A(﹣2,y1),B(4,y2)是一次函数y=﹣x+3的图象上的两个点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定9.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8cm,则图中所有正方形的面积的和是()A.64B.81C.128D.19210.如图,将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF,若AB=6,则BC的长为()A.2B.22C.4D.23二、填空题(每小题4分,共20分)11.已知则x3y+xy3=.12.如果一个三角形的三边长之比为9:12:15,且周长为72cm,则它的面积为cm2.13.已知一组数据为:12,9,10,8,1l,则这组数据的方差是.14.如图,已知一次函数y1=﹣x+b的图象与y轴交于点A(0,6),y2=kx﹣2的图象与x轴交于点B(2,0),那么使y1>y2成立的自变量x的取值范围是.第14题第15题15.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.三、计算题(每小题10分,共10分)四、解答题(共40分)17.(6分)某教育局为了解本地八年级学生参加社会实践活动情况,随机抽查了部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)α=,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该地共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?18.(6分)已知:如图,在∥ABC中,D是BC边上的一点,E是AD的中点,过点A 作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.19.(6分)根据安徽省实施《中华人民共和国道路交通安全法》办法第二十八条规定“小汽车在同方向划有二条以上机动车道的城市道路上最高速度不得超过60km/h”.如图,省内一辆小汽车自右向左在同方向划有二条以上机动车道的城市道路上直道行驶,某一时刻刚好行驶到路对面车速观察点A正前方30m的C处,过了2.5后行驶到B处,此时测得小汽车与车速观察点A之间距离为50m,这辆小汽车超速了吗?20.(6分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形.(1)使三角形三边长为3,(2)使平行四边形有一锐角为45°,且面积为4.21.(6分)两块完全相同的三角板∥(∥ABC)和∥(∥A1B1C1)如图∥放置在同一平面上(∥C=∥C1=90°,∥ABC=∥A1B1C1=60°),斜边重合.若三角板∥不动,三角板∥在三角板∥所在的平面上向右滑动,图∥是滑动过程中的一个位置.(1)在图∥中,连接BC1、B1C,求证:∥A1BC1∥∥AB1C;(2)三角板∥滑到什么位置(点B1落在AB边的什么位置)时,四边形BCB1C1是菱形?说明理由.22.(10分)如图,在平面直角坐标系中,直线分别与x轴、y轴交于点B、C,且与直线交于点A.(1)分别求出点A、B、C的坐标;(2)若D是线段OA上的点,且∥COD的面积为12,求直线CD的函数表达式;(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点Q的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分)1-5:ABCCA6-10:ABADD二、填空题(每小题4分,共20分)11.10.12.216.13.2.14.x<4.15.10.三、计算题(每小题10分,共10分)四、解答题(共40分)17.解:(1)a=1﹣(40%+20%+25%+5%)=1﹣90%=10%,圆心角的度数为360°×10%=36°;(2)众数是5天,中位数是6天;(3)2000×(25%+10%+5%)=800(人).答:估计“活动时间不少于7天”的学生人数大约有800人.18.(1)证明:∥E是AD的中点,∥AE=DE.∥AF∥BC,∥∥FAE=∥BDE,∥AFE=∥DBE.在∥AFE和∥DBE中,,∥∥AFE∥∥DBE(AAS).∥AF=BD.∥AF=DC,∥BD=DC.即:D是BC的中点.(2)解:四边形ADCF是矩形;证明:∥AF=DC,AF∥DC,∥四边形ADCF是平行四边形.∥AB=AC,BD=DC,∥AD∥BC即∥ADC=90°.∥平行四边形ADCF是矩形.19.解:在Rt∥ABC中,AC=30m,AB=50m;据勾股定理可得:=40(m)∥小汽车的速度为v==16(m/s)=16×3.6(km/h)=57.6(km/h);∥60(km/h)>57.6(km/h);∥这辆小汽车没有超速行驶.答:这辆小汽车没有超速.20.解:(1)三角ABC为所求;(2)四边形DEFG为所求.21.(1)证明:∥三角板∥(∥ABC)和∥(∥A1B1C1)是两块完全相同的三角板,∥AC=A1C1AB=A1B1∥A=∥A1∥在图∥中A1B=AB1∥∥A1BC1∥∥AB1C.(2)解:点B1落在AB边的中点.理由如下:如图∥所示,由已知条件知BC=B1C1,BC∥B1C1∥四边形BCB1C1是平行四边形.要使四边形BCB1C1是菱形,则BC=CB1∥∥ABC=∥A1B1C1=60°,∥∥BCB1为等边三角形.∥BB1=B1C=BC,又∥∥A=30°,在直角三角形ABC中,BC=AB,∥BB1=AB,∥点B1落在AB边的中点.22.解:(1)直线,当x=0时,y=6,当y=0时,x=12,∥B(12,0),C(0,6),解方程组:∥A(6,3),答:A(6,3),B(12,0),C(0,6).(2)解:设D(x,x),∥∥COD的面积为12,∥×6×x=12,解得:x=4,∥D(4,2),设直线CD的函数表达式是y=kx+b,把C(0,6),D(4,2)代入得:,解得:,∥y=﹣x+6,答:直线CD的函数表达式是y=﹣x+6.(3)答:存在点Q,如图,使以O、C、P、Q为顶点的四边形是菱形,点Q的坐标是(6,6)或(﹣3,3)或.。
湖北省孝感市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2015·绵阳) 函数中,自变量x的取值范围是().A . x>-5B . x≥-5C . x≤-5D . x≠-52. (2分)如图,∠1、∠2、∠3、∠4是五边形ABCD的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A . 110°B . 108°C . 105°D . 100°3. (2分) (2019七下·北京期中) 点A (2,-1)关于x轴对称的点B的坐标为()A . (2, 1)B . (-2,1)C . (2,-1)D . (-2,- 1)4. (2分)下列运算正确的是()A . =﹣5B . ()2=﹣3C . =±3D . (﹣)2=75. (2分)如图,已知菱形ABCD的边长为4,∠ABC=120°,过B作BE⊥AD,则BE的长为()A .B .C . 2D . 16. (2分)某班50名学生身高测量结果如下表:身高 1.51 1.521.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.64人数113434468106该班学生身高的众数和中位数分别是()A . 1.60,1.56B . 1.59,1.58C . 1.60,1.58D . 1.60,1.607. (2分)在下列叙述中:①一组对边相等的四边形是平行四边形;②函数y=中,y随x的增大而减小;③有一组邻边相等的平行四边形是菱形;④有不可能事件A发生的概率为0.0001.正确的叙述有()A . 0个B . 1个C . 2个D . 3个8. (2分)(2016·东营) 在△ABC中,AB=10,AC=2 ,BC边上的高AD=6,则另一边BC等于()A . 10B . 8C . 6或10D . 8或109. (2分)(2013·绍兴) 绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A . 4mB . 5mC . 6mD . 8m10. (2分)如果函数y=ax+b(a<0,b>0)和y=kx(k>0)的图象交于点P,那么点P应该位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限11. (2分) (2017八下·海淀期中) 若某正比例函数过,则关于此函数的叙述不正确的是().A . 函数值随自变量的增大而增大B . 函数值随自变量的增大而减小C . 函数图象关于原点对称D . 函数图象过二、四象限12. (2分) (2017八下·鞍山期末) 如图,函数y=2x和y=ax+4的图象相交于点A(,3),则不等式2x <ax+4的解集为()A . x<B . x<3C . x>D . x>3二、填空题 (共6题;共6分)13. (1分)(2017·和平模拟) 计算的结果等于________.14. (1分) (2019八下·博罗期中) 一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形是________形。
孝感市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各式是最简分式的()A .B .C .D .2. (2分)(2018·西华模拟) “厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费的食物折合成粮食大约是210 000 000人一年的口粮,将210 000 000用科学记数法表示为()A . 2.1 10 8B . 0.21 10 9C . 2.1 10 9D . 21 10 73. (2分)如图,矩形ABCD中,AB=3,BC=5.过对角线交点O作OE⊥AC交AD于E,则AE的长是()A . 1.6B . 2.5C . 3D . 3.44. (2分)(2020·南宁模拟) 下列说法正确的是()A . 要调查现在人们在数字化时代的生活方式,宜采用全面调查方式;B . 要调查某品牌圆珠笔芯的使用寿命,宜采用抽样调查方式;C . 一组数据3,4,4,6,8,5的中位数是5;D . 若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则甲组数据更稳定.5. (2分)(2018·夷陵模拟) 如图,已知线段AB,分别以A,B为圆心,大于 AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A . 40°B . 50°C . 60°D . 70°6. (2分) (2019七下·安徽期末) 一个长方形的长增加50%,宽减少50%,那么长方形的面积()A . 不变B . 增加50%C . 减少25%D . 不能确定7. (2分) (2019八下·桂林期末) 某商店在节日期间开展优惠促销活动:凡购买原价超过200元的商品,超过200元的部分可以享受打折优惠若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)之间的函数关系的a图象如图所示,则图中a的值是()A . 300B . 320C . 340D . 3608. (2分)(2020·西宁模拟) 如图所示,在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,作CD的中垂线与CD交于点E,与BC交于点F.若CF=x,tanA=y,则x与y之间满足()A .B .C .D .9. (2分) (2017八下·庐江期末) 等边三角形边长为a,则该三角形的面积为()A .B .C .D .10. (2分) (2020八下·无锡期中) 如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC 于点E,则AE的长是()A . 5cmB . 6cmC . cmD . cm二、填空题 (共10题;共12分)11. (1分)若分式的值为零,则x的值为________.12. (1分) (2019八下·简阳期中) 已知关于的不等式组只有3个整数解,则实数的取值范围是________.13. (1分)已知ABCD,对角线AC,BD相交于点0,请你添加一个适当的条件,使 ABCD成为一个菱形,你添加的条件是________.14. (2分)(2019·贵阳) 在平面直角坐标系内,一次函数y=k1x+b1与y=k2x+b2的图象如图所示,则关于x,y的方程组的解是________.15. (1分) (2020九下·连山月考) 如图,在平面直角坐标系中,直线交轴于点,交轴于点,在轴上取点,使,连接,过点作轴,交直线于点,过点作,交轴于点,过点作轴,交直线于点,过点作,交轴于点,……以此类推,则点的纵坐标为________.16. (1分)如图,四边形ABCD中,AB∥CD,要使四边形ABCD为平行四边形,则应添加的条件是________.(添加一个条件即可,不添加其它的点和线).17. (1分) (2017八下·蒙城期末) 顺次连接对角线互相垂直且相等的四边形中点所得到的四边形是________.18. (2分)(2020·呼伦贝尔模拟) 一组数据1,2,3,x,5的平均数是3,则该组数据的方差是________.19. (1分)列分式方程的步骤:(1)审清题意,明确题目中的未知数;(2)根据题意找________,列出分式方程.20. (1分)(2018·遵义模拟) 如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为________.三、解答题 (共7题;共59分)21. (5分)(2017·平顶山模拟) 化简÷ ﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.22. (2分) (2019八下·平昌期末) 如图,四边形是正方形,点是上的任意一点,于点,交于点.求证:23. (15分)(2020·东丽模拟) 某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生,对他们一周的课外阅读时间进行了调整,井绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为________,图①中的值为________;(2)求本次调查获取的样本数据的众数、中位数和平均数;(3)根据样本数据,估计该校一周的课外阅读时间大于的学生人数.24. (15分)(2020·杭州模拟) 设一次函数y=kx+b(k,b是常数,k≠0)的图象过A(1,3),B(﹣1,﹣1)两点.(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值.(3)已知点C(x1 , y1)和点D(x2 , y2)在该一次函数图象上,设m=(x1﹣x2)(y1﹣y2),判断反比例函数y=的图象所在的象限,说明理由.25. (6分) (2017八下·禅城期末) 如图,同学们用直尺和三角板画平行线,将一块三角板ABC的一边AC 贴着直尺推移到A1B1C1的位置.(1)这种画平行线的方法利用了怎样的移动?(2)连接BB1 ,证明得到的四边形ABB1A1是平行四边形.26. (10分) (2016九下·长兴开学考) 为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?27. (6分)(2017·曹县模拟) 如图,AC是圆O的直径,AB、AD是圆O的弦,且AB=AD,连结BC、DC.(1)求证:△ABC≌△ADC;(2)延长AB、DC交于点E,若EC=5cm,BC=3cm,求四边形ABCD的面积.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共12分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共59分)21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、第11 页共11 页。
湖北省孝感市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)(2017·镇江) 根据下表中的信息解决问题:数据3738394041频数845a1若该组数据的中位数不大于38,则符合条件的正整数a的取值共有()A . 3个B . 4个C . 5个D . 6个2. (2分)下列各式:① ,② ,③ ,④ 中,最简二次根式有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2019九上·高州期中) 如图,在一幅矩形风景画外面的四周镶一条金色纸边,制成一幅矩形挂图,整个挂图的长80cm ,宽50cm如图所示,如果风景画的面积是3500cm2 .设金色纸边的宽为xcm ,那么x 满足的方程是()A . (80﹣x)(50﹣x)=3500B . (80﹣2x)(50﹣2x)=3500C . (80+x)(50+x)=3500D . (80+2x)(50+2x)=35004. (2分) (2019八下·江阴期中) 下列命题是真命题的是()A . 对角线互相平分的四边形是平行四边形B . 对角线相等的四边形是矩形C . 对角线互相垂直且相等的四边形是正方形D . 对角线互相垂直的四边形是菱形5. (2分)下列说法中正确的是()A . 两条对角线相等的四边形是矩形B . 两条对角线互相垂直的四边形是菱形C . 两条对角线互相垂直且相等的四边形是正方形D . 两条对角线互相平分的四边形是平行四边形6. (2分)如图是一块长方形ABCD的场地,长AB=102m,宽AD=51m,从A、B两处入口的中路宽都为1m,两小路汇合处路宽为2m,其余部分种植草坪,则草坪面积为()A . 5050m²B . 5000m²C . 4900m²D . 4998m²二、填空题 (共6题;共8分)7. (1分) (2020八上·顺义期末) 为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“ ”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为:则图2所示题目(字母代表正数)翻译为________,计算结果为________.8. (1分)(2018·阳新模拟) 意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是________9. (2分) (2019八下·温州期中) 如图,矩形ABCD的对角线AC,BD交于点O,∠AOD=60°,AC=4,则AD 的长是________.10. (1分)函数y=﹣ x+1的图象经过第________象限.11. (1分) (2018八上·启东开学考) 在表中,我们把第i行第j列的数记为ai , j(其中i,j都是不大于4的正整数),对于表中的每个数ai , j ,规定如下:当i>j时,ai , j=0;当i≤j时,ai , j=1.例如:当i=4,j=1时,ai , j=a4 , 1=0.a1 , 1a1 , 2a1 , 3a1 , 4a2 , 1a2 , 2a2 , 3a2 , 4a3 , 1a3 , 2a3 , 3a3 , 4a4 , 1a4 , 2a4 , 3a4 , 4请从下面两个问题中任选一个作答.问题1问题2a2 ,1•ai , j+a2 ,2•ai , j+ a2 ,3•ai , j+a2 ,4•ai ,表中的16个数中,共有________个1.j=________12. (2分)(2020·黑龙江) 如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4 ),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12 ,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是________.三、解答题 (共10题;共67分)13. (5分) (2018八下·邯郸开学考) 若0<x<1,化简:.14. (5分) (2017九下·武冈期中) 已知:E、F是▱ABCD的对角线AC上的两点,AF=CE,求证:∠CDF=∠ABE.15. (10分)(2017·深圳模拟) 如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.(1)求证:四边形ABEF是正方形;(2)如果AB=6,AD=8,求tan∠ADP的值.16. (11分)为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:班级平均分中位数众数方差八(1)85b c22.8八(2)a858519.2(1)直接写出表中a,b,c的值.(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.17. (2分) (2019八下·丰城期末) 如图,在▱ABCD中,点E在AD上,请仅用无刻度直尺按要求作图(保留作图痕迹,不写作法)(1)在图1中,过点E作直线EF将▱ABCD分成两个全等的图形;(2)在图2中,DE=DC,请你作出∠BAD的平分线AM.18. (5分) (2019七上·长春期中) 单项式﹣2x4ym﹣1与5xn﹣1y2的和是一个单项式,求m﹣2n的值.19. (2分) (2019七上·宽城期中) 教材呈现:下图是华师版八年级上册数学教材第96页的部分内容.请根据教材中的分析,结合图①,写出“角平分线的性质定理”完整的证明过程.定理应用:如图②,在四边形中,,点在边上. 平分,平分 .求证: .20. (10分)(2019·长春模拟) 如图①,甲、乙两车同时从A地出发,分别匀速前往B地与C地,甲车到达B地休息一段时间后原速返回,乙车到达C地后立即返回.两车恰好同时返回A地.图②是两车各自行驶的路程y (千米)与出发时间x(时)之间的函数图象.根据图象解答下列问题:(1)甲车到达B地休息了________时;(2)求甲车返回A地途中y与x之间的函数关系式;(3)当x为何值时,两车与A地的路程恰好相同.(不考虑两车同在A地的情况)21. (15分) (2020八下·金牛期末) 如图1,在平面直角坐标系中,直线y= x+n分别与x轴、y轴交于点A、B,且点A的坐标为(4,0),点C为线段AB的中点.(1)求点B的坐标;(2)点P为直线AB上的一个动点,过点P作x轴的垂线,与直线OC交于点Q,设点P的横坐标为m,△OPQ 的面积为S,求S与m的函数解析式;(3)当点P在直线AB上运动时,在平面直角坐标系内是否存在一点N,使得以O,B,P,N为顶点的四边形为矩形,若存在,求出N点的坐标;若不存在,请说明理由.22. (2分) (2020八上·慈溪期中) 如图,在中,,为角平分线.图1 图2(1)如图1,已知, .求的面积;(2)在(1)的条件下,垂直平分线与交于点,画图并求的长.(3)如图2,若为等边三角形,,分别为边,上的动点,且满足 .设,,,请用等式表示,,之间的数量关系,并说明理由.参考答案一、单选题 (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题 (共6题;共8分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:三、解答题 (共10题;共67分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、答案:15-2、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:。
2017-2018学年八年级(下)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效.1.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x<0C.x≤2D.x≥22.已知直角三角形的两条直角边的长分别为1,,则斜边长为()A.1B.C.2D.33.下列计算正确的是()A.B.3﹣=3C.D.=4.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3B.a=﹣1C.a=1D.a=25.四边形ABCD中,已知AB∥CD,下列条件不能判定四边形ABCD为平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=1806.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1)B.(2)C.(3)D.无法确定7.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1B.2C.3D.48.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,69.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7B.2()7C.2()8D.()910.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.计算=,(﹣)2=,3﹣=.12.下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为.13.如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为.14.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为.15.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是.16.如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算:(1)﹣+(2)(+3)(﹣2)18.(8分)如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19.(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.20.(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL 号约多少件比较合适,请计算说明.21.(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF 的中点,连结DG.(1)求证:BC=DF;(2)连BD,求BD:DG的值.22.(10分)某移动通信公司推出了如下两种移动电话计费方式,说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.23.(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.(12分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效. 1.【分析】由二次根式的性质可以得到x﹣2≥0,由此即可求解.【解答】解:依题意得x﹣2≥0,∴x≥2.故选:D.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2.【分析】根据勾股定理进行计算,即可求得结果.【解答】解:直角三角形的两条直角边的长分别为1,,则斜边长=;故选:C.【点评】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.3.【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.【分析】把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【解答】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选:C.【点评】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.5.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选:B.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.【分析】根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【解答】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【解答】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选:B.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.【分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【解答】解:根据题意知6月份的用水量为5×6﹣(3+6+4+5+6)=6(t),∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,则该户今年1至6月份用水量的中位数为=5.5、众数为6,故选:D.【点评】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.9.【分析】根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【解答】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为2,于是得到B3的纵坐标为2()2…∴B8的纵坐标为2()7故选:B.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出B n的坐标的变化规律.10.【分析】分三种情形讨论求解即可解决问题;【解答】解:对于函数y=|x﹣a|,最小值为a+5.情形1:a+5=0,a=﹣5,∴y=|x+5|,此时x=﹣5时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+5,得到a=﹣3.∴y=|x+3|,符合题意.情形3:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+5,方程无解,此种情形不存在,综上所述,a=﹣3.故选:A.【点评】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.【分析】根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【解答】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.【分析】根据加权平均数的计算公式计算可得.【解答】解:该校篮球队队员的平均年龄为=13.7(岁),故答案为:13.7.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.13.【分析】设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【解答】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2故答案为2【点评】本题考查了平行四边形的性质,关键是灵活运用平行四边形的性质解决问题.14.【分析】平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【解答】解:可设新直线解析式为y=﹣x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为:y=﹣x+.【点评】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.15.【分析】利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【解答】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,60)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=8x+60;将(0,60)、(70,480)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+60;将(0,60)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.8x+60.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<8或v=4.8.故答案为:6<v<8或v=4.8【点评】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM =1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.【解答】解:过点E作ME⊥AD,延长ME交BC与N,∵四边形ABCD是矩形∴AD∥BC,且ME⊥DA∴EN⊥BC且∠A=90°=∠ABC=90°∴四边形ABNM是矩形∴AB=MN=5,AM=BN若ME:EN=1:4,如图1∵ME:EN=1:4,MN=5∴ME=1,EN=4∵折叠∴BE=AB=5,AP=PE在Rt△BEN中,BN==3∴AM=3在Rt△PME中,PE2=ME2+PM2AP2=(3﹣AP)2+1解得AP=若ME:EN=4:1,则EN=1,ME=4,如图2在Rt△BEN中,BN==2∴AM =2在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(2﹣AP )2+16解得AP =若点E 在矩形外,如图∵EN :EM =1:4∴EN =,EM =在Rt △BEN 中,BN ==∴AM =在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(AP ﹣)2+()2解得:AP =5故答案为,,5 【点评】本题考查了折叠问题,矩形的性质,勾股定理,利用分类思想解决问题是本题的关键.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用多项式乘法公式展开,然后合并即可.【解答】解:(1)原式=3﹣2+=;(2)原式=5﹣2+3﹣6=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形BFDE是平行四边形,∴BE∥DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.19.【分析】利用待定系数法即可解决问题;【解答】解:设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x﹣3,当x=﹣1时,m=﹣5.【点评】本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.20.【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用不要告诉总体的思想解决问题即可;【解答】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点评】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)根据矩形的性质解答即可;(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【解答】证明:(1)∵四边形ABCD为矩形,∴AD=BC,∠BAD=∠ADC=90°,∵AF平分∠BAD,∴∠DAF=45°,∴AD=DF,∴BC=DF;(2)连接CG,BG,∵点G为EF的中点,∴GF=CG,∴∠F=∠BCG=45°,在△BCG与△DFG中,∴△BCG≌△DFG(SAS),∴BG=DG,∠CBG=∠FDG,∴△BDG为等腰直角三角形,∴BD=DG,∴BD:DG=:1.【点评】此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.22.【分析】(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【解答】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点评】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.23.【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S=BD×MN=×6×2=12;四边形BMDN(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴==﹣1.故答案为:﹣1.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.24.【分析】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;【解答】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y=﹣x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:=3.【点评】本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置寻找点的运动轨迹,属于中考压轴题.。
2017-2018学年湖北省孝感市八年级(下)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入下表中.1.下列二次根式中最简根式是()A.B.C.D.2.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,233.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.4.如图所示,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.5.下列各数中,与的积为有理数的是()A.B.3C.2D.2﹣6.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:错误的是()A.众数是4 B.平均数是4.6C.调查了10户家庭的月用水量D.中位数是4.57.甲、乙、丙、丁四位同学最近五次数学成绩统计如表,如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加即将举行的中学生数学竞赛,那么应选()8.小明不慎将一块平行四边形玻璃打碎成如图的四块,为了能在玻璃店配到一块与原来相同的平行四边形玻璃,她带了两块碎玻璃,其编号应该是()A.①、②B.①、④C.③、④D.②、③9.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E 以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t <6),连接DE,当△BDE是直角三角形时,t的值为()A.2 B.2.5或3.5 C.3.5或4.5 D.2或3.5或4.510.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲、乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A.B.C.D.二、填空题:本大题共10小题,每小题3分,共30分.11.写出一条正方形具有但矩形不一定具有的性质.12.计算:= .13.如果a、b是实数,且,则ab的值为.14.坐标原点到直线y=2x+4的距离是.15.如图,菱形ABCD在平面直角坐标系中,若点D的坐标为(1,),则点C的坐标为.16.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第秒.17.如图,图中所有的四边形都是正方形,所有的三角形都是直角三角形,已知正方形A、B、C、D的边长分别是12,16,9,12,则最大正方形E的面积是.18.如图,点A的坐标可以看成是方程组的解.19.某电脑公司销售部为了制订下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是.20.等腰三角形纸片ABC中,AB=AC=5,BC=6,AD是BC边上的高,若将△ABC沿AD 剪成两个三角形,用这两个三角形拼成平行四边形,则其周长为.三、解答题:本大题共6小题,共60分.21.(10分)(1)计算:2;(2)已知:x=2﹣,求代数式(7+4)x2﹣(2+)x﹣的值.22.(8分)如图,边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B 的坐标分别是A(3,2),B(1,3).(1)写出△AOB的面积为;(2)点P在x轴上,当PA+PB的值最小时,在图中画出点P,并求出点P的坐标.23.(10分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩(满分为100分)如图所示.(方差公式:s 2= [(x 1﹣)2+(x 2)2]).(1)根据图示填写表格;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好; (3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.24.(10分)如果两个一次函数y=k 1x+b 1和y=k 2x+b 2满足k 1=k 2,b 1≠b 2,那么称这两个一次函数为“平行一次函数”.已知函数y=﹣2x+4的图象与x 轴、y 轴分别交于A 、B 两点,一次函数y=kx+b 与y=﹣2x+4是“平行一次函数”(1)若函数y=kx+b 的图象过点(3,1),求b 的值;(2)若函数y=kx+b 的图象与两坐标轴围成的面积是△AOB 面积的,求y=kx+b 的解析式.25.(10分)某家具商场计划购进某种餐桌、餐椅,有关信息如表:量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和4张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(2)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(1)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(1)中的最大利润少了2250元.请问本次成套的销售量为多少?26.(12分)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.(1)请判断:FG与CE的数量关系和位置关系;(不要求证明)(2)如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入下表中.1.下列二次根式中最简根式是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含开的尽的因数,故A错误;B、被开方数含开的尽的因数,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.下列各组数中,能构成直角三角形的是()A.4,5,6 B.1,1,C.6,8,11 D.5,12,23【考点】勾股定理的逆定理.【分析】根据勾股定理逆定理:a2+b2=c2,将各个选项逐一代数计算即可得出答案.【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.【点评】此题主要考查学生对勾股定理的逆定理的理解和掌握,要求学生熟练掌握这个逆定理.3.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.【考点】勾股定理;直角三角形斜边上的中线.【分析】在Rt△ABC中,根据勾股定理求得AB=10;然后根据直角三角形斜边上的中线的性质来求CD的长度.【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB===10.又∵CD是AB边上的中线,∴CD=AB=5.故选:C.【点评】本题考查了直角三角形斜边上的中线、勾股定理.在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点).4.如图所示,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.【考点】一次函数与一元一次不等式;在数轴上表示不等式的解集.【分析】首先根据图象可得不等式x+b>kx﹣1的解集是能是函数y1=x+b的图象在上边的未知数的范围,据此即可求得x的范围,从而判断.【解答】解:不等式x+b>kx﹣1的解集是x>﹣1.则利用数轴表示为.故选A .【点评】本题考查了一次函数图象与不等式的关系,理解不等式x+b >kx ﹣1的解集是能是函数y 1=x+b 的图象在上边的未知数的范围是关键.5.下列各数中,与的积为有理数的是( ) A .B .3C .2D .2﹣【考点】实数的运算.【分析】根据实数运算的法则对各选项进行逐一解答即可. 【解答】解:A 、×=,故A 错误;B 、×3=3,故B 错误;C 、×2=6,故C 正确;D 、×(2﹣)=2﹣3,故D 错误.故选:C .【点评】本题考查的是实数的运算,熟知实数运算的法则是解答此题的关键.6.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:错误的是( ) A .众数是4B .平均数是4.6C .调查了10户家庭的月用水量D .中位数是4.5【考点】众数;统计表;加权平均数;中位数.【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【解答】解:A 、5出现了4次,出现的次数最多,则众数是5,故A选项错误;B、这组数据的平均数是:(3×2+4×3+5×4+8×1)÷10=4.6,故B 选项正确; C 、调查的户数是2+3+4+1=10,故C 选项正确;D 、把这组数据从小到大排列,最中间的两个数的平均数是(4+5)÷2=4.5,则中位数是4.5,故D 选项正确; 故选:A .【点评】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.7.甲、乙、丙、丁四位同学最近五次数学成绩统计如表,如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加即将举行的中学生数学竞赛,那么应选()【考点】方差;算术平均数.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的运动员参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选:B.【点评】本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.小明不慎将一块平行四边形玻璃打碎成如图的四块,为了能在玻璃店配到一块与原来相同的平行四边形玻璃,她带了两块碎玻璃,其编号应该是()A.①、②B.①、④C.③、④D.②、③【考点】平行四边形的判定.【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有②③两块角的两边互相平行,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.【点评】此题考查平行四边形的判定.解题的关键是理解如何确定平行四边形的四个顶点.9.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E 以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t <6),连接DE,当△BDE是直角三角形时,t的值为()A.2 B.2.5或3.5 C.3.5或4.5 D.2或3.5或4.5【考点】相似三角形的判定与性质;含30度角的直角三角形.【分析】由Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,可求得AB的长,由D为BC的中点,可求得BD的长,然后分别从若∠DEB=90°与若∠EDB=90°时,去分析求解即可求得答案.【解答】解:∵Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=2BC=4(cm),∵BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发,∴BD=BC=1(cm),BE=AB﹣AE=4﹣t(cm),若∠BED=90°,当A→B时,∵∠ABC=60°,∴∠BDE=30°,∴BE=BD=(cm),∴t=3.5,当B→A时,t=4+0.5=4.5.若∠BDE=90°时,当A→B时,∵∠ABC=60°,∴∠BED=30°,∴BE=2BD=2(cm),∴t=4﹣2=2,当B→A时,t=4+2=6(舍去).综上可得:t的值为2或3.5或4.5.故选D.【点评】此题考查了含30°角的直角三角形的性质.此题属于动点问题,难度适中,注意掌握分类讨论思想与数形结合思想的应用.10.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲、乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A.B.C.D.【考点】函数的图象.【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,②相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【解答】解:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意.故选:C.【点评】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.二、填空题:本大题共10小题,每小题3分,共30分.11.写出一条正方形具有但矩形不一定具有的性质邻边相等.【考点】正方形的性质;矩形的性质.【分析】根据正方形、矩形的性质,即可解答.【解答】解:根据正方形和矩形的性质知,它们具有相同的特征有:四个角都是直角、对角线都相等、对角线互相平分,但矩形的长和宽不相等.所以一条正方形具有但矩形不一定具有的性质是邻边相等.故答案为邻边相等.【点评】本题考查了正方形和矩形的性质,解决本题的关键是熟记正方形和矩形的性质.12.计算:= 2.【考点】二次根式的乘除法.【分析】先根据二次根式的除法法则运算,然后化简即可.【解答】解:原式==2.故答案为2.【点评】本题考查了二次根式的乘除法:熟练掌握二次根式的乘除法则.13.如果a、b是实数,且,则ab的值为﹣8 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式计算即可.【解答】解:由题意得,3a+4=0,b﹣6=0,解得,a=﹣,b=6,则ab=﹣8.故答案为:﹣8.【点评】本题考查的是绝对值、算术平方根和非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.14.坐标原点到直线y=2x+4的距离是.【考点】一次函数图象上点的坐标特征.【分析】设原点到直线的距离为h,先求出直线与坐标轴的交点,再利用三角形的面积公式求解即可.【解答】解:设原点到直线的距离为h,∵令x=0,则y=4;令y=0,则x=﹣2,∴直线与坐标轴的交点为A(0,4),B(﹣2,0),∴AB==2,∴2×4=2h,解得h=.故答案为:.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.如图,菱形ABCD在平面直角坐标系中,若点D的坐标为(1,),则点C的坐标为(3,).【考点】菱形的性质;坐标与图形性质.【分析】先利用两点间的距离公式计算出AD=2,再根据菱形的性质得到CD=AD=2,CD∥AB,然后根据平行于x轴的直线上的坐标特征写出C点坐标.【解答】解:∵点D的坐标为(1,),∴AD==2,∵四边形ABCD为菱形,∴CD=AD=2,CD∥AB,∴C点坐标为(3,).故答案为(3,).【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了坐标与图形性质.16.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第120 秒.【考点】一次函数的应用.【分析】分别求出OA、BC的解析式,然后联立方程,解方程就可以求出第一次相遇时间.【解答】解:设直线OA的解析式为y=kx,代入A(200,800)得800=200k,解得k=4,故直线OA的解析式为y=4x,设BC的解析式为y1=k1x+b,由题意,得,解得:,∴BC的解析式为y1=2x+240,当y=y1时,4x=2x+240,解得:x=120.则她们第一次相遇的时间是起跑后的第120秒.故答案为120.【点评】本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键.17.如图,图中所有的四边形都是正方形,所有的三角形都是直角三角形,已知正方形A、B、C、D的边长分别是12,16,9,12,则最大正方形E的面积是625 .【考点】勾股定理.【分析】根据勾股定理的几何意义解答即可.【解答】解:根据勾股定理的几何意义,可知S E=S F+S G=S A+S B+S C+S D=122+162+92+122=625;故答案为:625.【点评】本题考查了勾股定理,熟悉勾股定理的几何意义是解题的关键.18.如图,点A的坐标可以看成是方程组的解.【考点】一次函数与二元一次方程(组).【分析】先利用待定系数法分别求出两直线的解析式,然后根据函数图象交点坐标为两函数解析式组成的方程组的解即可得到答案.【解答】解:设过点(0,5)和点(2,3)的解析式为y=kx+b,则,解得,所以该一次函数解析式为y=﹣x+5;设过点(0,﹣1)和点(2,3)的解析式为y=mx+n,则,解得,所以该一次函数解析式为y=2x﹣1,所以点A的坐标可以看成是方程组解.故答案为.【点评】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.也考查了待定系数法求次函数解析式.19.某电脑公司销售部为了制订下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是14.4,12,10 .【考点】众数;扇形统计图;中位数.【分析】根据扇形统计图给出的数据,先求出销售各台的人数,再根据平均数、中位数和众数的定义分别进行求解即可【解答】解:根据题意得:销售10台的人数是:20×40%=8(人),销售30台的人数是:20×15%=3(人),销售12台的人数是:20×20%=4(人),销售14台的人数是:20×25%=5(人),则这20位销售人员本月销售量的平均数是=14.4(台);把这些数从小到大排列,最中间的数是第10、11个数的平均数,则中位数是=12(台);∵销售10台的人数最多,∴这组数据的众数是10.故答案为14.4,12,10.【点评】本题考查了平均数、中位数和众数,用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20.等腰三角形纸片ABC中,AB=AC=5,BC=6,AD是BC边上的高,若将△ABC沿AD 剪成两个三角形,用这两个三角形拼成平行四边形,则其周长为14或16或18 .【考点】图形的剪拼.【分析】根据等腰三角形的性质以及平行四边形的判定,可以动手拼凑,得出答案.【解答】解:过点A作AD⊥BC于点D,∵AB=AC=5,BC=6,∴BD=DC=3,故AD=4,如图1所示:AB=DE=5,AD=EB=4,则平行四边形ABDE的周长为:18;如图2所示:EB=DA=4,AE=DB=3,则平行四边形ABDE的周长为:14;如图3所示:AB=DE=5,AE=DB=3,则平行四边形ABDE的周长为:16;综上所述:用这两个三角形拼成平行四边形,则其周长为:14或16或18.故答案为:14或16或18.【点评】此题主要考查了平行四边形的判定以及等腰三角形的性质,通过动手操作得出答案是解决问题的关键.三、解答题:本大题共6小题,共60分.21.(10分)(2016春•安陆市期末)(1)计算:2;(2)已知:x=2﹣,求代数式(7+4)x2﹣(2+)x﹣的值.【考点】二次根式的化简求值.【分析】(1)首先化简二次根式,进而合并同类二次根式进而得出答案;(2)直接把x的值代入原式,进而利用乘法公式计算得出答案.【解答】解:(1)原式=6+3﹣12=﹣3;(2)把x=2﹣,代入(7+4)x2﹣(2+)x﹣,则原式=(7+4)(2﹣)2﹣(2+)(2﹣)﹣=(7+4)(7﹣4)﹣(4﹣3)﹣=49﹣48﹣1﹣=﹣.【点评】此题主要考查了二次根式的化简求值,正确应用乘法公式计算是解题关键.22.如图,边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,3).(1)写出△AOB的面积为 3.5 ;(2)点P在x轴上,当PA+PB的值最小时,在图中画出点P,并求出点P的坐标.【考点】轴对称-最短路线问题;坐标与图形性质.【分析】(1)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解;(2)找出点A关于x轴的对称点A′位置,连接A′B,根据轴对称确定最短路线问题与x轴的交点即为所求的点P【解答】解:(1))△AOB的面积=3×3﹣×1×2﹣×2×3﹣×1×3=9﹣1﹣3﹣1.5=9﹣5.5=3.5;故答案为:3.5;(2)在图中找出点B(1,3)关于x轴的对称点B1(1,﹣3),连接AB1交x轴于P,设直线AB1的解析式为y=kx+b,将(3,2)和(1,﹣3)代入得,解得,∴直线AB1的解析式为y=2.5x﹣5.5令y=0得x=∴点P的坐标为(,0)【点评】本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23.(10分)(2016春•安陆市期末)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩(满分为100分)如图所示.(方差公式:s2=[(x1﹣)2+(x2)2]).(1)根据图示填写表格;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.【考点】方差;条形统计图;加权平均数;中位数;众数.【分析】(1)直接利用中位数、平均数、众数的定义分别分析求出答案;(2)利用平均数以及中位数的定义分析得出答案;(3)利用方差的定义得出答案.【解答】解:(1)填表:数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵s 12==70, s 22==160.∴S 12<S 22,因此,初中代表队选手成绩较为稳定. 【点评】此题主要考查了平均数、众数、方差、中位数的定义,正确把握相关定义是解题关键.24.(10分)(2016春•安陆市期末)如果两个一次函数y=k 1x+b 1和y=k 2x+b 2满足k 1=k 2,b 1≠b 2,那么称这两个一次函数为“平行一次函数”.已知函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,一次函数y=kx+b与y=﹣2x+4是“平行一次函数”(1)若函数y=kx+b的图象过点(3,1),求b的值;(2)若函数y=kx+b的图象与两坐标轴围成的面积是△AOB面积的,求y=kx+b的解析式.【考点】两条直线相交或平行问题.【分析】(1)根据“平行一次函数”的定义即可得出k=﹣2,再由点(3,1)利用一次函数图象上点的坐标特征即可求出b值;(2)分别令y=﹣2x+4中x=0、y=0求出与之对应的y、x值,即找出点A、B的坐标,利用三角形的面积公式求出S△AOB,同理找出函数y=kx+b的图象与两坐标轴围成的面积,根据两面积间的关系即可求出b值.【解答】解:(1)∵一次函数y=kx+b与y=﹣2x+4是“平行一次函数”,∴k=﹣2,即y=﹣2x+b.∵函数y=kx+b的图象过点(3,1),∴1=﹣2×3+b,∴b=7.(2)在y=﹣2x+4中,令x=0,得y=4,令y=0,得x=2,∴A(2,0),B(0,4),∴S△AOB=OA•OB=4.由(1)知k=﹣2,则直线y=﹣2x+b与两坐标轴交点的坐标为(,0),(0,b),于是有|b|•||=4×=1,∴b=±2,即y=kx+b的解析式为y=﹣2x+2或y=﹣2x﹣2.【点评】本题考查了两直线相交或平行问题、三角形的面积公式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标利用一次函数图象上点的坐标特征得出关于b的一元一次方程;(2)根据面积间的关系找出关于b的方程.本题属于基础题,难度不大,解决该题型题目时,根据三角形的面积公式结合面积间的关系找出方程是关键.25.(10分)(2016春•安陆市期末)某家具商场计划购进某种餐桌、餐椅,有关信息如表:量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和4张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(2)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(1)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(1)中的最大利润少了2250元.请问本次成套的销售量为多少?【考点】一次函数的应用.【分析】(1)设购进餐桌x张,餐椅(5x+20)张,销售利润为W元.根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据“总利润=成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,根据一次函数的性质即可解决最值问题;(2)设本次成套销售量为m套,先算出涨价后每张餐桌及餐椅的进价,再根据利润间的关系找出关于m的一元一次方程,解方程即可得出结论.【解答】解:(1)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.由题意得:x+5x+20≤200,解得:x≤30.∵a=150,∴餐桌的进价为150元/张,餐椅的进价为40元/张.依题意可知:W=x•(500﹣150﹣4×40)+x•(270﹣150)+(5x+20﹣x•4)•(70﹣40)=245x+600,∵k=245>0,∴W关于x的函数单调递增,∴当x=30时,W取最大值,最大值为7950.故购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.(2)涨价后每张餐桌的进价为160元,每张餐椅的进价为50元,设本次成套销售量为m套.依题意得:(500﹣160﹣4×50)m+(30﹣m)×(270﹣160)+(170﹣4m)×(70﹣50)=7950﹣2250,。