集合与函数概念章节综合学案练习(一)附答案试卷人教版高中数学必修一
- 格式:doc
- 大小:345.00 KB
- 文档页数:8
集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ()A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是()14.函数y =1+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17.已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18.设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20.已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1第一章集合测试集合测试参考答案:一、1~5CABCB6~10ABACC11~12cB二、13[0,43],(-∞,-43) 14(-∞,-1),(-1,+∞)15-11603|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;三、17所以f x >3或x 19.. f (x 当x < ∴f (20. ∴1=m .。
高一数学第一章集合与函数概念单元检测试题一、选择题:共12题每题5分共60分1.已知函数的图象如下图所示,则函数的图象为2.下列各组函数为相等函数的是A. B.C. D.==3.函数上为非减函数.设函数的上为非减函数②③等于A. B. C. D.4.设函数则A.??????????C.?????????D.5.函数f(4x+A.(3,11]6.若函数在区间上单调则实数的取值范围为A. B.C. D.7.=,如A.R8.A.{x|x<1}9.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f()的x的取值范围是()A.(,)B.[,)C.(,)D.[,)10.某部队练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢?A. B. C. D.11.已知,且,则等于A. B. C. D.12.已知集合和集合,则两个集合间的关系是A. B. C. D.M,P互不包含二、填空题:共4题每题5分共20分13.已知函数f(x)=a﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,则实数的取值范围是A.14.?15.?(1)f(x)=-x)=((3)f(x)=x216.若函数轴对称,则的单调减区间为三、解答题:共6题共7017.(本题函数”.(1)(2)若函数≤(注:18.(本题记函数的定义域为集合,集合(1)求和;(2)若,求实数的取值范围19.(本题12分)设全集U={x|0<x<9,且x∈Z},集合S={1,3,5},T={3,6},求:(1)S∩T;(2).20.(本题12分)已知函数f(x)=.(1)用定义证明f(x)在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4]上的最大值与最小值.21.(本题12分)定义在非零实数集上的函数对任意非零实数满足:,且当时.(Ⅰ)求及的值;(Ⅱ)求证:是偶函数;(Ⅲ)解不等式:.22.(本题(2)证明:参考答案1.B【解析】本试题主要考查函数的图象.根据题意,由于函数图象可知,函数在y轴右侧图象在x 轴上方,在y轴左侧的图象在x轴的下方,而函数在x>0时图象保持不变,因此排除C,D,对于选项A,由于在时偶函数,故在y轴左侧的图象与y轴右侧的图象关于y轴对称,故选B.=可得由可得令则理===令则==同理====.非减函数的性质当时,都有.因为所以所以=函数【解析】f(x)=x2-4x+6=(x-2)2+2.∵f(x)图象的对称轴是直线x=2,∴f(x)在[1,2]上单调递减,在(2,5)上单调递增,∴f(x)的值域是[2,11).故选B.【备注】无6.C【解析】本题主要考查二次函数.依题意,函数在区间上单调,则函数的对称轴或,得或,故选C.【备注】无7.C【解析】本题主要考查在新型定义的前提下函数值域的求解.根据题目定义知f(x)=2x*2-x=,结合图象知其值域为(0,1].故选C.【备注】无8.A)=f()①或解①得≤x<,解②得<x<.综上可得<x<,的取值范围是(,).【备注】无,故炮弹在发射后最高,故选因为,设,,,,解得,故选B.12.D【解析】无【备注】无13.D【解析】本题主要考查二次函数的图像与性质,考查了逻辑推理能力与计算能力.因为函数f(x)=a ﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,所以函数f(x)=a﹣x2(1≤x≤2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为D. 【备注】无14.④【解析】图①中函数的定义域是[0,1];图②中函数的定义域是[-1,2];图③中对任意的x∈(0,2],其对应的y值不唯一.故①②③均不能构成从集合M到集合N的函数,图④满足题意., |||【备注】无16.【解析】本题考查函数的图象若函数的图像关于的单调减区间为.-x(-x-x,x∈[0,1]是x<;≥时[0,1],(0)=f≤≤=x1-x2+1≤-+1=.所以对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.【解析】无【备注】无18.由条件可得{|2}A x x =>, (1)={|23}x x <≤,{|3}A B x x ⋃=≥-;(2){|}C x x p =>,由可得2p ≥.【解析】本题考查函数的定义域与集合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行分析即可得出结论.【备注】与不等式有关的集合运算或集合之间的关系问题通常可以借助数轴进行求解.)=-=.∴x 1-x 2<0,(x 1+1)(x 2+1)>0, =f(4)===f(2)==.是偶函数2不等式的解集为【解析】本题主要考查特殊函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令x =1与x=—1即可求出结果;(2)利用函数奇偶性的定义即可证明;(3)根据题意与f (1)=0,f (-1)=0,原不等式可化为-1≤2x 2-1<0或0<2x 2-1≤1然后求解即可.【备注】无22.(1)设x 1,x 2是(-∞,0)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=-.因为x1,x2∈(-∞,0),所以x1x2>0,又因为x1<x2,所以x2-x1>0,则>0.于是f(x1)-f(x2)>0,即f(x1)>f(x2).因此函数f(x)=在(-∞,0)上是减函数.(2)设x1,x2是R上的任意两个实数,且x1<x2,则x2-x1>0,而f(x2)-f(x1)=(+x2)-(+x1)=(x2-x1)(+x2x1+)+(x2-x1)+)[(x+++1>0,因此函数f)=x3+x且x。
高一数学《集合与函数概念》单元习题课一、集合概念1. 已知全集R =U ,设函数()12lg -=x y 的定义域为集合M ,集合{}2≥=x x N ,则)(N C M U 等于.A ]221[, .B )221[, .C ]221(, .D )221(,2. 定义集合运算:{|(),,}A B z z xy x y x A y B ⊗==+∈∈.已知集合{1,2},{2,3}A B ==,则集合A B ⊗的所有元素之和为________.二、函数概念 1.函数概念(1)下列各组中的两个函数是同一函数的为 ①1)5)(1(+-+=x x x y ,5-=x y ②x y =,33x y =③x y =,2x y = ④()()21log 2--=x x y ,()1log 2-=x y +()2log 2-x.A ①② .B ③④ .C ② .D ②③2.函数定义域(1)函数22()log (43)f x x x =-+的定义域为___________________(2) 函数1()f x x=的定义域为 . (3)函数)13lg(13)(2++-=x xx x f 的定义域是(A)),31(+∞- (B) )1,31(- (C))31,31(- (D) [)1,0 3.函数值域 (1) (2)(4) 函数()2x f x =在定义域A 上的值域为[]14,,则函数()()2log 2f x x =+在定义域A 上的值域为 .(5)若函数x x y 22-=的定义域为[]m ,1-,值域为[]31,-,则实数m 的取值范围是 . 4.函数解析式(1)已知1(1)232f x x -=+,()6f m =,则m 等于( )A .14 B .32-C .32 D .14-(2)三、函数性质 1.函数的单调性2.函数的最值(3)若函数2lg(1)y x =+的定义域为[a ,b ],值域为[0,1],则a + b 的最大值为( )A .3B .6C .9D .103.函数的奇偶性(1)已知4)(57-+=bx ax x f ,其中b a ,为常数,若4)3(=-f ,则)3(f 的值等于.A 8- .B 10- .C 12- .D 4-(2)设函数)(x f 为定义在R 上的偶函数,当0>x 时,x x f ln )(=,则0)(>x f 的解集为( ) A 、),1(+∞ B 、),1()1,0(+∞ C 、),1()0,1(+∞- D 、),1()1,(+∞--∞4.综合问题(1)已知2()3g x x =--,()22f x ax bx c =-+()0a ≠,()()f x g x +为R 上的奇函数.①求a ,c 的值;②若[]12x ∈-,时,()f x 的最小值为1,求()f x 解析式.(2)已知函数12(),12xxf x x R -=∈+. ①判断并证明函数()f x 的奇偶性;②求函数()f x 的值域.(3)设函数11()221xf x =-+, (Ⅰ)证明函数()f x 是奇函数;(Ⅱ)证明函数()f x 在(,)-∞+∞内是增函数; (Ⅲ)求函数()f x 在[1,2]上的值域。
第一章 集合与函数的概念1.某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与产量x 的关系,则可选用( )A .一次函数B .二次函数C .指数型函数D .对数型函数 解析:选D.一次函数保持均匀的增长,不符合题意; 二次函数在对称轴的两侧有增也有降;而指数函数是爆炸式增长,不符合“增长越来越慢”;因此,只有对数函数最符合题意,先快速增长,后来越来越慢. 2.某种植物生长发育的数量y 与时间x 的关系如下表:x 1 2 3 … y 1 3 8 …则下面的函数关系式中,能表达这种关系的是( ) A .y =2x -1 B .y =x 2-1 C .y =2x -1 D .y =1.5x 2-2.5x +2解析:选D.画散点图或代入数值,选择拟合效果最好的函数,故选D.3.如图表示一位骑自行车者和一位骑摩托车者在相距80 km 的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时; ②骑自行车者是变速运动,骑摩托车者是匀速运动; ③骑摩托车者在出发了1.5小时后,追上了骑自行车者. 其中正确信息的序号是( ) A .①②③ B .①③ C .②③ D .①②解析:选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.4.长为4,宽为3的矩形,当长增加x ,且宽减少x2时面积最大,此时x =________,面积S =________.解析:依题意得:S =(4+x )(3-x 2)=-12x 2+x +12=-12(x -1)2+1212,∴当x =1时,S max =1212.答案:1 12121x 1 2 3 4 5 y 3 5 6.99 9.01 11( )A .指数函数B .反比例函数C .一次函数D .二次函数解析:选C.画出散点图,结合图象(图略)可知各个点接近于一条直线,所以可用一次函数表示.2.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩 解析:选C.y =10000×(1+20%)3=17280.3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格相比,变化情况是( )A .增加7.84%B .减少7.84%C .减少9.5%D .不增不减 解析:选B.设该商品原价为a ,四年后价格为a (1+0.2)2·(1-0.2)2=0.9216a . 所以(1-0.9216)a =0.0784a =7.84%a , 即比原来减少了7.84%.4.据调查,某自行车存车处在某星期日的存车量为2000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x 辆次,存车费总收入为y 元,则y 关于x 的函数关系式是( )A .y =0.3x +800(0≤x ≤2000)B .y =0.3x +1600(0≤x ≤2000)C .y =-0.3x +800(0≤x ≤2000)D .y =-0.3x +1600(0≤x ≤2000)解析:选D.由题意知,变速车存车数为(2000-x )辆次, 则总收入y =0.5x +(2000-x )×0.8=0.5x +1600-0.8x =-0.3x +1600(0≤x ≤2000).5.如图,△ABC 为等腰直角三角形,直线l 与AB 相交且l ⊥AB ,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则y =f (x )的图象大致为四个选项中的( )解析:选C.设AB =a ,则y =12a 2-12x 2=-12x 2+12a 2,其图象为抛物线的一段,开口向下,顶点在y 轴上方.故选C.6.小蜥蜴体长15 cm ,体重15 g ,问:当小蜥蜴长到体长为20 cm 时,它的体重大约是( )A .20 gB .25 gC .35 gD .40 g解析:选C.假设小蜥蜴从15 cm 长到20 cm ,体形是相似的.这时蜥蜴的体重正比于它的体积,而体积与体长的立方成正比.记体长为20 cm 的蜥蜴的体重为W 20,因此有W 20=W 15·203153≈35.6(g),合理的答案为35 g .故选C.7.现测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1;乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,10.2),则应选用________作为拟合模型较好.解析:图象法,即描出已知的三个点的坐标并画出两个函数的图象(图略),比较发现选甲更好.答案:甲8.一根弹簧,挂重100 N 的重物时,伸长20 cm ,当挂重150 N 的重物时,弹簧伸长________.解析:由10020=150x,得x =30.答案:30 cm9.某工厂8年来某产品年产量y 与时间t 年的函数关系如图,则: ①前3年总产量增长速度越来越快; ②前3年中总产量增长速度越来越慢; ③第3年后,这种产品停止生产;④第3年后,这种产品年产量保持不变. 以上说法中正确的是________.解析:观察图中单位时间内产品产量y 变化量快慢可知①④. 答案:①④10.某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y (件)与销售单价x (元)之间的关系可近似看作一次函数y =kx +b (k ≠0),函数图象如图所示.(1)根据图象,求一次函数y =kx +b (k ≠0)的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?解:(1)由图象知,当x =600时,y =400;当x =700时,y =300,代入y =kx +b (k ≠0)中,得⎩⎪⎨⎪⎧ 400=600k +b ,300=700k +b ,解得⎩⎪⎨⎪⎧k =-1,b =1000. 所以,y =-x +1000(500≤x ≤800). (2)销售总价=销售单价×销售量=xy , 成本总价=成本单价×销售量=500y , 代入求毛利润的公式,得S =xy -500y =x (-x +1000)-500(-x +1000) =-x 2+1500x -500000=-(x -750)2+62500(500≤x ≤800).所以,当销售单价定为750元时,可获得最大毛利润62500元,此时销售量为250件. 11.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·(12)th ,其中T a 表示环境温度,h 称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降温到40 ℃需要20 min ,那么降温到35 ℃时,需要多长时间?解:由题意知40-24=(88-24)·(12)20h ,即14=(12)20h . 解之,得h =10.故T -24=(88-24)·(12)t10.当T =35时,代入上式,得35-24=(88-24)·(12)t10,即(12)t 10=1164. 两边取对数,用计算器求得t ≈25. 因此,约需要25 min ,可降温到35 ℃.12.某地区为响应上级号召,在2011年初,新建了一批有200万平方米的廉价住房,供困难的城市居民居住.由于下半年受物价的影响,根据本地区的实际情况,估计今后住房的年平均增长率只能达到5%.(1)经过x 年后,该地区的廉价住房为y 万平方米,求y =f (x )的表达式,并求此函数的定义域.(2)作出函数y =f (x )的图象,并结合图象求:经过多少年后,该地区的廉价住房能达到300万平方米?解:(1)经过1年后,廉价住房面积为 200+200×5%=200(1+5%); 经过2年后为200(1+5%)2; …经过x 年后,廉价住房面积为200(1+5%)x , ∴y =200(1+5%)x (x ∈N *).(2)作函数y =f (x )=200(1+5%)x (x ≥0)的图象,如图所示.作直线y =300,与函数y =200(1+5%)x的图象交于A 点,则A (x 0,300),A 点的横坐标x 0的值就是函数值y =300时所经过的时间x 的值.因为8<x 0<9,则取x 0=9,即经过9年后,该地区的廉价住房能达到300万平方米.1.对集合{1,5,9,13,17}用描述法来表示,其中正确的一个是( ) A .{x |x 是小于18的正奇数} B .{x |x =4k +1,k ∈Z ,且k <5} C .{x |x =4t -3,t ∈N ,且t ≤5} D .{x |x =4s -3,s ∈N *,且s ≤5}解析:选D.A 中小于18的正奇数除给定集合中的元素外,还有3,7,11,15;B 中k 取负数,多了若干元素;C 中t =0时多了-3这个元素,只有D 是正确的.2.集合P ={x |x =2k ,k ∈Z },M ={x |x =2k +1,k ∈Z },S ={x |x =4k +1,k ∈Z },a ∈P ,b ∈M ,设c =a +b ,则有( )A .c ∈PB .c ∈MC .c ∈SD .以上都不对解析:选B.∵a ∈P ,b ∈M ,c =a +b , 设a =2k 1,k 1∈Z ,b =2k 2+1,k 2∈Z , ∴c =2k 1+2k 2+1=2(k 1+k 2)+1, 又k 1+k 2∈Z ,∴c ∈M .3.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B },设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为( )A .0B .2C .3D .6解析:选D.∵z =xy ,x ∈A ,y ∈B ,∴z 的取值有:1×0=0,1×2=2,2×0=0,2×2=4, 故A *B ={0,2,4},∴集合A *B 的所有元素之和为:0+2+4=6.4.已知集合A ={1,2,3},B ={1,2},C ={(x ,y )|x ∈A ,y ∈B },则用列举法表示集合C =____________.解析:∵C ={(x ,y )|x ∈A ,y ∈B }, ∴满足条件的点为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2).答案:{(1,1),(1,2),(2,1),(2,2),(3,1),(3,2)}1.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合 答案:D2.设集合M ={x ∈R |x ≤33},a =26,则( ) A .a ∉M B .a ∈MC .{a }∈MD .{a |a =26}∈M 解析:选B.(26)2-(33)2=24-27<0, 故26<3 3.所以a ∈M .3.方程组⎩⎪⎨⎪⎧x +y =1x -y =9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}解析:选D.由⎩⎪⎨⎪⎧ x +y =1x -y =9,得⎩⎪⎨⎪⎧x =5y =-4,该方程组有一组解(5,-4),解集为{(5,-4)}.4.下列命题正确的有( ) (1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合;(3)1,32,64,|-12|,0.5这些数组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集. A .0个 B .1个 C .2个 D .3个解析:选A.(1)错的原因是元素不确定;(2)前者是数集,而后者是点集,种类不同;(3)32=64,|-12|=0.5,有重复的元素,应该是3个元素;(4)本集合还包括坐标轴. 5.下列集合中,不同于另外三个集合的是( ) A .{0} B .{y |y 2=0} C .{x |x =0} D .{x =0}解析:选D.A 是列举法,C 是描述法,对于B 要注意集合的代表元素是y ,故与A ,C 相同,而D 表示该集合含有一个元素,即“x =0”.6.设P ={1,2,3,4},Q ={4,5,6,7,8},定义P *Q ={(a ,b )|a ∈P ,b ∈Q ,a ≠b },则P *Q 中元素的个数为( )A .4B .5C .19D .20解析:选C.易得P *Q 中元素的个数为4×5-1=19.故选C 项.7.由实数x ,-x ,x 2,-3x 3所组成的集合里面元素最多有________个.解析:x 2=|x |,而-3x 3=-x ,故集合里面元素最多有2个. 答案:28.已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |4x -3∈Z ,试用列举法表示集合A =________.解析:要使4x -3∈Z ,必须x -3是4的约数.而4的约数有-4,-2,-1,1,2,4六个,则x =-1,1,2,4,5,7,要注意到元素x 应为自然数,故A ={1,2,4,5,7}答案:{1,2,4,5,7}9.集合{x |x 2-2x +m =0}含有两个元素,则实数m 满足的条件为________. 解析:该集合是关于x 的一元二次方程的解集,则Δ=4-4m >0,所以m <1. 答案:m <110. 用适当的方法表示下列集合: (1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线); (3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B .解:(1){x |x =3n ,n ∈Z };(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z }.11.已知集合A ={x ∈R |ax 2+2x +1=0},其中a ∈R .若1是集合A 中的一个元素,请用列举法表示集合A .解:∵1是集合A 中的一个元素,∴1是关于x 的方程ax 2+2x +1=0的一个根, ∴a ·12+2×1+1=0,即a =-3. 方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,∴集合A =⎩⎨⎧⎭⎬⎫-13,1.12.已知集合A ={x |ax 2-3x +2=0},若A 中元素至多只有一个,求实数a 的取值范围.解:①a =0时,原方程为-3x +2=0,x =23,符合题意.②a ≠0时,方程ax 2-3x +2=0为一元二次方程.由Δ=9-8a ≤0,得a ≥98.∴当a ≥98时,方程ax 2-3x +2=0无实数根或有两个相等的实数根.综合①②,知a =0或a ≥98.1.下列各组对象中不能构成集合的是( ) A .水浒书业的全体员工 B .《优化方案》的所有书刊C .2010年考入清华大学的全体学生D .美国NBA 的篮球明星解析:选D.A 、B 、C 中的元素:员工、书刊、学生都有明确的对象,而D 中对象不确定,“明星”没有具体明确的标准.2.(2011年上海高一检测)下列所给关系正确的个数是( ) ①π∈R ;②3∉Q ;③0∈N *;④|-4|∉N *. A .1 B .2 C .3 D .4 解析:选B.①②正确,③④错误.3.集合A ={一条边长为1,一个角为40°的等腰三角形}中有元素( ) A .2个 B .3个 C .4个 D .无数个解析:选C.(1)当腰长为1时,底角为40°或顶角为40°.(2)当底边长为1时,底角为40°或顶角为40°,所以共有4个三角形.4.以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合中共有________个元素. 解析:由x 2-5x +6=0,解得x =2或x =3. 由x 2-x -2=0,解得x =2或x =-1. 答案:31.若以正实数x ,y ,z ,w 四个元素构成集合A ,以A 中四个元素为边长构成的四边形可能是( )A .梯形B .平行四边形C .菱形D .矩形 答案:A2.设集合A 只含一个元素a ,则下列各式正确的是( ) A .0∈A B .a ∉A C .a ∈A D .a =A 答案:C3.给出以下四个对象,其中能构成集合的有( ) ①教2011届高一的年轻教师;②你所在班中身高超过1.70米的同学; ③2010年广州亚运会的比赛项目; ④1,3,5.A .1个B .2个C .3个D .4个 解析:选C.因为未规定年轻的标准,所以①不能构成集合;由于②③④中的对象具备确定性、互异性,所以②③④能构成集合.4.若集合M ={a ,b ,c },M 中元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形解析:选D.根据元素的互异性可知,a ≠b ,a ≠c ,b ≠c . 5.下列各组集合,表示相等集合的是( ) ①M ={(3,2)},N ={(2,3)}; ②M ={3,2},N ={2,3}; ③M ={(1,2)},N ={1,2}. A .① B .②C .③D .以上都不对解析:选B.①中M 中表示点(3,2),N 中表示点(2,3),②中由元素的无序性知是相等集合,③中M 表示一个元素:点(1,2),N 中表示两个元素分别为1,2.6.若所有形如a +2b (a ∈Q 、b ∈Q )的数组成集合M ,对于x =13-52,y =3+2π,则有( )A .x ∈M ,y ∈MB .x ∈M ,y ∉MC .x ∉M ,y ∈MD .x ∉M ,y ∉M解析:选B.∅x =13-52=-341-5412,y =3+2π中π是无理数,而集合M 中,b ∈Q ,得x ∈M ,y ∉M .7.已知①5∈R ;②13∈Q ;③0={0};④0∉N ;⑤π∈Q ;⑥-3∈Z .其中正确的个数为________.解析:③错误,0是元素,{0}是一个集合;④0∈N ;⑤π∉Q ,①②⑥正确. 答案:38.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的取值是________. 解析:当a =2时,6-a =4∈A ; 当a =4时,6-a =2∈A ; 当a =6时,6-a =0∉A , 所以a =2或a =4. 答案:2或49.若a ,b ∈R ,且a ≠0,b ≠0,则|a |a +|b |b 的可能取值组成的集合中元素的个数为________.解析:当a >0,b >0时,|a |a +|b |b=2;当a ·b <0时,|a |a +|b |b=0;当a <0且b <0时,|a |a +|b |b=-2.所以集合中的元素为2,0,-2.即元素的个数为3. 答案:310.已知集合A 含有两个元素a -3和2a -1,若-3∈A ,试求实数a 的值. 解:∵-3∈A ,∴-3=a -3或-3=2a -1. 若-3=a -3,则a =0,此时集合A 含有两个元素-3,-1,符合题意. 若-3=2a -1,则a =-1,此时集合A 含有两个元素-4,-3,符合题意.综上所述,满足题意的实数a 的值为0或-1.11.集合A 是由形如m +3n (m ∈Z ,n ∈Z )的数构成的,试判断12-3是不是集合A 中的元素?解:∵12-3=2+3=2+3×1,而2,1∈Z ,∴2+3∈A ,即12-3∈A .12.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,试求a 与b 的值. 解:根据集合中元素的互异性,有 ⎩⎪⎨⎪⎧ a =2a b =b 2或⎩⎪⎨⎪⎧a =b 2b =2a , 解得⎩⎪⎨⎪⎧ a =0b =1或⎩⎪⎨⎪⎧a =0b =0或⎩⎨⎧a =14b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0b =1或⎩⎨⎧a =14b =12.1.下列六个关系式,其中正确的有( )①{a ,b }={b ,a };②{a ,b }⊆{b ,a };③∅={∅};④{0}=∅;⑤∅{0};⑥0∈{0}. A .6个 B .5个C .4个D .3个及3个以下 解析:选C.①②⑤⑥正确.2.已知集合A ,B ,若A 不是B 的子集,则下列命题中正确的是( ) A .对任意的a ∈A ,都有a ∉B B .对任意的b ∈B ,都有b ∈A C .存在a 0,满足a 0∈A ,a 0∉B D .存在a 0,满足a 0∈A ,a 0∈B解析:选C.A 不是B 的子集,也就是说A 中存在不是B 中的元素,显然正是C 选项要表达的.对于A 和B 选项,取A ={1,2},B ={2,3}可否定,对于D 选项,取A ={1},B ={2,3}可否定.3.设A ={x |1<x <2},B ={x |x <a },若A B ,则a 的取值范围是( )A .a ≥2B .a ≤1C .a ≥1D .a ≤2解析:选A.A ={x |1<x <2},B ={x |x <a },要使A B ,则应有a ≥2. 4.集合M ={x |x 2-3x -a 2+2=0,a ∈R }的子集的个数为________.解析:∵Δ=9-4(2-a 2)=1+4a 2>0,∴M 恒有2个元素,所以子集有4个. 答案:41.如果A ={x |x >-1},那么( ) A .0⊆A B .{0}∈AC .∅∈AD .{0}⊆A解析:选D.A 、B 、C 的关系符号是错误的.2.已知集合A ={x |-1<x <2},B ={x |0<x <1},则( ) A .A >B B .ABC .B AD .A ⊆B解析:选C.利用数轴(图略)可看出x ∈B ⇒x ∈A ,但x ∈A ⇒x ∈B 不成立.3.定义A -B ={x |x ∈A 且x ∉B },若A ={1,3,5,7,9},B ={2,3,5},则A -B 等于( ) A .A B .BC .{2}D .{1,7,9}解析:选D.从定义可看出,元素在A 中但是不能在B 中,所以只能是D. 4.以下共有6组集合.(1)A ={(-5,3)},B ={-5,3}; (2)M ={1,-3},N ={3,-1}; (3)M =∅,N ={0};(4)M ={π},N ={3.1415};(5)M ={x |x 是小数},N ={x |x 是实数};(6)M ={x |x 2-3x +2=0},N ={y |y 2-3y +2=0}. 其中表示相等的集合有( ) A .2组 B .3组 C .4组 D .5组解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.5.定义集合间的一种运算“*”满足:A *B ={ω|ω=xy (x +y ),x ∈A ,y ∈B }.若集合A ={0,1},B ={2,3},则A *B 的子集的个数是( )A .4B .8C .16D .32解析:选B.在集合A 和B 中分别取出元素进行*的运算,有0·2·(0+2)=0·3·(0+3)=0,1·2·(1+2)=6,1·3·(1+3)=12,因此可知A *B ={0,6,12},因此其子集个数为23=8,选B.6.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( ) A .A ⊆B B .B ⊆A C .A ∈B D .B ∈A解析:选D.∵B 的子集为{1},{2},{1,2},∅, ∴A ={x |x ⊆B }={{1},{2},{1,2},∅},∴B ∈A .7.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx=1},则A 、B 间的关系为________.解析:在A 中,(0,0)∈A ,而(0,0)∉B ,故BA .答案:B A8.设集合A ={1,3,a },B ={1,a 2-a +1},且A ⊇B ,则a 的值为________.解析:A ⊇B ,则a 2-a +1=3或a 2-a +1=a ,解得a =2或a =-1或a =1,结合集合元素的互异性,可确定a =-1或a =2.答案:-1或29.已知A ={x |x <-1或x >5},B ={x |a ≤x <a +4},若A B ,则实数a 的取值范围是________.解析:作出数轴可得,要使A B ,则必须a +4≤-1或a >5,解之得{a |a >5或a ≤-5}.答案:{a |a >5或a ≤-5}10.已知集合A ={a ,a +b ,a +2b },B ={a ,ac ,ac 2},若A =B ,求c 的值.解:①若⎩⎪⎨⎪⎧a +b =aca +2b =ac 2,消去b 得a +ac 2-2ac =0, 即a (c 2-2c +1)=0.当a =0时,集合B 中的三个元素相同,不满足集合中元素的互异性,故a ≠0,c 2-2c +1=0,即c =1;当c =1时,集合B 中的三个元素也相同, ∴c =1舍去,即此时无解.②若⎩⎪⎨⎪⎧a +b =ac2a +2b =ac ,消去b 得2ac 2-ac -a =0,即a (2c 2-c -1)=0.∵a ≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0.又∵c ≠1,∴c =-12.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围; (2)若B ⊆A ,求a 的取值范围. 解:(1)若AB ,由图可知,a >2.(2)若B ⊆A ,由图可知,1≤a ≤2.12.若集合A ={x |x 2+x -6=0},B ={x |mx +1=0},且B A ,求实数m 的值.解:A ={x |x 2+x -6=0}={-3,2}.∵B A ,∴mx +1=0的解为-3或2或无解. 当mx +1=0的解为-3时,由m ·(-3)+1=0,得m =13;当mx +1=0的解为2时,由m ·2+1=0,得m =-12;当mx +1=0无解时,m =0.综上所述,m =13或m =-12或m =0.1.(2010年高考广东卷)若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}解析:选D.因为A ={x |-2<x <1},B ={x |0<x <2},所以A ∩B ={x |0<x <1}. 2.(2010年高考湖南卷)已知集合M ={1,2,3},N ={2,3,4}则( ) A .M ⊆N B .N ⊆MC .M ∩N ={2,3}D .M ∪N ={1,4} 解析:选C.∵M ={1,2,3},N ={2,3,4}. ∴选项A 、B 显然不对.M ∪N ={1,2,3,4}, ∴选项D 错误.又M ∩N ={2,3},故选C.3.已知集合M ={y |y =x 2},N ={y |x =y 2},则M ∩N =( ) A .{(0,0),(1,1)} B .{0,1} C .{y |y ≥0} D .{y |0≤y ≤1}解析:选C.M ={y |y ≥0},N =R ,∴M ∩N =M ={y |y ≥0}. 4.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.解析:A ∪B =A ,即B ⊆A ,∴m ≥2. 答案:m ≥21.下列关系Q ∩R =R ∩Q ;Z ∪N =N ;Q ∪R =R ∪Q ;Q ∩N =N 中,正确的个数是( )A .1B .2C .3D .4解析:选C.只有Z ∪N =N 是错误的,应是Z ∪N =Z .2.(2010年高考四川卷)设集合A ={3,5,6,8},集合B ={4,5,7,8},则A ∩B 等于( ) A .{3,4,5,6,7,8} B .{3,6} C .{4,7} D .{5,8}解析:选D.∵A ={3,5,6,8},B ={4,5,7,8},∴A ∩B ={5,8}.3.(2009年高考山东卷)集合A ={0,2,a },B ={1,a 2}.若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .4解析:选D.根据元素特性,a ≠0,a ≠2,a ≠1. ∴a =4.4.已知集合P ={x ∈N |1≤x ≤10},集合Q ={x ∈R |x 2+x -6=0},则P ∩Q 等于( ) A .{2} B .{1,2} C .{2,3} D .{1,2,3}解析:选A.Q ={x ∈R |x 2+x -6=0}={-3,2}. ∴P ∩Q ={2}.5.(2010年高考福建卷)若集合A ={x |1≤x ≤3},B ={x |x >2},则A ∩B 等于( ) A .{x |2<x ≤3} B .{x |x ≥1} C .{x |2≤x <3} D .{x |x >2}解析:选A.∵A ={x |1≤x ≤3},B ={x |x >2}, ∴A ∩B ={x |2<x ≤3}.6.设集合S ={x |x >5或x <-1},T ={x |a <x <a +8},S ∪T =R ,则a 的取值范围是( )A .-3<a <-1B .-3≤a ≤-1C .a ≤-3或a ≥-1D .a <-3或a >-1 解析:选A.S ∪T =R , ∴⎩⎪⎨⎪⎧a +8>5,a <-1.∴-3<a <-1. 7.(2010年高考湖南卷)已知集合A ={1,2,3},B ={2,m,4},A ∩B ={2,3},则m =________. 解析:∵A ∩B ={2,3},∴3∈B ,∴m =3. 答案:38.满足条件{1,3}∪M ={1,3,5}的集合M 的个数是________. 解析:∵{1,3}∪M ={1,3,5},∴M 中必须含有5, ∴M 可以是{5},{5,1},{5,3},{1,3,5},共4个. 答案:49.若集合A ={x |x ≤2},B ={x |x ≥a },且满足A ∩B ={2},则实数a =________. 解析:当a >2时,A ∩B =∅; 当a <2时,A ∩B ={x |a ≤x ≤2}; 当a =2时,A ∩B ={2}.综上:a =2. 答案:210.已知A ={x |x 2+ax +b =0},B ={x |x 2+cx +15=0},A ∪B ={3,5},A ∩B ={3},求实数a ,b ,c 的值.解:∵A ∩B ={3},∴由9+3c +15=0,解得c =-8.由x 2-8x +15=0,解得B ={3,5},故A ={3}. 又a 2-4b =0,解得a =-6,b =9. 综上知,a =-6,b =9,c =-8.11.已知集合A ={x |x -2>3},B ={x |2x -3>3x -a },求A ∪B . 解:A ={x |x -2>3}={x |x >5}, B ={x |2x -3>3x -a }={x |x <a -3}. 借助数轴如图:①当a -3≤5,即a ≤8时, A ∪B ={x |x <a -3或x >5}. ②当a -3>5,即a >8时,A ∪B ={x |x >5}∪{x |x <a -3}={x |x ∈R }=R .综上可知当a ≤8时,A ∪B ={x |x <a -3或x >5}; 当a >8时,A ∪B =R .12.设集合A ={(x ,y )|2x +y =1,x ,y ∈R },B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∅,求a 的值.解:集合A 、B 的元素都是点,A ∩B 的元素是两直线的公共点.A ∩B =∅,则两直线无交点,即方程组无解.列方程组⎩⎪⎨⎪⎧2x +y =1a 2x +2y =a ,解得(4-a 2)x =2-a ,则⎩⎪⎨⎪⎧4-a 2=02-a ≠0,即a =-2.1.(2010年高考辽宁卷)已知集合U ={1,3,5,7,9},A ={1,5,7},则∁U A =( ) A .{1,3} B .{3,7,9} C .{3,5,9} D .{3,9} 解析:选D.∁U A ={3,9},故选D.2.(2010年高考陕西卷)集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )=( ) A .{x |x >1} B .{x |x ≥1} C .{x |1<x ≤2} D .{x |1≤x ≤2}解析:选D.∵B ={x |x <1},∴∁R B ={x |x ≥1}, ∴A ∩∁R B ={x |1≤x ≤2}.3. 已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}解析:选A.依题意知A ={0,1},(∁U A )∩B 表示全集U 中不在集合A 中,但在集合B 中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.选A.4.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________.解析:∵A∪∁U A=U,∴A={x|1≤x<2}.∴a=2.答案:21.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∁U B)等于()A.{2} B.{5}C.{3,4} D.{2,3,4,5}解析:选C.∁U B={3,4,5},∴A∩(∁U B)={3,4}.2.已知全集U={0,1,2},且∁U A={2},则A=()A.{0} B.{1}C.∅D.{0,1}解析:选D.∵∁U A={2},∴2∉A,又U={0,1,2},∴A={0,1}.3.(2009年高考全国卷Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有()A.3个B.4个C.5个D.6个解析:选A.U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴∁U(A∩B)={3,5,8}.4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6} B.M∪N=UC.(∁U N)∪M=U D.(∁U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∁U N)∪M={3,4,5,7},(∁U M)∩N={2,6},M∪N={2,3,4,5,6,7}=U,选B.5.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪B)中元素个数为()A.1 B.2C.3 D.4解析:选B.∵A={1,2},∴B={2,4},∴A∪B={1,2,4},∴∁U(A∪B)={3,5}.6.已知全集U=A∪B中有m个元素,(∁U A)∪(∁U B)中有n个元素.若A∩B非空,则A∩B的元素个数为()A.mn B.m+nC.n-m D.m-n解析:选D.U=A∪B中有m个元素,∵(∁U A)∪(∁U B)=∁U(A∩B)中有n个元素,∴A∩B中有m-n个元素,故选D.7.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)=________.解析:∵A∪B={2,3,4,5},∁U C={1,2,5},∴(A∪B)∩(∁U C)={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}8.已知全集U={2,3,a2-a-1},A={2,3},若∁U A={1},则实数a的值是________.解析:∵U={2,3,a2-a-1},A={2,3},∁U A={1},∴a2-a-1=1,即a2-a-2=0,解得a=-1或a=2.答案:-1或29.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∁U A )∩B =∅,求实数m 的取值范围为________.解析:由已知A ={x |x ≥-m }, ∴∁U A ={x |x <-m },∵B ={x |-2<x <4},(∁U A )∩B =∅, ∴-m ≤-2,即m ≥2, ∴m 的取值范围是m ≥2. 答案:{m |m ≥2}10.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).解:将集合A 、B 、P 表示在数轴上,如图.∵A ={x |-4≤x <2},B ={x |-1<x ≤3}, ∴A ∩B ={x |-1<x <2}. ∵∁U B ={x |x ≤-1或x >3},∴(∁U B )∪P ={x |x ≤0或x ≥52},(A ∩B )∩(∁U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.11.已知集合A ={x |x 2+ax +12b =0}和B ={x |x 2-ax +b =0},满足B ∩(∁U A )={2},A ∩(∁U B )={4},U =R ,求实数a ,b 的值.解:∵B ∩(∁U A )={2}, ∴2∈B ,但2∉A .∵A ∩(∁U B )={4},∴4∈A ,但4∉B .∴⎩⎪⎨⎪⎧42+4a +12b =022-2a +b =0,解得⎩⎨⎧a =87b =127.∴a ,b 的值为87,-127.12.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求实数a 的取值范围. 解:∁R B ={x |x ≤1或x ≥2}≠∅, ∵A ∁R B ,∴分A =∅和A ≠∅两种情况讨论. ①若A =∅,此时有2a -2≥a , ∴a ≥2.②若A ≠∅,则有⎩⎪⎨⎪⎧ 2a -2<a a ≤1或⎩⎪⎨⎪⎧2a -2<a 2a -2≥2. ∴a ≤1.综上所述,a ≤1或a ≥2.第二章 基本初等函数1.下列说法中正确的为( )A .y =f (x )与y =f (t )表示同一个函数B .y =f (x )与y =f (x +1)不可能是同一函数C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数 解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:选B.A 、C 、D 的定义域均不同. 3.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}解析:选D.由⎩⎪⎨⎪⎧1-x ≥0x ≥0,得0≤x ≤1.4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________.解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x的定义域是( )A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是( ) A .x =y 2+1 B .y =2x 2+1 C .x -2y =6 D .x =y解析:选A.一个x 对应的y 值不唯一. 3.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∈A ,可以是x →x ,x ∈A ,还可以是x →x 2,x ∈A .4.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1},B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数D .A =R ,B ={正实数},f :A 中的数取绝对值解析:选A.按照函数定义,选项B 中集合A 中的元素1对应集合B 中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C 中的元素0取倒数没有意义,也不符合函数定义中集合A 中任意元素都对应唯一函数值的要求;选项D 中,集合A 中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A 符合函数定义.5.下列各组函数表示相等函数的是( )A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 解析:选C.A 、B 与D 对应法则都不同.6.设f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ∩B 一定是( ) A .∅ B .∅或{1} C .{1} D .∅或{2}解析:选B.由f :x →x 2是集合A 到集合B 的函数,如果B ={1,2},则A ={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =∅或{1}.7.若[a,3a -1]为一确定区间,则a 的取值范围是________.解析:由题意3a -1>a ,则a >12.答案:(12,+∞)8.函数y =(x +1)03-2x的定义域是________.解析:要使函数有意义,需满足⎩⎪⎨⎪⎧x +1≠03-2x >0,即x <32且x ≠-1.答案:(-∞,-1)∪(-1,32)9.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是________. 解析:当x 取-1,0,1,2时, y =-1,-2,-1,2,故函数值域为{-1,-2,2}. 答案:{-1,-2,2}10.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +83x -2.解:(1)要使y =-x 2x 2-3x -2有意义,则必须⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12}.(2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23, 故所求函数的定义域为{x |x >23}. 11.已知f (x )=11+x(x ∈R 且x ≠-1),g (x )=x 2+2(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (2))的值.解:(1)∵f (x )=11+x ,∴f (2)=11+2=13,又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)由(1)知g (2)=6,∴f (g (2))=f (6)=11+6=17.12.已知函数y =ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的取值范围.解:函数y =ax +1(a <0且a 为常数).∵ax +1≥0,a <0,∴x ≤-1a ,即函数的定义域为(-∞,-1a].∵函数在区间(-∞,1]上有意义,∴(-∞,1]⊆(-∞,-1a],∴-1a≥1,而a <0,∴-1≤a <0.即a 的取值范围是[-1,0).1.下列各图中,不能是函数f (x )图象的是( )解析:选C.结合函数的定义知,对A 、B 、D ,定义域中每一个x 都有唯一函数值与之对应;而对C ,对大于0的x 而言,有两个不同值与之对应,不符合函数定义,故选C.2.若f (1x )=11+x,则f (x )等于( )A.11+x(x ≠-1) B.1+x x (x ≠0)C.x 1+x(x ≠0且x ≠-1) D .1+x (x ≠-1) 解析:选C.f (1x )=11+x =1x 1+1x(x ≠0),∴f (t )=t1+t (t ≠0且t ≠-1),∴f (x )=x1+x(x ≠0且x ≠-1).3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3解析:选B.设f (x )=kx +b (k ≠0), ∵2f (2)-3f (1)=5,2f (0)-f (-1)=1, ∴⎩⎪⎨⎪⎧ k -b =5k +b =1,∴⎩⎪⎨⎪⎧k =3b =-2,∴f (x )=3x -2. 4.已知f (2x )=x 2-x -1,则f (x )=________.解析:令2x =t ,则x =t2,∴f (t )=⎝⎛⎭⎫t 22-t 2-1,即f (x )=x 24-x 2-1.答案:x 24-x 2-11.下列表格中的x 与y 能构成函数的是( ) A.x 非负数 非正数 y 1 -1B.x 奇数 0 偶数y 1 0-1 C.x 有理数 无理数 y 1 -1D.x 自然数 整数 有理数y 1 0 -1解析:选C.A 中,当x =0时,y =±1;B 中0是偶数,当x =0时,y =0或y =-1;D 中自然数、整数、有理数之间存在包含关系,如x =1∈N(Z ,Q),故y 的值不唯一,故A 、B 、D 均不正确.2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于( )A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∴f (t )=4(t -1)2-1,∴f (12)=16-1=15. 法二:令1-2x =12,得x =14,∴f (12)=16-1=15.3.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的表达式是( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7解析:选B.∵g (x +2)=2x +3=2(x +2)-1, ∴g (x )=2x -1.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是( )解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A 、C ,又一开始跑步,速度快,所以D 符合.5.如果二次函数的二次项系数为1且图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式为( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1 解析:选D.设f (x )=(x -1)2+c , 由于点(0,0)在函数图象上, ∴f (0)=(0-1)2+c =0,∴c =-1,∴f (x )=(x -1)2-1.6.已知正方形的周长为x ,它的外接圆的半径为y ,则y 关于x 的函数解析式为( )A .y =12x (x >0)B .y =24x (x >0)C .y =28x (x >0)D .y =216x (x >0)解析:选C.设正方形的边长为a ,则4a =x ,a =x4,其外接圆的直径刚好为正方形的一条对角线长.故2a =2y ,所以y =22a =22×x 4=28x .7.已知f (x )=2x +3,且f (m )=6,则m 等于________.解析:2m +3=6,m =32.答案:328. 如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f (3)]的值等于________.解析:由题意,f (3)=1,∴f [1f (3)]=f (1)=2.答案:2 9.将函数y =f (x )的图象向左平移1个单位,再向上平移2个单位得函数y =x 2的图象,则函数f (x )的解析式为__________________.解析:将函数y =x 2的图象向下平移2个单位,得函数y =x 2-2的图象,再将函数y =x 2-2的图象向右平移1个单位,得函数y =(x -1)2-2的图象,即函数y =f (x )的图象,故f (x )=x 2-2x -1.答案:f (x )=x 2-2x -110.已知f (0)=1,f (a -b )=f (a )-b (2a -b +1),求f (x ). 解:令a =0,则f (-b )=f (0)-b (-b +1) =1+b (b -1)=b 2-b +1.再令-b =x ,即得f (x )=x 2+x +1.11.已知f (x +1x )=x 2+1x 2+1x,求f (x ).解:∵x +1x =1+1x ,x 2+1x 2=1+1x 2,且x +1x ≠1,∴f (x +1x )=f (1+1x )=1+1x 2+1x=(1+1x )2-(1+1x)+1.∴f (x )=x 2-x +1(x ≠1).12.设二次函数f (x )满足f (2+x )=f (2-x ),对于x ∈R 恒成立,且f (x )=0的两个实根的平方和为10,f (x )的图象过点(0,3),求f (x )的解析式.解:∵f (2+x )=f (2-x ),∴f (x )的图象关于直线x =2对称. 于是,设f (x )=a (x -2)2+k (a ≠0), 则由f (0)=3,可得k =3-4a ,∴f (x )=a (x -2)2+3-4a =ax 2-4ax +3.∵ax 2-4ax +3=0的两实根的平方和为10,∴10=x 21+x 22=(x 1+x 2)2-2x 1x 2=16-6a, ∴a =1.∴f (x )=x 2-4x +3.1.已知集合A ={a ,b },集合B ={0,1},下列对应不是A 到B 的映射的是( )解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.(2011年葫芦岛高一检测)设f (x )=⎩⎪⎨⎪⎧x +3 (x >10)f (f (x +5)) (x ≤10),则f (5)的值是( ) A .24 B .21 C .18 D .16 解析:选A.f (5)=f (f (10)), f (10)=f (f (15))=f (18)=21, f (5)=f (21)=24.3.函数y =x +|x |x的图象为( )解析:选C.y =x +|x |x =⎩⎪⎨⎪⎧x +1 (x >0)x -1 (x <0),再作函数图象.4.函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <11x, x >1的值域是________.解析:当x <1时,x 2-x +1=(x -12)2+34≥34;当x >1时,0<1x<1,则所求值域为(0,+∞),故填(0,+∞).答案:(0,+∞)1.设f :A →B 是集合A 到B 的映射,其中A ={x |x >0},B =R ,且f :x →x 2-2x -1,则A 中元素1+2的像和B 中元素-1的原像分别为( )A.2,0或2 B .0,2 C .0,0或2 D .0,0或2 答案:C2.某城市出租车起步价为10元,最长可租乘3 km(含3 km),以后每1 km 为1.6元(不足1 km ,按1 km 计费),若出租车行驶在不需等待的公路上,则出租车的费用y (元)与行驶的里程x (km)之间的函数图象大致为( )解析:选C.由题意,当0<x ≤3时,y =10; 当3<x ≤4时,y =11.6; 当4<x ≤5时,y =13.2; …当n -1<x ≤n 时,y =10+(n -3)×1.6,故选C.3.函数f (x )=⎩⎪⎨⎪⎧2x -x 2(0≤x ≤3)x 2+6x (-2≤x ≤0)的值域是( )A .RB .[-9,+∞)C .[-8,1]D .[-9,1]解析:选C.画出图象,也可以分段求出部分值域,再合并,即求并集.4.已知f (x )=⎩⎪⎨⎪⎧x +2(x ≤-1),x 2(-1<x <2)2x (x ≥2),若f (x )=3,则x 的值是( ) A .1B .1或32C .1,32或± 3 D.3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4), ∴f (x )=x 2=3,x =±3,而-1<x <2,∴x = 3.5.已知函数f (x )=⎩⎪⎨⎪⎧1, x 为有理数,0, x 为无理数,g (x )=⎩⎪⎨⎪⎧0, x 为有理数,1, x 为无理数,当x ∈R 时,f (g (x )),g (f (x ))的值分别为( )A .0,1B .0,0C .1,1D .1,0解析:选D.g (x )∈Q ,f (x )∈Q ,f (g (x ))=1,g (f (x ))=0.6.设f (x )=⎩⎪⎨⎪⎧(x +1)2 (x ≤-1),2(x +1) (-1<x <1),1x -1 (x ≥1),已知f (a )>1,则实数a 的取值范围是( )A .(-∞,-2)∪⎝⎛⎭⎫-12,+∞ B.⎝⎛⎭⎫-12,12 C .(-∞,-2)∪⎝⎛⎭⎫-12,1 D.⎝⎛⎭⎫-12,12∪(1,+∞) 解析:选C.f (a )>1⇔⎩⎪⎨⎪⎧ a ≤-1(a +1)2>1或⎩⎪⎨⎪⎧-1<a <12(a +1)>1或⎩⎪⎨⎪⎧a ≥11a-1>1⇔⎩⎪⎨⎪⎧a ≤-1a <-2或a >0或⎩⎪⎨⎪⎧-1<a <1a >-12或⎩⎪⎨⎪⎧a ≥10<a <12⇔a <-2或-12<a <1.即所求a 的取值范围是(-∞,-2)∪⎝⎛⎭⎫-12,1. 7.设A =B ={a ,b ,c ,d ,…,x ,y ,z }(元素为26个英文字母),作映射f :A →B 为A中每一个字母与B 中下一个字母对应,即:a →b ,b →c ,c →d ,…,z →a ,并称A 中的字母组成的文字为明文,B 中相应的字母为密文,试破译密文“nbuj ”:________.解析:由题意可知m →n ,a →b ,t →u ,i →j , 所以密文“nbuj ”破译后为“mati ”. 答案:mati8.已知函数f (x )=⎩⎪⎨⎪⎧x 2, x ≤0,f (x -2), x >0,则f (4)=________.解析:f (4)=f (2)=f (0)=0.答案:09.已知f (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0,则不等式x +(x +2)·f (x +2)≤5的解集是________.解析:原不等式可化为下面两个不等式组 ⎩⎪⎨⎪⎧ x +2≥0x +(x +2)·1≤5或⎩⎪⎨⎪⎧x +2<0x +(x +2)·(-1)≤5, 解得-2≤x ≤32或x <-2,即x ≤32.答案:(-∞,32]10.已知f (x )=⎩⎨⎧x 2 (-1≤x ≤1)1 (x >1或x <-1),(1)画出f (x )的图象;(2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示. (2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时, f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.某汽车以52千米/小时的速度从A 地到260千米远的B 地,在B 地停留112小时后,再以65千米/小时的速度返回A 地.试将汽车离开A 地后行驶的路程s (千米)表示为时间t (小时)的函数.解:∵260÷52=5(小时),260÷65=4(小时),∴s =⎩⎪⎨⎪⎧52t (0≤t ≤5),260 ⎝⎛⎭⎫5<t ≤612,260+65⎝⎛⎭⎫t -612 ⎝⎛⎭⎫612<t ≤1012.12. 如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7cm ,腰长为2 2 cm ,当垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出左边部分的面积y 与x 的函数解析式,并画出大致图象.解:过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H . 因为ABCD 是等腰梯形, 底角为45°,AB =2 2 cm , 所以BG =AG =DH =HC =2 cm. 又BC =7 cm ,所以AD =GH =3 cm. ①当点F 在BG 上时,。
高一数学必修一单元测试一、 选择题1.会合 { a,b} 的子集有 ()A .2 个B .3 个C .4 个D .5 个2.设会合 Ax | 4 x 3 , Bx | x2 ,则AI B( )A . ( 4,3)B . ( 4,2]C . ( ,2]D . ( ,3)3.已知 f x 1 x 2 4 x 5 ,则 f x 的表达式是( )A . x 2 6xB . x 2 8x 7C . x 2 2x 3D . x 2 6x 104.以下对应关系:( )① A {1,4,9}, B { 3, 2, 1,1,2,3}, f : xx 的平方根② A R, B R, f : x x 的倒数 ③ A R, B R, f : x x 2 2④ A1,0,1 , B1,0,1 , f : A 中的数平方此中是 A 到 B 的映照的是A .①③B .②④C .③④D .②③5.以下四个函数:① y1x ( x 0)3 x ;② y;③ y x 2 2x 10 ;④ y1. 21 x( x 0)x此中值域为 R 的函数有 ()A .1 个B .2 个C .3 个D .4 个6.已知函数 yx 2 1 (x 0) ,使函数值为 5 的 x 的值是()2 x(x0)A .-2B .2或52C . 2 或-2D .2 或-2 或 527.以下函数中,定义域为 [0,∞)的函数是()A . y xB . y 2x 2C . y 3x 1D . y (x 1)2 8.若 x, yR ,且 f ( x y) f ( x) f ( y) ,则函数 f ( x)()A . f ( 0) 0 且 f (x) 为奇函数B . f ( 0) 0且 f (x) 为偶函数C.f ( x)为增函数且为奇函数D.f (x)为增函数且为偶函数9.以下图象中表示函数图象的是()yy y y0 0 0x 0x x x(A)(B)(C )(D)10.若H nx R, n N *,规定:H x x( x 1)(x 2) (x n 1) ,比如:()4 4( 4) ( 3) ( 2) ( 1) 24 ,则 f ( x) x H 5x 2的奇偶性为A.是奇函数不是偶函数B.是偶函数不是奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数二、填空题11.若A0,1,2,3 , B x | x 3a, a A ,则 A I B.12 .已知会合M={( x , y)|x + y=2} , N={( x , y)|x - y=4} ,那么会合M ∩N =.13.函数f x x 1, x 1,则 f f 4 .x 3, x 1,14.某班 50 名学生参加跳远、铅球两项测试,成绩及格人数分别为40 人和 31 人,两项测试均不及格的人数是 4 人,两项测试都及格的有人.15 .已知函数f(x)满足f(xy)=f(x)+f(y),且f(2)=p,f(3)=q,那么f(36)=.三、解答题16.已知会合 A= x1 x 7,B={x|2<x<10} ,C={x|x< a} ,全集为实数集R.(Ⅰ)求 A ∪B,(C R A)∩B;(Ⅱ)假如 A∩C≠φ,求 a 的取值范围.17.会合 A={ x|x2-ax+a2-19=0},B={ x|x2-5x+6=0},C={ x|x2+2x-8=0}.(Ⅰ)若 A=B,求 a 的值;(Ⅱ)若A∩B,A∩C=,求a的值.18.已知方程x2px q 0 的两个不相等实根为,.会合A{ , } ,B{2 ,4,5,6} ,C{1 ,2,3,4} ,A ∩C=A ,A∩B=,求p, q的值?19.已知函数 f ( x) 2x21.(Ⅰ)用定义证明 f ( x) 是偶函数;(Ⅱ)用定义证明 f (x) 在 ( ,0] 上是减函数;(Ⅲ)作出函数 f (x) 的图像,并写出函数 f ( x) 当 x [ 1,2] 时的最大值与最小值.yo x20.设函数f (x)ax2bx 1(a0 、b R ),若f ( 1)0,且对随意实数 x(x R )不等式 f ( x)0 恒建立.(Ⅰ)务实数 a 、b的值;(Ⅱ )当x[ -2, 2]时,g(x) f (x) kx 是单一函数,务实数k 的取值范围.高一数学必修一单元测试题(一)参照答案一、选择题CBACB AAACB二、填空题11.0,312. {(3 ,- 1)}13. 014. 2515. 2( p q)三、解答题16.解:(Ⅰ) A∪B={x|1 ≤x<10}(C R A)∩B={x|x<1 或 x≥7} ∩{x|2<x<10}={x|7 ≤x<10}(Ⅱ)当 a>1 时知足 A∩C≠φ17.解:由已知,得 B={ 2,3},C={ 2,- 4}( Ⅰ )∵A=B 于是 2,3 是一元二次方程x2-ax+a2-19=0 的两个根,由韦达定理知:2 3 a解之得 a=5.2 3 a219(Ⅱ)由 A∩B A∩B,又A∩C=,得 3∈A,2 A,- 4 A,由 3∈A,得 32-3a+a2-19=0,解得 a=5 或 a=-2当 a=5 时, A={ x|x2-5x+6=0}={ 2,3},与 2 A 矛盾;当a=-2 时, A={x|x2+2x-15=0}={ 3,- 5},切合题意 .∴a=- 2.5又A { , },则C , C .而A ∩B = ,故 B ,B明显即属于 C 又不属于 B 的元素只有 1 和 3.不仿设 =1, =3. 关于方程 x 2px q 0 的两根 ,应用韦达定理可得 p4, q 3 .19.(Ⅰ)证明: 函数 f ( x) 的定义域为 R ,关于随意的 xR ,都有f ( x) 2( x)2 1 2x 2 1 f ( x) ,∴ f ( x) 是偶函数. (Ⅱ)证明: 在区间 ( ,0] 上任取 x , x x x12,且 12,则有f ( x 1 ) f ( x 2 ) (2 x 12 1) (2 x 2 2 1) 2( x 12 x 22 ) 2( x 1 x 2 ) ( x 1 x 2 ) , ∵ x 1, x 2 ( ,0] , x 1 x 2 ,∴ x 1 x 2 x 1 x 2 0, 即 ( x 1 x 2 ) ( x 1 x 2 ) 0∴ f ( x 1 ) f ( x 2 ) 0 ,即 f ( x) 在 ( ,0] 上是减函数.(Ⅲ)解: 最大值为 f (2)7 ,最小值为 f (0)1 .20.解:(Ⅰ) ∵ f ( 1) 0 ∴ a b 1 0∵随意实数 x 均有 f (x)a 00 建立∴b 2 4a 0解得: a 1 , b 2 (Ⅱ)由( 1)知 f (x) x 2 2x 1∴ g(x)f (x) kx x 2(2 k )x1 的对称轴为 x k 2∵当 x [ -2,2]时, g( x) 是单一函数2∴ k 22 或 k 2 2 22∴实数 k 的取值范围是 (, 2] [6,) .21.解: ( Ⅰ) 令 m n 1 得 f (1)f (1) f (1)因此 f (1) 0f (1) f (21) f (2)f ( 1) 1 f ( 1)1 ) 222因此 f ( 12( Ⅱ) 证明:任取 0x 1 x 2 ,则x 21x 1由于当 x 1时, f (x)0 ,因此 f (x 2)x 1因此 ( x 2 )( x2)( x 1 )( x2 )( x 1 )ffx1x 1ff x 1f因此 f (x) 在 0, 上是减函数.高一数学必修一单元测试题(二)一、选择题 (每题 3 分,共 36 分)1.设会合 A {1,3}, 会合 B {1,2,4,5} ,则会合A B () A .{1 ,3,1,2,4,5} B .{1} C .{1,2,3,4,5}D . {2,3,4,5}2.设会合 A { x |1 x 2}, B { x | x a}. 若 AB, 则 a 的范围是 () A . a 2B . a 1C . a 1D . a 23.与 y | x | 为同一函数的是()。
人教版高中数学必修1《集合与函数概念》章节测验(两套,附答案)时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.已知集合A={1,2},B={2,4},则A∪B=()A.{2} B.{1,2,2,4} C.{1,2,4} D.∅2.设全集U=R,集合M={y|y=x2+2,x∈U},集合N={y|y=3x,x∈U},则M∩N等于()A.{1,3,2,6} B.{(1,3),(2,6)} C.M D.{3,6}3.如图1所示,阴影部分表示的集合是()A.(∁U B)∩A B.(∁U A)∩B C.∁U(A∩B) D.∁U(A∪B)图14.设全集U={x|0<x<10,x∈Z},A,B是U的两个真子集,(∁U A)∩(∁B)={1,9},A∩B={2},(∁U A)∩B={4,6,8},则()UA.5∈A,且5∉B B.5∉A,且5∉BC.5∈A,且5∈B D.5∉A,且5∈B5.下列各图中,可表示函数y=f(x)的图象的只可能是()6.下表表示y 是x 的函数,则函数的值域是( )A .[2,5] 7.图中给出的对应是从A 到B 的映射的是( )8.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≥0,x 2,x <0,则f [f (-2)]的值是( )A .2B .-2C .4D .-4 9.函数y =x 2-2x +3,-1≤x ≤2的值域是( )A.R B.[3,6] C.[2,6] D.[2,+∞)10.已知函数f(x)是(-∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图4所示,则不等式xf(x)<0的解集是()图4A.(-2,-1)∪(1,2)B.(-2,-1)∪(0,1)∪(2,+∞)C.(-∞,-2)∪(-1,0)∪(1,2)D.(-∞,-2)∪(-1,0)∪(0,1)∪(2,+∞)11.定义在R上的偶函数f(x)在[0,7]上是增函数,在[7,+∞)上是减函数,f(7)=6,则f(x)()A.在[-7,0]上是增函数,且最大值是6B.在[-7,0]上是减函数,且最大值是6C.在[-7,0]上是增函数,且最小值是6D.在[-7,0]上是减函数,且最小值是612.定义在R上的偶函数f(x)满足:对任意x1,x2∈(-∞,0](x1≠x2),都有x2-x1f(x2)-f(x1)>0,则()A.f(-5)<f(4)<f(6) B.f(4)<f(-5)<f(6)C.f(6)<f(-5)<f(4) D.f(6)<f(4)<f(-5)第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },若P ={1,2,3,4},Q ={x |x +12<2,x ∈R },则P -Q =________.14.函数y =x 2+2x -3的单调递减区间是________.15.若函数f (x )=kx 2+(k -1)x +2是偶函数,则f (x )的递减区间是________.16.设函数f (x )=⎩⎪⎨⎪⎧|x -1|(0<x <2),2-|x -1|(x ≤0,或x ≥2),则函数y =f (x )与y =12的图象的交点个数是________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知集合A ={x |2≤x ≤8},B ={x |1<x <6},C ={x |x >a },U =R .(1)求A ∪B ,(∁U A )∩B ;(2)若A ∩C ≠∅,求a 的取值范围.18.(12分)设A ={x |x 2+2(a +1)x +a 2-1=0},B ={x |x (x +4)(x -12)=0,x ∈Z }.若A ∩B =A ,求a 的取值范围.19.(12分)已知函数f(x)=-2x+m,其中m为常数.(1)求证:函数f(x)在R上是减函数;(2)当函数f(x)是奇函数时,求实数m的值.20.(12分)某公司生产的水笔上年度销售单价为0.8元,年销售量为1亿支.本年度计划将销售单价调至0.55~0.75元(含端点值),经调查,若销售单价调至x元,则本年度新增销售量y(亿支)与x-0.4成反比,且当x=0.65时,y=0.8.(1)求y与x的函数关系式;(2)若每支水笔的成本价为0.3元,则水笔销售单价调至多少时,本年度该公司的收益比上年度增加20%?21.(12分)已知函数f(x)是正比例函数,函数g(x)是反比例函数,且f(1)=1,g(1)=2,(1)求函数f(x)和g(x);(2)判断函数f(x)+g(x)的奇偶性.(3)求函数f(x)+g(x)在(0,2]上的最小值.22.(12分)函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25.(1)求f(x)的解析式;(2)证明f(x)在(-1,1)上为增函数;(3)解不等式f(t-1)+f(t)<0.参考答案1C 2C 3A 4A 5A 6B 7D 8C 9C 10D 11B 12C 13.{4} 14.(-∞,-3] 15.(-∞,0] 16.417.(1)(∁U A )∩B ={x |1<x <2}. (2)∵A ∩C ≠∅,∴a <8.18.a 的取值范围是{a |a ≤-1,或a =1}.19.解:(1)证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2, 则f (x 1)-f (x 2)=(-2x 1+m )-(-2x 2+m )=2(x 2-x 1),∵x 1<x 2,∴x 2-x 1>0.∴f (x 1)>f (x 2).∴函数f (x )在R 上是减函数. (2)∵函数f (x )是奇函数,∴对任意x ∈R ,有f (-x )=-f (x ). ∴2x +m =-(-2x +m ).∴m =0.20.解:(1)设y =kx -0.4,由x =0.65,y =0.8,得k =0.2,所以y =15x -2(0.55≤x ≤0.75).(2)依题意,(1+15x -2)·(x -0.3)=1×(0.8-0.3)×(1+20%), 解得x =0.6或x =0.5(舍去),所以水笔销售单价应调至0.6元. 21.解:(1)设f (x )=k 1x ,g (x )=k 2x ,其中k 1k 2≠0. ∵f (1)=1,g (1)=2,∴k 1×1=1,k 21=2.∴k 1=1,k 2=2.∴f (x )=x ,g (x )=2x . (2)设h (x )=f (x )+g (x ),则h (x )=x +2x , ∴函数h (x )的定义域是(-∞,0)∪(0,+∞). ∵h (-x )=-x +2-x=-(x +2x )=-h (x ),∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数.(3)由(2)知h (x )=x +2x ,设x 1,x 2是(0,2]上的任意两个实数,且x 1<x 2, 则h (x 1)-h (x 2)=(x 1+2x 1)-(x 2+2x 2)=(x 1-x 2)+(2x 1-2x 2)=(x 1-x 2)(1-2x 1x 2)=(x 1-x 2)(x 1x 2-2)x 1x 2, ∵x 1,x 2∈(0,2],且x 1<x 2,∴x 1-x 2<0,0<x 1x 2<2. ∴x 1x 2-2<0,(x 1-x 2)(x 1x 2-2)>0. ∴h (x 1)>h (x 2).∴函数h (x )在(0,2]上是减函数,函数h (x )在(0,2]上的最小值是h (2)=2 2.即函数f (x )+g (x )在(0,2]上的最小值是2 2.22.解:(1)由题意得⎩⎨⎧f (0)=0,f (12)=25,解得⎩⎪⎨⎪⎧a =1,b =0.所以f (x )=x 1+x 2. (2)证明:任取两数x 1,x 2,且-1<x 1<x 2<1,则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22).因为-1<x 1<x 2<1,所以x 1-x 2<0,x 1x 2<1,故1-x 1x 2>0,所以f (x 1)-f (x 2)<0,故f (x )在(-1,1)上是增函数.(3)因为f (x )是奇函数,所以由f (t -1)+f (t )<0,得f (t -1)<-f (t )=f (-t ).由(2)知, f (x )在(-1,1)上是增函数,所以-1<t -1<-t <1,解得0<t <12,所以原不等式的解集为{t |0<t <12}.集合与函数概念测验二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合{|20}A x x =-<,{}1,2,3B =,则A B =( )A .{}1,2,3B .{}1C .{}3D .∅ 2.设集合{}=1,2M ,则满足条件{}=1,2,3,4MN 的集合N 的个数是( )A .1B .3C .2D .43.下列函数中,在()0,2上为增函数的是( )A .32y x =-+B .3y x= C .245y x x -=+ D .23810y x x +=-4.若奇函数()f x 在[]3,7上是增函数,且最小值是1,则它在[7,3]--上是( )A .增函数且最小值是1-B .增函数且最大值是1-C .减函数且最大值是1-D .减函数且最小值是1- 5.已知集合{|P x y ==,集合{|Q y y =,则P 与Q 的关系是( )A .P Q =B .P Q ⊆C .P Q ⊇D .PQ =∅6.设()()()F x f x f x =+-,x ∈R ,若,2π⎡⎤-π-⎢⎥⎣⎦是函数F (x )的单调递增区间,则一定是()F x 单调递减区间的是( )A .,02π⎡⎤-⎢⎥⎣⎦B .,2π⎡⎤π⎢⎥⎣⎦C .23π⎡⎤π,⎢⎥⎣⎦D .,223π⎡⎤π⎢⎥⎣⎦7.已知函数()2f x x bx c =++的图象的对称轴为直线x =1,则( ) A .()()1(12)f f f <<- B .()()12()1f f f <<-C .()())211(f f f -<<D .()())112(f f f -<<8.图中的图象所表示的函数的解析式为( )A .()10322y x x =-≤≤ B .()1232032y x x --=≤≤C .()10232y x x =-≤≤- D .()1012y x x =-≤≤-9.已知()()121,2111,2x x x f x f x +≥⎧-<⎪⎪⎨⎪-⎪⎩=,则1746f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭( )A .16- B .16C .56D .56-10.函数()y f x =是R 上的偶函数,且在(]0-∞,上是增函数,若()()2f a f ≤, 则实数a 的取值范围是( )A .2a ≤B .2a ≥-C .22a -≤≤D .22a a ≤-≥或 11.已知函数()()f x x ∈R 满足()(2)f x f x =-,若函数223y x x =--与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1mi x =∑( )A .0B .mC .2mD .4m 12.已知()32f x x =-,()22g x x x =-,()()()()()()(),,g x f x g x F x f x f x g x ⎧⎪≥<⎨⎪⎩=若若,则()F x 的最值是 ( )A .最大值为3,最小值1-B .最大值为7-C .最大值为3,无最小值D .既无最大值,又无最小值二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.函数2y x =+的值域为________.14.有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两种都没买的有________人.15.若函数()f x 的定义域为[12]-,则函数2(3)f x -的定义域为________.16.规定记号“∆”表示一种运算,即a b a b ∆+,a ,b ∈R ,若13k ∆=, 则函数()f x k x ∆=的值域是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知全集U =R ,集合{}|4A x x =>,{|66}B x x =-<<.(1)求A B 和A B ; (2)求U B ð;(3)定义{|,}A B x x A x B -=∈∉且,求A B -,()A A B --.18.(12分)已知函数()211x f x x ++=. (1)判断函数()f x 在区间[1,)+∞上的单调性,并用定义证明你的结论;(2)求该函数在区间[1]4,上的最大值与最小值.19.(12分)已知全集U =R ,集合A ={x |x ≤-a -1},B ={x |x >a +2},C ={x |x <0或x ≥4}都是U 的子集.若()U A B C ⊆ð,问这样的实数a 是否存在?若存在,求出a 的取值范围;若不存在,请说明理由.20.(12分)已知a,b为常数,且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有两个相等实根.(1)求函数f(x)的解析式;(2)当]2x∈,时,求f(x)的值域;[1(3)若F(x)=f(x)-f(-x),试判断F(x)的奇偶性,并证明你的结论.21.(12分)设f(x)为定义在R上的偶函数,当0≤x≤2时,y=x;当x>2时,y=f(x)的图象是顶点为4A,的抛物线的一部分.(2)(3)P,且过点2(1)求函数f(x)在()-∞-上的解析式;,2(2)在图中的直角坐标系中画出函数f(x)的图象;(3)写出函数f(x)的值域和单调区间.22.(12分)定义在R 上的函数f (x ),满足当x >0时,f (x )>1,且对任意的x ,y ∈R ,有()()()·f x y f x f y +=,f (1)=2. (1)求f (0)的值;(2)求证:对任意x ∈R ,都有f (x )>0;(3)解不等式f (3-2x )>4.参考答案1B 2D 3D 4B 5C 6B 7B 8B 9A 10D 11B 12B13. (]4-∞,14.215.1,22⎡⎤⎢⎥⎣⎦16.(1,)+∞17.(1){|46}A B x x =<<,{}|6A B x x =>-;(2){|66}U B x x x =≥≤-或ð;(3)(){|6}U A B AB x x -==≥ð,(){|46}A A B x x --=<<.18.(1)增函数(2)95,32.19.存在,3|2a a⎧⎫-⎨⎩≤⎬⎭.20.(1)f(x)=12-x2+x;(2)21⎡⎤⎢⎥⎣⎦,;(3)F(x)是奇函数21.(1)()23)24(f x x++=-,,2()x∈∞--;(2)(3){y|y≤4},单调增区间为(],3-∞-和[0]3,.单调减区间为[30]-,和[3,)+∞.22.(1)1;(2)(3)1,2⎛∞-⎫ ⎪⎝⎭.(2)证明:对任意x∈R,有2·2222()()02x x x x xf x f f f f⎡⎤⎛⎫⎛⎫⎛⎫===≥⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦+.假设存在x0∈R,使f(x0)=0,则对任意x>0,有f(x)=f[(x-x0)+x0]=f(x-x0)·f(x0)=0.这与已知x>0时,f(x)>1矛盾.所以,对任意x∈R,均有f(x)>0成立.。
高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。
人教版高中数学必修一集合与函数概念测试卷考试时间:100分钟姓名:__________班级:__________考号:__________△注意事项:1.填写答题卡请使用2B 铅笔填涂2.提前5分钟收答题卡一 、选择题(本大题共14小题,每小题4分,共56分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. “p 且q ”成立是“p 或q ”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件 2.若,则方程有实根的概率为:A .B .C .D .3.已知tan α、cot α是关于x 方程x 2 – kx + k2 –3 = 0的两实根,且327παπ<<.则cos )sin()3(απαπ+++的值为( ). A .1 B . C D .24.函数的定义域为 A . B . C . D .5.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是 ( ).A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<06. (08年莆田四中一模理)已知sin()=,则cos()的值为 ( )A .B .-C .D . -7.设集合)}0()1()1(|),{(},4|),{(22222>≤-+-=≤+=r r y x y x N y x y x M 当N N M =⋂时,r 的取值范围是( )A 、]12,0[-B 、]1,0[C 、]22,0(-D 、)2,0(8.关于数列:3,9,…,729以下关于此数列的结论正确的是( ▲ )A .此数列不可能是等差数列,也不可能是等比数列B .此数列可能是等差数列,不可能是等比数列C .此数列不可能是等差数列,但可能是等比数列D .此数列可能是等差数列,也可能是等比数列9.α=k ·180°+45°(k ∈Z),则α在()A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限10.过椭圆2241x y +=的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一个焦点2F 构成三角形2ABF 的周长是( )A . 2B .4CD .11.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为( ) A .191622=-x y B .191622=-y x C .116922=-x y D .116922=-y x12.函数的一个单调递增区间是A. B. C. D. 13.已知命题)1,0(∈n 02=++n x x21314143y =(],1-∞-(),1-∞-[)1,-+∞()1,-+∞xex x f -⋅=)([]0,1-[]8,2[]2,1[]2,0姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是 (A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q14.对于a ∈R ,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,以5为半径的圆的方程为( )A .x 2+y 2-2x -4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x +4y =0二 、填空题(本大题共7小题,每小题2分,共14分)15.若不等式组表示的平面区域是三角形,则实数的取值范围是 . 16.若函数f (x )=(x-1)(x-a )为偶函数,则a=___________.17.下列说法中正确的有___ ____①平均数不受少数几个极端值的影响,中位数受样本中的每一个数据影响; ②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大;③用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确;④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型. 18.(几何证明选讲选做题)如图3,AB ,CD 是半径为a 的圆O 的两条弦,它们相交于AB 的中点P ,PD=23a,∠OAP=30°,则CP =______.19.复数3123ii++的值是 。
高一第一章集合与函数试卷班级 ________座号 _______姓名 _____________第Ⅰ卷 (选择题共 60 分) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题所给的四个答案中有且只有一个答案是正确的. )1.下列各组对象中,不能形成 集合的是( )....A .连江五中全体学生B .连江五中的必修课C .连江五中 2012 级高一学生D .连江五中全体高个子学生2. 下列从集合 M 到集合 N 的对应 f 是映射的是()AB CD3.下列关系正确的是()A .0 NB .1 RC .QD .3Z4.下列各组函数是同一函数的是()x 与 y 1x 1,x 1, A . yB . y x 1 与 yx, x 1x1C . y x x 1 与 y 2 x 1D . yx 3x与 y xx 2 15.已知 f xx 2 1,x1, 则 f2 的值为()2x 3, x ≥1,A . 7B . 2C . 1D .56.下列哪个是偶函数的图像()yyyyOxO x OxOxABC D7.已知集合 Ax2 ≤ x 1 ≤ 2 和 Bx x 2k 1, k N * 的关AB系的 Venn 图如图所示,则阴影部分所示的集合的元素共有()A .3 个B .2 个C . 1 个D .无穷多个8.已知函数 f xx 2x 1,x0, 3的最值情况是()2A .有最大值3,但无最小值B .有最小值3,有最大值 144C .有最小值 1,有最大值19D .无最大值,也无最小值49.某学生离家去学校,由于怕迟到,所以一开始就匀速跑步,等跑累了再匀速走余下的路程 . 在下图中纵轴表示该生离学校的距离d ,横轴表示出发后的时间 t ,则下图中的四个图形中较符合该学生走法的是()d d d dOt Ot OtOtABCD 10.已知集合 A {2,3,9} 且 A 中至少有一个奇数,则这样的集合有()。
高中数学专题复习
《集合与函数概念》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U A B =ð( B )
(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5(2020四川理)
2.已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则
( ) A .A ⊂≠B
B .B ⊂≠A
C .A=B
D .A∩B=∅(2020课标文)
3.设○
+是R 上的一个运算,A 是R 的非空子集,若对任意,a b A ∈有a ○+b A ∈,则称A 对运算○
+封闭,下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( ) (A)自然数集 (B)整数集 (C)有理数集 (D)无理数集(2020辽宁理)。