第二讲 三直线的参数方程
- 格式:ppt
- 大小:1.60 MB
- 文档页数:30
三 直线的参数方程[对应学生用书P27]1.直线的参数方程(1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)(2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离. (1)当M 0M ―→与e (直线的单位方向向量)同向时,t 取正数. (2)当M 0M ―→与e 反向时,t 取负数,当M 与M 0重合时,t =0.[对应学生用书P27][例1] 已知直线l 的方程为3x -4y +1=0,点P (1,1)在直线l 上,写出直线l 的参数方程,并求点P 到点M (5,4)的距离.[思路点拨] 由直线参数方程的概念,先求其斜率,进而由斜率求出倾斜角的正、余弦值,从而得到直线参数方程.[解] 由直线方程3x -4y +1=0可知,直线的斜率为34,设直线的倾斜角为α,则tan α=34,sin α=35,cos α=45.又点P (1,1)在直线l 上,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+45t ,y =1+35t (t 为参数).因为3×5-4×4+1=0,所以点M 在直线l 上.由1+45t =5,得t =5,即点P 到点M 的距离为5.理解并掌握直线参数方程的转化,弄清参数t 的几何意义,即直线上动点M 到定点M 0的距离等于参数t 的绝对值是解决此类问题的关键.1.设直线l 过点A (2,-4),倾斜角为5π6,则直线l 的参数方程为________________.解析:直线l的参数方程为⎩⎪⎨⎪⎧x =2+t cos5π6,y =-4+t sin 5π6(t 为参数),即⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数).答案:⎩⎪⎨⎪⎧x =2-32t ,y =-4+12t (t 为参数)2.一直线过P 0(3,4),倾斜角α=π4,求此直线与直线3x +2y =6的交点M 与P 0之间的距离.解:设直线的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =4+22t ,将它代入已知直线3x +2y -6=0, 得3(3+22t )+2(4+22t )=6. 解得t =-1125,∴|MP 0|=|t |=1125.[例2] 已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A 、B ,求点P 到A 、B 两点的距离之积.[思路点拨] (1)由直线参数方程的概念可直接写出方程;(2)充分利用参数几何意义求解.[解] (1)∵直线l 过点P (1,1),倾斜角为π6,∴直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =1+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =1+12t 为所求.(2)因为点A ,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A ,B 的坐标分别为A (1+32t 1,1+12t 1),B (1+32t 2,1+12t 2), 以直线l 的参数方程代入圆的方程x 2+y 2=4整理得到t 2+(3+1)t -2=0,① 因为t 1和t 2是方程①的解,从而t 1t 2=-2. 所以|PA |·|PB |=|t 1t 2|=|-2|=2.求解直线与圆或圆锥曲线有关的弦长时,不必求出交点坐标,根据直线参数方程中参数t 的几何意义即可求得结果,与常规方法相比较,较为简捷.3.直线l 通过P 0(-4,0),倾斜角α=π6,l 与圆x 2+y 2=7相交于A 、B 两点.(1)求弦长|AB |; (2)求A 、B 两点坐标.解:∵直线l 通过P 0(-4,0),倾斜角α=π6,∴可设直线l 的参数方程为⎩⎪⎨⎪⎧x =-4+32t ,y =t 2.代入圆方程,得(-4+32t )2+(12t )2=7. 整理得t 2-43t +9=设A 、B 对应的参数分别t 1和t 2, 由根与系数的关系得t 1+t 2=43,t 1t 2=9 ∴|AB |=|t 2-t 1|=t 1+t 22-4t 1t 2=2 3.解得t 1=33,t 2=3,代入直线参数方程 ⎩⎪⎨⎪⎧x =-4+32t ,y =12t ,得A 点坐标(12,332),B 点坐标(-52,32).4.如图所示,已知直线l 过点P (2,0),斜率为43,直线l 和抛物线y2=2x 相交于A ,B 两点,设线段AB 的中点为M ,求:(1)P ,M 间的距离|PM |; (2)点M 的坐标.解:(1)由题意,知直线l 过点P (2,0),斜率为43,设直线l 的倾斜角为α,则tan α=43,cos α=35,sin α=45,∴直线l 的参数方程的标准形式为 ⎩⎪⎨⎪⎧x =2+35t ,y =45t(t 为参数). *∵直线l 和抛物线相交,∴将直线l 的参数方程代入抛物线方程y 2=2x 中, 整理得8t 2-15t -50=0,Δ=152+4×8×50>0. 设这个二次方程的两个根为t 1,t 2,由根与系数的关系得t 1+t 2=158,t 1t 2=-254.由M 为线段AB 的中点, 根据t 的几何意义,得|PM | =⎪⎪⎪⎪⎪⎪t 1+t 22=1516.(2)因为中点M 所对应的参数为t M =1516,将此值代入直线l 的参数方程的标准形式(*),得⎩⎪⎨⎪⎧x =2+35×1516=4116,y =45×1516=34,即M ⎝⎛⎭⎪⎫4116,34.[对应学生用书P28]一、选择题1.直线的参数方程为⎩⎪⎨⎪⎧x =-1+t 2,y =2-32t ,M 0(-1,2)和M (x ,y )是该直线上的定点和动点,则t 的几何意义是( )A .有向线段M 0M 的数量B .有向线段MM 0的数量C .|M 0M |D .以上都不是解析:参数方程可化为⎩⎪⎨⎪⎧x =-1+-12-t ,y =2+32-t答案:B2.曲线的参数方程为⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(t 是参数),则曲线是( )A .线段B .双曲线的一支C .圆D .射线解析:由y =t 2-1得y +1=t 2,代入x =3t 2+2, 得x -3y -5=0(x ≥2).故选D. 答案:D3.直线⎩⎪⎨⎪⎧x =2+3t ,y =-1+t(t 为参数)上对应t =0,t =1两点间的距离是( )A .1 B.10 C .10D .2 2解析:因为题目所给方程不是参数方程的标准形式,参数t 不具有几何意义,故不能直接由1-0=1来得距离,应将t =0,t =1分别代入方程得到两点坐标(2,-1)和(5,0),由两点间距离公式来求出距离,即-2+-1-2=10.答案:B4.若直线⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数)与圆⎩⎪⎨⎪⎧x =4+2cos φ,y =2sin φ(φ为参数)相切,那么直线倾斜角α为( )A.π6 B.π4 C.π3D.π6或5π6解析:直线化为y x=tan α,即y =tan α·x , 圆方程化为(x -4)2+y 2=4, ∴由|4tan α|tan 2α+1=2⇒tan 2α=13, ∴tan α=±33,又α∈[0,π),∴α=π6或5π6. 答案:D 二、填空题5.直线⎩⎪⎨⎪⎧x =2+22t ,y =-3-22t (t 为参数)上到点M (2,-3)的距离为2且在点M 下方的点的坐标是________.解析:把参数方程化成标准形式为⎩⎪⎨⎪⎧x =2-22-t ,y =-3+22-t ,把-t 看作参数,所求的点在M (2,-3)的下方,所以取-t =-2,即t =2,所以所求点的坐标为(3,-4).答案:(3,-4)6.若直线l 的参数方程为⎩⎪⎨⎪⎧x =1-35t ,y =45t(t 为参数),则直线l 的斜率为______.解析:由参数方程可知,cos θ=-35,sin θ=45.(θ为倾斜角).∴tan θ=-43,即为直线斜率.答案:-437.已知直线l 1:⎩⎪⎨⎪⎧x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k =____________;若l 1⊥l 2,则k =________.解析:将l 1,l 2的方程化为普通方程,得l 1:kx +2y -4-k =0,l 2:2x +y -1=0, l 1∥l 2⇒k 2=21≠4+k1⇒k =4.l 1⊥l 2⇒(-2)·(-k2)=-1⇒k =-1.答案:4 -1 三、解答题8.设直线的参数方程为⎩⎪⎨⎪⎧x =5+3t ,y =10-4t(t 为参数).(1)求直线的普通方程;(2)将参数方程的一般形式化为参数方程的标准形式. 解:(1)把t =x -53代入y 的表达式 得y =10-x -3,化简得4x +3y -50=0,所以直线的普通方程为4x +3y -50=0. (2)把参数方程变形为⎩⎪⎨⎪⎧x =5-35-5t ,y =10+45-5t ,令t ′=-5t ,即有⎩⎪⎨⎪⎧x =5-35t ′,y =10+45t ′(t ′为参数)为参数方程的标准形式.9.已知斜率为1的直线l 过椭圆x 24+y 2=1的右焦点,交椭圆于A ,B 两点,求弦AB 的长度.解:因为直线l 的斜率为1,所以直线l 的倾斜角为π4.椭圆x 24+y 2=1的右焦点为(3,0),直线l 的参数方程为⎩⎪⎨⎪⎧x =3+22t ,y =22t (t 为参数),代入椭圆方程x 24+y 2=1,得⎝ ⎛⎭⎪⎫3+22t 24+⎝ ⎛⎭⎪⎫22t 2=1,整理,得5t 2+26t -2=0. 设方程的两实根分别为t 1,t 2, 则t 1+t 2=-265,t 1·t 2=-25,|t 1-t 2|=t 1+t 22-4t 1t 2=⎝ ⎛⎭⎪⎫-2652+85=85, 所以弦AB 的长为85.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值. 解:(1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎪⎨⎪⎧x =3+12t ,y =5+32t (t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3.。
三 直线的参数方程庖丁巧解牛知识·巧学直线参数方程的形式过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数),我们把这一形式称为直线参数方程的标准形式,其中t 为参数.直线参数方程中参数t 的几何意义:表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段M M 0的数量M 0M 。
联想发散 很明显,我们也可以把参数t 理解为以M 0为原点,直线l 向上的方向为正方向的数轴上点M 的坐标,其长度单位与原直角坐标系的长度单位相同.t 是直线上有向线段的数量,当α∈(0,π)时,M 在M 0的上方时,t 〉0;M 在M 0的下方时,t<0;M 与M 0重合时,t=0。
当α=90°时,⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数)可化为x=x 0,因此在使用时,不必研究直线斜率不存在时的情况.特别地,若直线l 的倾角α=0时,直线l 的参数方程为⎩⎨⎧=+=,,00y y t x x 当t>0时,点M 在点M 0的右侧;当t=0时,点M 与点M 0重合;当t<0时,点M 在点M 0的左侧.深化升华 若直线的参数方程为一般形式⎩⎨⎧+=+=bt y y at x x 00,(t 为参数),可把它化为标准形式:⎩⎨⎧'+='+=ααsin ,cos 00t y y t x x (t′为参数),其中α是直线的倾斜角tanα=a b ,此时参数t′才有如前所说的几何意义。
同一直线方程的参数方程有多种形式,如⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 222,221(t 为参数)和 ⎩⎨⎧+=-=t y t x 2,1(t 为参数)表示同一条直线,但后者参数t 没有几何意义.直线的参数方程⎩⎨⎧+=+=bty y at x x 00,(t 为参数)只有当a 2+b 2=1且b≥0时,参数t 才有意义. 对于⎪⎪⎩⎪⎪⎨⎧++=++=t b a b y y t b a a x x 220220,(t 为参数),其中b≥0,若a>0,则直线的倾斜角α为锐角;若a<0,则直线的倾斜角α为钝角;若a=0,则直线的倾斜角α为直角.问题·探究问题1 在解决某些问题时可以使用某些已知的结论或公式,正确使用这些结论可以简化运算,使问题的解决更快捷.那么对于直线的参数方程又有哪些常用的结论呢?探究:根据直线参数方程中参数的几何意义,设直线l 的参数方程为⎩⎨⎧+=+=ααtsin ,cos 00y y t x x (t 为参数),直线l 上点A ,B 对应的参数分别为t A 、t B ,则(1)A 、B 两点之间的距离为|AB |=|t a -t b |,特别地,A 、B 两点到点M 0的距离分别为|t A |、|t B |;(2)A 、B 两点的中点所对应的参数为2B A t t +,若点M 0是线段AB 的中点,则t A +t B =0,反之亦然; (3)若直线上的点C 所对应的参数为t C ,C 点分AB 所成的比为λ,则t c =λλ++1B A t t 。
三 直线的参数方程课堂探究探究一 求经过点P (x 0,y 0),倾斜角是α的直,,线的参数方程 由直线上一定点和直线的倾斜角,可直接写出直线的参数方程. 【例题1】已知直线l 过点P (3,4),且它的倾斜角θ=120°. (1)写出直线l 的参数方程;(2)求直线l 与直线x -y +1=0的交点坐标.思路分析:根据直线过点(3,4)及直线的倾斜角θ=120°,得该直线的参数方程,然后与x -y +1=0联立可求得交点.解:(1)直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos 120°,y =4+t sin 120°(t 为参数),即⎩⎪⎨⎪⎧x =3-12t ,y =4+32t (t 为参数).(2)把⎩⎪⎨⎪⎧x =3-12t ,y =4+32t 代入x -y +1=0,得3-12t -4-32t +1=0,解得t =0.把t =0代入⎩⎪⎨⎪⎧x =3-12t ,y =4+32t ,得两条直线的交点坐标为(3,4).探究二 直线参数方程的应用在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.直线的参数方程和普通方程可以进行互化.特别是要求直线上某一定点到直线与曲线的交点的距离时,通常要使用参数的几何意义,宜用参数方程形式.【例题2】已知直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2+t (t 为参数),求该直线被圆x 2+y 2=9截得的弦长是多少?思路分析:本题考虑使用参数方程标准形式中参数t 的几何意义来做,所以首先要把原参数方程转化为标准形式⎩⎪⎨⎪⎧x =1+25t ′,y =2+15t ′,再把此式代入圆的方程,整理得到一个关于t ′的一元二次方程,弦长即为方程的两根之差的绝对值.解:将参数方程⎩⎪⎨⎪⎧x =1+2t ,y =2+t (t 为参数)转化为直线参数方程的标准形式为⎩⎪⎨⎪⎧x =1+25 t ′,y =2+15 t ′(t ′为参数),并代入圆的方程,得⎝ ⎛⎭⎪⎫1+25 t ′2+⎝ ⎛⎭⎪⎫2+15 t ′2=9,整理,得5t ′2+8t ′-45=0. 设方程的两根分别为t 1′,t 2′,则有t 1′+t 2′=-85,t 1′t 2′=-4.所以|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′ =645+16=1255. 探究三 易错辨析易错点:错用参数的几何意义【例题3】已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y2=4交于A ,B 两点,求|AB |及|AM |·|BM |.错解:把直线方程代入圆的方程,化简得t 2-6t +2=0.设A ,B 两点对应的参数分别为t 1,t 2,那么t 1+t 2=6,t 1·t 2=2,由于|MA |=|t 1|,|MB |=|t 2|,从而|MA |·|MB |=|t 1·t 2|=2,|AB |=|t 2-t 1|=(t 1+t 2)2-4t 1t 2=62-4×2=27.错因分析:直线l 的方程中,参数t 的意义与直线参数方程的标准形式中参数t 的意义是不同的,后者是点M 与直线l 上的一点形成的有向线段MP 的数量,而前者则不同,错解中把两者等同起来,错用了参数的几何意义.正解:l 的参数方程可化为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′是参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′ =14.。
18学年高中数学第二章参数方程三直线的参数方程教学案新人教A版内部文件,版权追溯内部文件,版权追溯三直线的参数方程[对应学生用书p27]1.直线的参数方程x=x0+tcosα(1)过点m0(x0,y0),倾斜角为α的直线l的参数为?y=y0+tInα?(t为参数)(2)由α表示直线的倾角α∈ [0,π),sinα≥ 0.2. 线性参数方程中参数t 的几何意义参数t的绝对值表示参数t所对应的点m到定点m0的距离.(1)当m0md→与e(直线的单位方向向量)同向时,t取正数.(2)当m0md→与e反向时,t取负数,当m与m0重合时,t=0.[对应学生用书p27][例1]已知直线l的方程为3x-4y+1=0,点p(1,1)在直线l上,写出直线l的参数方程,并求点p到点m(5,4)的距离.【思路】根据线性参数方程的概念,首先计算其斜率,然后从斜率计算倾角的正弦和余弦值,从而得到线性参数方程3【解】根据线性方程3x-4y+1=0,直线的斜率为,直线的倾角为α4334然后Tanα=sinα=cosα=。
455又点p(1,1)在直线l上,直线1的参数方程4x=1+t,??5那么L线的参数方程是?三y=1+t??5(t是参数)因为3×5-4×4+1=0,所以点m在直线l上.4从1+T=5得到T=5,也就是说,从点P到点m的距离是55理解和掌握线性参数方程的变换,阐明参数t的几何意义,即从直线上的移动点m到固定点M0的距离等于参数t的绝对值是解决此类问题的关键.5π1.设直线l过点a(2,-4),倾斜角为,则直线l的参数方程为________________.六5πx=2+总体拥有成本??六的参数方程为?5πy=4+钦??六解析:直线l(t是参数),即3x=2-t?2.1y=4+t??二(t为参数).三x=2-t,?2答案:?一y=-4+t??2(t是参数)π2.一条直线穿过P0(3,4),倾角α=0,求出该直线与直线3x+2Y=6之间的交点m 和P04的距离.二x=3+t,?2把方程的解设为一条直线?2y=4+t??二2将其替换为已知的直线3x+2y-6=0,得到3(3+)22t)+2(4+t)=6.22112解决方案是t=-,5112∴|mp0 |=t |=。
三直线的参数方程1.直线的参数方程(1)过点M0(x0,y0),倾斜角为α的直线l的参数为错误!(t为参数).(2)由α为直线的倾斜角知,α∈已知直线l的方程为3x-4y+1=0,点P(1,1)在直线l上,写出直线l的参数方程,并求点P到点M(5,4)的距离.由直线参数方程的概念,先求其斜率,进而由斜率求出倾斜角的正弦值、余弦值,从而得到直线参数方程.由直线方程3x-4y+1=0可知,直线的斜率为错误!,设直线的倾斜角为α,则tan α=错误!,sin α=错误!,cos α=错误!.又点P(1,1)在直线l上,所以直线l的参数方程为错误!(t为参数).因为3×5-4×4+1=0,所以点M在直线l上.由1+错误!t=5,得t=5,即点P到点M的距离为5.理解并掌握直线参数方程的转化,弄清参数t的几何意义,即直线上动点M到定点M0的距离等于参数t的绝对值,是解决此类问题的关键.1.一直线过P0(3,4),倾斜角α=错误!,求此直线与直线3x+2y=6的交点M与P0之间的距离.解:由题意设直线的参数方程为错误!(t为参数),将它代入已知直线3x+2y-6=0,得3错误!+2错误!=6。
解得t=-错误!,∴|MP0|=|t|=错误!。
2.已知直线l的参数方程为错误!求直线l的倾斜角.解:将参数方程化成另一种形式错误!若2t为一个参数,则错误!在α∈已知直线l经过点P(1,1),倾斜角α=错误!,(1)写出直线l的参数方程;(2)设l与圆x2+y2=4相交于两点A,B,求点P到A,B两点的距离之积.(1)由直线参数方程的概念可直接写出方程;(2)充分利用参数几何意义求解.(1)∵直线l过点P(1,1),倾斜角为错误!,∴直线的参数方程为错误!即错误!(t为参数)为所求.(2)∵点A,B都在直线l上,所以可设它们对应的参数为t1和t2,则点A,B的坐标分别为A错误!,B错误!,将直线l的参数方程代入圆的方程x2+y2=4整理得到t2+(错误!+1)t-2=0,①又∵t1和t2是方程①的解,从而t1t2=-2。