64基和维数(二)
- 格式:ppt
- 大小:383.50 KB
- 文档页数:22
线性空间基和维数的求法方法一 根据线性空间基和维数的定义求空间的基和维数,即:在线性空间V 中,如果有n 个向量n αα,,1 满足:(1)n ααα,2,1 线性无关。
(2)V 中任一向量α总可以由n ααα,,21, 线性表示。
那么称V 为n 维(有限维)线性空间,n 为V 的维数,记为dim v n =,并称n ααα,,2,1 为线性空间V 的一组基。
如果在V 中可以找到任意多个线性无关的向量,那么就成V 为无限维的。
例1 设{}0V X AX ==,A 为数域P 上m n ⨯矩阵,X 为数域P 上n 维向量,求V 的维数和一组基。
解 设矩阵A 的秩为r ,则齐次线性方程组0AX =的任一基础解系都是V 的基,且V 的维数为n r -。
例2 数域P 上全体形如0a a b ⎛⎫⎪-⎝⎭的二阶方阵,对矩阵的加法及数与矩阵的乘法所组成的线性空间,求此空间的维数和一组基。
解 易证0100,1001⎛⎫⎛⎫⎪ ⎪-⎝⎭⎝⎭为线性空间0,a V a b p a b ⎧⎫⎛⎫=∈⎨⎬ ⎪-⎝⎭⎩⎭|的一组线性无关的向量组,且对V 中任一元素0a a b ⎛⎫ ⎪-⎝⎭有00100+1001a a b a b ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 按定义0100,1001⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭为V 的一组基,V 的维数为2。
方法二 在已知线性空间的维数为n 时,任意n 个向量组成的线性无关向量组均作成线性空间的基。
例3 假定[]n R x 是一切次数小于n 的实系数多项式添上零多项式所形成的线性空间,证明:()()()211,1,1,,1n x x x ----构成[]n R x 的基。
证明 考察()()1121110n n k k x k x -⋅+-++-=由1n x-的系数为0得0n k =,并代入上式可得2n x -的系数10n k -=依此类推便有110n n k k k -====,故()()11,1,,1n x x ---线性无关又[]nR x 的维数为n ,于是()()11,1,,1n x x ---为[]nR x 的基。
基与维数的几种求法线性空间基和维数的求法方法一根据线性空间基和维数的定义求空间的基和维数,即:在线性空间v中,如果有n个向量α1,,αn满足用户:(1)α1,α2,αn线性无关。
(2)v中任一向量α总可以由α1,α2,,αn线性则表示。
那么称v为n维(有限维)线性空间,n为v的维数,记为dimv=n,并称α1,α2,,αn为线性空间v的一组基为。
如果在v中可以找到任意多个线性无关的向量,那么就成v为无限维的。
基准1设v=xax=0,a为数域p上m⨯n矩阵,x为数域p上n佩向量,谋v的维数和一组基为。
解设矩阵a的秩为r,则齐次线性方程组ax=0的任一基础解系都是v的基,且v的维数为n-r。
基准2数域p上全体形似对矩阵的乘法及数与矩阵的乘法所共同组成⎪的二阶方阵,-ab⎪⎪的线性空间,谋此空间的维数和一组基为。
⎪⎪0a⎪⎪⎪01⎪⎪00⎪为线性空间,v=|a,b∈p⎪⎪的一组线性毫无关系的向⎪⎪⎪⎪-10⎪⎪01⎪⎪⎪-ab⎪⎪⎪0a⎪⎪0a⎪⎪01⎪⎪00⎪量组,且对v中任一元素⎪=a⎪+b⎪⎪有ab1001-ab⎪⎪⎪⎪⎪⎪⎪⎪⎪01⎪⎪00⎪⎪,⎪为v的一组基为,v的维数为2。
⎪10⎪⎪01⎪方法二在已知线性空间的维数为n时,任意n个向量组成的线性无关向量组均作成线性空间的基。
基准3假设r[x]n就是一切次数大于n的实系数多项式迎上零多项式所构成的线性空间,证明:1,(x-1),(x-1),,(x-1)构成r[x]n的基。
证明实地考察k1⋅1+k2(x-1)++kn(x-1)的系数为0得kn=0,并代入上式可得xn-2的系数kn-1=0依此类推便存有kn=kn-1==k1=0,故1,(x-1),,(x-1)又r[x]的维数为n,于是1,(x-1),,(x-1)为r[x]的基。
方法三利用定理:数域p上两个非常有限佩线性空间同构的充份必要条件就是它们存有相同的维数。
例4设a=⎪,证明:由实数域上的矩阵a的全体实系数多项式f(a)共同组成的空间v=⎪f(a)|a=⎪⎪⎪0-1⎪⎪⎪⎪与复数域c作为实数域r上的线性空间10⎪⎪⎪v'={a+bi|a,b∈r}同构,并非谋它们的维数。
《高等代数》课程教学大纲一.课程教学目的与任务本课程是我院数学系数学教育专业的一门重要基础课程。
其主要任务是使学生获得数学的基本思想方法和多项式理论、行列式、线性方程组、矩阵论、向量空间、线性变换、欧氏空间、二次型等方面的系统知识。
它一方面为后继课程(如近世代数、数论、离散数学、计算方法、微分方程、泛函分析)提供一些所需的基础理论和知识;另一方面还对提高学生的抽象思维、辑推理及运算能力,开发学生智能,加强“三基”(基础知识、基本理论、基本理论)和培养学生创造性能力等起到重要作用。
二.与各课程的联系本课程是数学专业的后继课程:如近世代数、数论、离散数学、计算方法、微分方程、泛函分析等的先导课程和基础课程。
三.教学时数及分配总学时198,其中课堂讲授 151学时,习题课(包括复习课)47学时。
各学期教学时数安排情况:第二学期:108学时,自第一章至第五章,周学时6第三学期:90学时,自第五章至第九章,周学时5四.讲授内容与要求:第一章基本概念(12学时)一.教学目的和要求:1. 正确理解集合的概念,明确集合的相等、子集、空集、交集、卡氏集等概念及他们之间的关系。
2.掌握映射、满射、单射、双射、映射的合成、可逆映射的概念和映射可逆的充要条件。
3.理解和掌握数学归纳法原理,能熟练运用数学归纳法。
4.理解和掌握整数的性质及带余除法、最大公因数与互素、素数的一些简单性质。
5.掌握数环,数域的概念,能够判别一些数集是否为数环、数域,懂得任意数域都包含有理数域。
二.教学内容:1.1 集合(2学时)1.2 映射(3学时)1.3 数学归纳法(2学时)1.4 整数的一些整除性质(3学时)1.5 数环,数域(2学时)第二章多项式(37学时)一.教学目的和要求:1.掌握数域上一元多项式的概念、运算以及多项式的和与积的次数。
2.正确理解多项式的整除概念和性质。
理解和掌握带余除法。
3.掌握最大公因式的概念、性质、求法以及多项式互素的概念和性质4.理解不可约多项式的概念,掌握多项式唯一因式分解定理。
基和维数的关系
基和维数是线性代数中的两个重要概念,它们之间有着密切的关系。
在矩阵论中,基的数量决定了矩阵的列空间的维数,也就是列向量的线性独立的数量。
因此,如果一个矩阵的列向量数量为 n,但其列向量中有重复的向量,那么矩阵的列空间的维数就会小于 n。
这时,我们需要找到一组线性无关的向量作为基,从而得到列空间的基和维数。
另一方面,矩阵的行空间的维数也和其基的数量有关系。
矩阵的行空间是由其行向量张成的向量空间,而行向量的数量和它们的线性独立的数量相同。
因此,矩阵的行空间的维数取决于它的行向量的线性独立的数量,也就是它的基的数量。
除了列空间和行空间,矩阵还有一个重要的概念——零空间。
零空间是由矩阵的所有零空间向量张成的向量空间。
零空间向量是指矩阵乘以该向量得到的结果为零向量的向量。
矩阵的零空间的维数也和其基的数量有关系。
根据线性代数的基本定理,矩阵的列空间和零空间的维数之和等于矩阵的列数。
因此,如果知道了矩阵的列空间的维数,就可以求得它的零空间的维数。
总之,基和维数在线性代数中起着至关重要的作用。
它们的关系非常紧密,互相影响。
通过矩阵的基和维数,我们可以更好地理解矩阵的性质和特征。
基与维数的基本概念与应用线性代数是现代数学中非常重要的一部分,而作为线性代数的基本概念之一,基与维数在很多领域中都有着重要的应用和作用。
在本文中,我们将着眼于基与维数的基本概念和应用,希望能够给读者带来全面且深入的了解。
基的概念基是线性空间的一个基本概念。
在线性代数中,所谓线性空间就是一个向量空间的特殊情形,向量空间由向量组成,这些向量可以用数字来表示。
而基就是指这些向量的数量最少的子集,这个子集中的向量可以表示出这个向量空间中的其他所有向量。
具体来说,基的定义是:如果一个向量空间V中的向量集S有以下两个性质:1. 向量集S中的向量是线性无关的;2. 向量集S中的任意向量都可以用向量集S中的有限个向量线性组合表示(即,对于任意一个向量v∈V,都存在一组系数a1,a2,……,an使得v=a1s1+a2s2+……+ansn,其中si∈S,ai∈K,K是所在域)那么,S就是V的一个基。
基的一些性质包括:1. 基是线性无关的。
2. 基中的任意向量都不可由其他向量线性组合得到。
3. 维数相同的向量空间会有同样数量的基。
4. 所有向量空间都有基,包括零向量空间。
维数的概念维数是向量空间的另一个重要概念。
在数学中,向量空间的维数是指基中向量的数量的大小。
具体来说,如果一个向量空间V有一个n个线性无关向量的基,那么V就称为一个n维向量空间。
维数可以理解为空间中向量的独立自由度,向量空间的维数可以用来区分不同的向量空间,也用来确定矩阵的秩等重要性质。
基的应用基作为线性代数中的基本概念,应用十分广泛。
以下列举了一些基的应用:1. 矩阵乘法:矩阵乘法的前提是两个矩阵的行列数满足要求。
具体来说,矩阵A的列数必须等于矩阵B的行数。
而每一个矩阵可以看做是向量空间中向量的组合,因而矩阵的乘法实际上就是向量之间的线性组合,而基恰好是向量的组合表示。
2. 解方程组:在线性代数中,矩阵可以看做是线性方程组的系数,而矩阵的秩和向量空间的维数有密切关系。